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Part 4. Formal arithmetic and Gaddel’s incompleteness theorems
Part 5. Automata on infinite objects

Part 6. Recursion-theoretic hierarchies

Part 7. Admissible ordinals and second order arithmetic

-~ Part 7. Schedule ~N
® May 18, (1) KP set theory |
® May 23, (2) KP set theory Il
® May 25, (3) KP set theory Ill
® May 30, (4) KP set theory IV and « recursion theory
® Jun. 1, (5) Recursively large ordinals |
L ® Jun. 6, (6) Recursively large ordinals Il and second order arithmetic J

2/29



Logic and
Computation

K. Tanaka

Recap
Stable ordinals

Projectible
ordinals

Admissible
ordinals and
second-order
arithmetic

@ Recap

@® Stable ordinals

© Projectible ordinals

O Admissible ordinals and second-order arithmetic

Today's topics

3/29



Logic and
Computation

K. Tanaka

Recap

Recap

KP := axioms of extensionality, pairing, union, empty set
+ Ag-Sep, or Aj-Sep:  VzAyVz(z € y <> z € x A p(2)).
+ Ap-Coll, or 31-Coll :  Vz(Vyex Izp(z) — FuVy €3z cup(z)).
+ foundation : Vz[Vyez o(y) — p(z)] = Yao(z).

KPw := KP 4axiom of infinity : Jz{0 € x AVy € x(y U{y} € )}.

Definition (Constructible sets)

A X1 operator L, on the ordinals is defined as follows.

L() =g
Lat1 = Def(La)
Lo == Ug<o Ls (ais a limit ordinal)

Let L denote a X1 class UaEOrd L,. The elements of L are called constructible sets] / 290
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An ordinal « is said to be admissible if L, = KP holds, i.e., L, = Ag-Coll

Recap

Definition
For an admissible ordinal ¢,

(2) A C ais a-recursively enumerable(a-RE) < A is £1 (L),
(4) f:a— «ais a-recursive < the graph of f is Aj(L,).

Lemma

o is admissible < there is no cofinal (unbounded) A;(L,,) function from § < « to a.

(1) Ordinal « is recursively inaccessible < « is admissible and is a limit of admissibles
(For any 8 < a, there exists an admissible ordinal 7y such that 8 < v < «).

(2) Ordinal « is recursively Mahlo < « is admissible and for any a-recursive function
f a — a, there exists an admissible 8 < « such that Vy < 8 f(vy) < B.
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For a set I of formulas, « is called T'-reflecting if for any ¢ € ' with parameters in L,

Recap

Lo Ee=3<alsgkE=e.

® Ordinal « is ¥, 41-reflecting < « is II,,-reflecting.

® For each n > 1, there exists a II,, 1 sentence 6, such that for any limit ordinal «,

a is I, -reflecting <= L, = 0,.

Theorem
® a(> w) is admissible < « is II5-reflecting.
® A IlIs-reflecting ordinal is recursively Mahlo and so recursively inaccessible.

smallest II3-reflecting > smallest recursively Mahlo > smallest recursively inaccess. > w¢X.
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P(w) denotes the set of all subsets of w.

Definition (Inductive definition)

Given an operator I' : P(w) — P(w), we define a transfinite increasing sequence
{I'*: « € Ord} of subsets of w by  T'* = (J{['(T¥): B < a}.

Then, write |T'| for the first ordinal « such that T'* = e+l which is called the
closure ordinal of operator T.

'l also denote I'*®, is the set determined by inductive definition of I

An operator T is said to be monotone, if for any X C Y C w, T'(X) Cc I'(Y).
For a monotone I, I'* = {X : I'(X) C X}.

An operator I' is ¥¢ (or IT,) if {(z,X) € w x P(w) : x € T(X)} is XF, (or I1,).
X0 =sup{|[| : T € ¢} and |mon¥? | = sup{|T| : T' € X¢ and monotone}.

ITT? | and |monlI | can be defined similarly.
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® There is a universal ¢, formula ¢(e,z, X), hence also a universal ¢ operator T
Thus, |24 ] = |T|. Similarly for IT?.

Lemma
Let T' be universal II? (n > 0) and a = |T'|. For any I1% formula ¢(X), if o(I'>°) then
38 < ap(I'?) holds.

Lemma (revisited)

There is a primitive recursive bijection F': Ord — L such that if « is w or an € number
then F“a = Ly,.

® For admissible o« = |T'|, it is even easier to construct a a-recursive bijection
G : a — I'® such that G“B = T'? for any limit ordinal § < a.

® Thus, H = F o G~ is an a-recursive bijection from I'“ to L, such that for an ¢
number 5 < a, H“TB8 = Lg. Moreover, a relation m € [ defined by
Lg = H(m) € H(l) is recursive in T'”.
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Theorem

For any n > 0,

19| is the smallest I, 1-reflecting ordinal.

Proof Sketch.

We only consider the case n = 2. Other cases can be treated similarly.

Let T be a universal I19 operator. We may assume that |T| is admissible, denoted as a.

As already mentioned, there exists an a-recursive bijection H : I'* — L,,.
Then T'* ¢ L, and T'% is 31 (L,).

Moreover, I'* is m-complete. That is, any ¥;(L,) set of natural numbers is
m-reducible to I'“.

“. Let ¢(n) be a ¥; formula. Then, there exists an € number 8 < « such that
Lg = ¢(n) for all n such that L, = ¢(n). Also, we have H“I'® = Lg. Since
Ls = H(m) € H(l) is recursive in T'”, a $1(Lp) set is arithmetic in T'” and so
m-reducible to I'“.
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e et ® Now, for a 37 formula Jw—(u, v, w), where ¥ (u, v, w) is a Ay formula with

Computation

% Trele parameters in L, there exists a recursive function g : w X w — w such that for every
m,m € w

Recap
glm,n) €T < m,n € I'* AL, E Jw—(H(m), H(n),w).
® Suppose L, = VuIoVw ¢(u,v,w). That is,
Ym € T'*In € T%(m,n) ¢ T°.

® Since the above is in the form TI3(I'®), by the last lemma there exists a 3 < « such
that
VYm e TP3n e TPg(m,n) ¢ T'°.

We may assume that g is a € number, by adding some conditions to the formula.
® Then, by using H again, we get
Lg | Yo3avVw ¢ (u, v, w).

® Thus, « is a II3-reflecting ordinal.
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Finally, for a contradiction, we assume that there exists a II3-reflecting ordinal
below «.

Since 3 < a, there exists € T'(I'¥) — I'#. Since I is 13, there is a recursive R s.t.,
r € T(T?) & VYm3InR(m,n,T7?).

Now we consider how to express Ym3nR(m,n,?) in Lg.

Since T'# is £1(Lg), R(m,n,T7) is As(Lg).

Although m,n in R(m,n,T?) range over natural numbers, they turn into set variables
in the corresponding Ay(Lg) formula.

Thus, the interpretation of Ym3nR(m,n,'?) over Lg is a 113 formula.

For the sake of convenience, if we express this with the same formula, by the
II5-reflexivity, there is a v < B(L,, = YmanR(m,n,I'7).

Therefore, x € T'(T'7) C '8, which contradicts with the choice of z.

Thus « is the smallest I13-reflecting ordinal. 0
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® Using the hierarchy of second-order set theory, we extend the theorem as follows.

Theorem

II1}| is the smallest I reflecting ordinal, and |1] is the smallest X} reflecting ordinal.

® Note that the hierarchy of second-order set theory is represented by the same symbol
as the analytical hierarchy of second-order arithmetic.

® \\e omit the details.
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There are many other ways to characterize large ordinals.

Stable ordinals

Definition (Stability)

An ordinal « is -stable if o < 8 and L, <1 Lg.
Here, Ly <1 Lg means that if a 3; formula (with parameters in L) holds in Lg, it also
holds in L. The converse is trivial.

Show the following.
(1) « is admissible if « is 3-stable for some S.

(2) If « is 5-stable and § is admissible, then « is recursively inaccessible.

13 /29
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For a countable ordinal «, the following are equivalent.
Stable ordinals

(1) « is II,,-reflecting for all n
(2) ais (a+ 1)-stable.

Proof sketch.
(1) = (2

® Suppose « is IT,,-reflecting for all n.
® Now, let Jzp(x) be a 31 formula, where p(x) € Ag with parameters in L,,.

® First, an atomic formula 2 € v appearing in ¢(z) is replaced by the equivalent Ay
formula Jy € v(Vz(z € y <> z € x)).

® Then all atomic formulas involving x are only of the form u € x. Without loss of
generality, assume o(z) is such a Ag formula.

14 /29
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Stable ordinals

Assume Loy = Jxp(x). There exists a € Lyy1 and Lot1 = ¢(a).
Then there exists a formula 6(z) such that a = {b: L, = 6(b)}.

If ©(0) is the formula obtained from ¢(a) by replacing u € a by 6(u), then Ly, = ¢(6)
by induction on the construction of Ay formula ¢(x).

Since « is reflecting, there exists 8 < a and L |= ¢(0).

Now, if we set a’ = {b: Lg |= 6(b)}, again by induction on the construction of (z)
Lgt1 E ¢(a’) and so L, |= ¢(a).

Thus L, E Jzp(x), and hence « is (o + 1)-stable.
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(2) = (1)
Stable ordinals ® If ais (av+ 1)-stable, then « is admissible.
® Now, let ¢ be a II,, formula, and assume L,, = .

® Then, the proof roughly goes as follows. We have L, 1 = 339", and so by stability,
Lo | 3B and thus Lg = 1.

® The problem here is that since L, is not a model of KP, Lz can not be defined as a
>i1 operator.

® So instead of using Lg, we state that there exists a transitive model W of KP that
also satisfies a Il condition V' = L. We omit the details.

® Thus, « is II,,-reflecting for all n. O

16 /29



Logic and
Computation

K. Tanaka

Among various characterizations of second-order reflecting properties, the following
Stable ordinals theorem is particularly elegant. We state it without proof.

Theorem

A countable ordinal « is IT3-reflecting iff it is ™ stable, where a™ is the next admissible
ordinal after a.

e “Ylreflecting” requires a stronger stability condition.
® If at + 1 is stable, it is Y1-reflecting, but the converse is not true.

® The smallest H%—reflecting ordinal is less than the smallest E%—reﬂecting ordinal, i.e.,
| < %]

17 /29
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Finally, we introduce another important notion on ordinals.
i Definition (Projectability)

ordinals

® An admissible ordinal « is projectible onto (5 if there is an a-recursive injection from
« to S.

® The smallest ordinal 8 onto which « is projectible is called the projectum of «,
denoted by a*.

® « is called projectible if a* < a.

® « is called non-projectible if o* = a.

18 /29



Logic and
Computation

K. Tanaka

Theorem

An admissible ordinal « is not projectible < L, = X1 —Sep.

Projectible

ordinals Proof sketch (=)

Let o be a non-projectible admissible ordinal.

In L, to show X1-Sep, we arbitrarily choose a € L, and ¢(x) € X1 (L). Then we
want to show A = {u € a: L, = ¢(u)} € Ly.

Since there is an a-recursive bijection between L, and «, by using X7 recursion, we
can enumerates the elements of ¥;(L,) set A by ordinals (< «).

If this enumeration exhausts « in the middle, it conflicts with the non-projectiveness
since a € L, can be enumerated by ordinals smaller than «.

If A is enumerated by an ordinal 8 smaller than «, then 5 € L, and there is an
a-recursive bijection between A and (3, which implies A € L,,.

1929
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% e ® For contraposition, suppose « is a projectible admissible ordinal.
® Then, there is 5 < a and an a-recursive injection F' from « to .
® Since F'“a C fis X1(Ly),

Projectible
ordinals

Ly E £1-Sep = F“a € L,.

® Since F'is a a-recursive injection from « to F'“a, we have a € L, which is a
contradiction. O

All projectible ordinals smaller than the first non-projectible ordinal are projectible to w.
This is a crucial condition in order to develop « recursion theory. For more details, please
refer to the following books.

Further reading

e G.E. Sacks, Higher Recursion Theory, Springer 1990.

e C.T. Chong and L. Yu, Recursion Theory: Computational Aspects of Definability,
De Gruyter 2015.
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Admissible ordinals and the subsystems of
second-order arithmetic
Recall:
Definition (The system of Recursive Comprehension Axioms)

RCA( consists of the following axioms.
(1) Basic Axioms of Arithmetic: Same as Q..
(2) AY comprehension axiom (A(-CA): for any ¢(z) € X9 and 9 (z) € I1Y,

Vz(p(z) <> ¥(z)) —» AXVz(z € X < ¢o(x)).
(3) 29 induction: for any p(z) € £9, p(0) AVz(p(z) = p(z + 1)) = Vzo(z).

Definition (Subsystems of Second Order Arithmetic)
I-CAy is obtained from RCAq by adding 3XVz(x € X + ¢(z)), for any ¢(x) € T.
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The correspondence between the property of admissible ordinal o and a subsystem of

second order arithmetic for L, N P(w) is summarized in the following table.

ordinal « || admissible | limit of admissibles | recursively inaccessible | non-projective
Second order
arithmetic T' || A}-CAq I13-CA, AL-CAq 13- CA

These relationships were already described in Kripke's UCLA lecture notes [Kri]' in 1967.

iS. Kripke, “Transfinite Recursion, Constructible Sets, and Analogues of Cardinals”, Summaries of Talks
Prepared in Connection with the Summer Institute on Axiomatic Set Theory, U.C.L.A., American
Mathematical Society 1967(https://saulkripkecenter.org)
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the smallest X5 admissible ordinal (Lo = A2-Sep)

the smallest non-projective admissible ordinal (L, = X1-Sep)

|E%| = |mon EH = the smallest E%—reflecting
|IT3] = the smallest IIi-reflecting
=0 = the smallest Lj-reflecting = (+1) stable
|Hg| = |Eg\ = the smallest IIs-reflecting

the smallest recursively Mahlo

the smallest recursively inaccessible

Wi = 1] = |29| = |monIl}| = |monll}| =the smallest IIy-reflecting
w =2 = monXy|
0
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Reverse Mathematics Program

H. Friedman, S. Simpson, etc

Reverse Mathematics
[Which axioms are needed to prove a theorem?

Big Five subsystems in order of increasing strength:
RCAq, WKLy, ACAq, ATR,, T1}-CA

Weak Konig Lemma

= RCAq + any infinite binary tree has an infinite path
= RCA( + X9-SP

¥9-SP (29 separation):
—3z(po(x) A 1 (x)) = 3XVE((po(z) = w € X) A (p1(2) = 2 ¢ X)),

where @g(x) and 1 (z) are XY formulas.
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Arithmetical Comprehension

RCA( + 3XVn (n eX«+ @(n)) for all arithmetical ¢(n)
RCA, + X9-CA

Arithmetical Transfinite Recursion
RCA( + the existence of a transfinite hierarchy produced

interating arithemetic comprehension
along a given well order
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WKLy <> the maximum principle
<> the Cauchy-Peano theorem
<> Brouwer's fixed point theorem

ACA, <> the Bolzano-Weierstrass theorem

< the Ascoli-Arzela lemma

ATR( <> the Luzin separation theorem

< X.9-determinacy

I1}-CA( ¢ the Cantor-Bendixson theorem

< B9 A TI0-determinacy
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Thank you for your attention!

In this summer break, | will organize seminars as extension of this lecture.
Please check our WeChat at least once a week.
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Logic and Foundations |

Admissible . P .

e ® Introduction This is an advanced undergraduate and graduate-level course in

second-order . . . . .

bt mathematical logic and foundations of mathematics. It is almost complementary to
my last courses " Logic and Computation | and I1.” So, completion of them is

recommended but not required. If not, please self-study with the slides.

® Topics to be presented in the first semester include: theory of equations, Birkhoff's
completeness theorem, Boolean algebras, Gentzen-Tait proof sysytem, Goedel's
completeness theorem, basic model theory, ultra-products, non-standard analysis,
subsystems of first order arithmetic, Presburger arithmetic, non-standard models of
arithmetic, saturated models, etc.

® |n the second semester, we will move on to theory of real closed fields, second order
arithmetic and reverse mathematics.

® Reference [1] K. Tanaka, Logical Foundations of Mathematics (in Japanese),
Shokabo 2019.
https://www.shokabo.co. jp/mybooks/ISBN978-4-7853-1575-7 .htm 8 / 29
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Reference book for next semester

Logical Foundations of Mathematics: a logical approach to

LOGIC ATIONS
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