K. Tanaka

[Recap](#page-3-0)

[Stable ordinals](#page-12-0)

[Projectible](#page-17-0) ordinals

Admissible ordinals and [second-order](#page-20-0) arithmetic

Logic and Computation II Part 6. Recursion-theoretic hierarchies

Kazuyuki Tanaka

BIMSA

June 8, 2023

29

 2990 ミー

メロトメ 御 トメ 君 トメ 君 ト

K. Tanaka

[Recap](#page-3-0)

[Projectible](#page-17-0) ordinals

Admissible ordinals and Logic and Computation II -

• Part 4. Formal arithmetic and Gödel's incompleteness theorems

✒ ✑

✒ ✑

- Part 5. Automata on infinite objects
- Part 6. Recursion-theoretic hierarchies
- Part 7. Admissible ordinals and second order arithmetic

Part 7. Schedule

- May 18, (1) KP set theory I
- May 23, (2) KP set theory II
- May 25, (3) KP set theory III
- May 30, (4) KP set theory IV and α recursion theory
- Jun. 1, (5) Recursively large ordinals I
- Jun. 6, (6) Recursively large ordinals II and second order arithmetic

K. Tanaka

[Recap](#page-3-0)

[Stable ordinals](#page-12-0)

[Projectible](#page-17-0) ordinals

Admissible ordinals and arithmetic

1 [Recap](#page-3-0)

2 [Stable ordinals](#page-12-0)

3 [Projectible ordinals](#page-17-0)

4 [Admissible ordinals and second-order arithmetic](#page-20-0)

Today's topics

K. Tanaka

[Recap](#page-3-0)

[Projectible](#page-17-0) ordinals

ordinals and arithmetic

 $KP := axioms$ of extensionality, pairing, union, empty set $+ \Delta_0$ -Sep, or Δ_1 -Sep: $\forall x \exists y \forall z (z \in y \leftrightarrow z \in x \land \varphi(z)).$ + Δ_0 -Coll, or Σ_1 -Coll : $\forall x(\forall y \in x \exists z \varphi(z) \rightarrow \exists u \forall y \in x \exists z \in u \varphi(z)).$ + foundation : $\forall x[\forall y \in x \varphi(y) \rightarrow \varphi(x)] \rightarrow \forall x \varphi(x)$.

 $KP\omega := KP +$ axiom of infinity : $\exists x \{0 \in x \land \forall y \in x(y \cup \{y\} \in x)\}.$

Definition (Constructible sets)

A Σ_1 operator L_{α} on the ordinals is defined as follows.

$$
\left\{\begin{array}{l} L_0:=\varnothing \\ L_{\alpha+1}:=\operatorname{Def}(L_\alpha) \\ L_\alpha:=\bigcup_{\beta<\alpha}L_\beta \ \ (\alpha \text{ is a limit ordinal})\end{array}\right.
$$

Let $\rm L$ denote a Σ_1 class $\bigcup_{\alpha\in{\rm Ord}}\rm L_\alpha.$ The elements of $\rm L$ are called $\bf contextable$ sets($/$ 29

 \circ

Recap

K. Tanaka

[Recap](#page-3-0)

[Projectible](#page-17-0) ordinals

ordinals and

Definition

An ordinal α is said to be **admissible** if $L_{\alpha} \models$ KP holds, i.e., $L_{\alpha} \models \Delta_0\text{-Coll}$

Definition

For an admissible ordinal α ,

- (2) $A \subset \alpha$ is α -recursively enumerable(α -RE) $\Leftrightarrow A$ is $\Sigma_1(L_\alpha)$,
- (4) $f : \alpha \to \alpha$ is α -recursive \Leftrightarrow the graph of f is $\Delta_1(L_\alpha)$.

Lemma

 α is admissible \Leftrightarrow there is no cofinal (unbounded) $\Delta_1(L_\alpha)$ function from $\beta < \alpha$ to α .

- (1) Ordinal α is recursively inaccessible $\Leftrightarrow \alpha$ is admissible and is a limit of admissibles (For any $\beta < \alpha$, there exists an admissible ordinal γ such that $\beta < \gamma < \alpha$).
- (2) Ordinal α is recursively Mahlo $\Leftrightarrow \alpha$ is admissible and for any α -recursive function $f: \alpha \to \alpha$, there exists an admissible $\beta < \alpha$ such that $\forall \gamma < \beta$ $f(\gamma) < \beta$.

5 / 29

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (º

K. Tanaka

[Recap](#page-3-0)

[Projectible](#page-17-0) ordinals

ordinals and

Definition (Reflecting ordinals)

For a set Γ of formulas, α is called Γ-**reflecting** if for any $\varphi \in \Gamma$ with parameters in L_{α} .

$$
L_{\alpha} \models \varphi \Rightarrow \exists \beta < \alpha \ L_{\beta} \models \varphi.
$$

- Ordinal α is Σ_{n+1} -reflecting $\Leftrightarrow \alpha$ is Π_n -reflecting.
- For each $n > 1$, there exists a Π_{n+1} sentence θ_n such that for any limit ordinal α ,

$$
\alpha \text{ is } \Pi_n\text{-reflecting } \Longleftrightarrow \mathcal{L}_\alpha \models \theta_n.
$$

Theorem

- α $>$ ω) is admissible \Leftrightarrow α is Π_2 -reflecting.
- A Π_3 -reflecting ordinal is recursively Mahlo and so recursively inaccessible.

sm[a](#page-3-0)ll[e](#page-2-0)st Π_3 -refle[c](#page-12-0)ting $>$ smallest [rec](#page-4-0)[urs](#page-6-0)[iv](#page-4-0)[el](#page-5-0)[y](#page-6-0) Mahlo $>$ smallest recursively [in](#page-2-0)acce[ss](#page-3-0)[.](#page-11-0) $> \omega_1^{\text{CK}}.$ $> \omega_1^{\text{CK}}.$ $> \omega_1^{\text{CK}}.$

 $6 / 29$

K. Tanaka

[Recap](#page-3-0)

[Projectible](#page-17-0) ordinals

ordinals and

 $\mathcal{P}(\omega)$ denotes the set of all subsets of ω .

Definition (Inductive definition)

- Given an operator $\Gamma : \mathcal{P}(\omega) \to \mathcal{P}(\omega)$, we define a transfinite increasing sequence $\{\Gamma^\alpha : \alpha \in \text{Ord}\}$ of subsets of ω by $\Gamma^\alpha = \bigcup \{\Gamma(\Gamma^\beta) : \beta < \alpha\}.$
- $\bullet\,$ Then, write $|\Gamma|$ for the first ordinal α such that $\Gamma^\alpha=\Gamma^{\alpha+1}$, which is called the closure ordinal of operator Γ.
- \bullet $\Gamma^{|\Gamma|}$, also denote Γ^∞ , is the set determined by **inductive definition** of Γ .
- An operator Γ is said to be **monotone**, if for any $X \subset Y \subset \omega$, $\Gamma(X) \subset \Gamma(Y)$.
- For a monotone Γ , $\Gamma^{\infty} = \bigcap \{X : \Gamma(X) \subset X\}.$
- An operator Γ is Σ_n^i (or Π_n^i) if $\{(x, X) \in \omega \times \mathcal{P}(\omega) : x \in \Gamma(X)\}$ is Σ_n^i (or Π_n^i).
- $\bullet \ |\Sigma_n^i| = \sup \{ |\Gamma| : \Gamma \in \Sigma_n^i \}$ and $| \mathrm{mon} \Sigma_n^i | = \sup \{ |\Gamma| : \Gamma \in \Sigma_n^i \text{and monotone} \}.$
- \bullet $\left|\Pi_n^i\right|$ and $\left|\text{mon}\Pi_n^i\right|$ can be defined similarly.

K. Tanaka

[Recap](#page-3-0)

[Projectible](#page-17-0) ordinals

ordinals and

• There is a universal Σ_n^i formula $\varphi(e,x,X)$, hence also a universal Σ_n^i operator $\Gamma.$ Thus, $|\Sigma_n^i|=|\Gamma|.$ Similarly for Π_n^i .

Lemma

Let Γ be universal Π^0_n $(n>0)$ and $\alpha=|\Gamma|.$ For any Π^0_n formula $\varphi(X)$, if $\varphi(\Gamma^\infty)$ then $\exists \beta < \alpha \varphi(\Gamma^\beta)$ holds.

Lemma (revisited)

There is a primitive recursive bijection $F: \text{Ord} \to \text{L}$ such that if α is ω or an ε number then $F''\alpha = \mathcal{L}_{\alpha}$.

✒ ✑

8 / 29

KORK EXTERNS ORA

- For admissible $\alpha = |\Gamma|$, it is even easier to construct a α -recursive bijection $G:\alpha\to \Gamma^\alpha$ such that $G``\beta=\Gamma^\beta$ for any limit ordinal $\beta<\alpha.$
- \bullet Thus, $H=F\circ G^{-1}$ is an α -recursive bijection from Γ^α to L_α such that for an ε number $\beta < \alpha$, $H^{\alpha} \Gamma^{\beta} = L_{\beta}$. Moreover, a relation $m \in \mathcal{U}$ defined by $\mathrm{L}_{\beta} \models H(m) \in H(l)$ is recursive in $\Gamma^{\beta}.$

K. Tanaka

[Recap](#page-3-0)

[Stable ordinals](#page-12-0)

[Projectible](#page-17-0) ordinals

ordinals and

Theorem

For any $n > 0$, $|\Pi^0_n|$ is the smallest Π_{n+1} -reflecting ordinal.

Proof Sketch.

- We only consider the case $n = 2$. Other cases can be treated similarly.
- $\bullet\,$ Let Γ be a universal Π^0_2 operator. We may assume that $|\Gamma|$ is admissible, denoted as $\alpha.$
- As already mentioned, there exists an α -recursive bijection $H : \Gamma^{\alpha} \to \mathbb{L}_{\alpha}$.
- Then $\Gamma^{\alpha} \notin \mathrm{L}_{\alpha}$, and Γ^{α} is $\Sigma_{1}(\mathrm{L}_{\alpha})$.
- $\bullet\,$ Moreover, Γ^α is m-complete. That is, any $\Sigma_1({\rm L}_\alpha)$ set of natural numbers is m-reducible to Γ^α .

∵ Let $\varphi(n)$ be a Σ_1 formula. Then, there exists an ε number $\beta < \alpha$ such that $L_\beta \models \varphi(n)$ for all n such that $L_\alpha \models \varphi(n)$. Also, we have $H^* \Gamma^\beta = L_\beta$. Since $\mathrm{L}_\beta\models H(m)\in H(l)$ is recursive in Γ^β , a $\Sigma_1(\mathrm{L}_\beta)$ set is arithmetic in Γ^β and so m-reducible to Γ^α .

> **KORK EXTERNS ORA** 9 / 29

- Logic and [Computation](#page-0-0)
- K. Tanaka
- [Recap](#page-3-0)
-
- [Projectible](#page-17-0) ordinals
- ordinals and

• Now, for a Σ_1 formula $\exists w \neg \psi(u, v, w)$, where $\psi(u, v, w)$ is a Δ_0 formula with parameters in L_{α} , there exists a recursive function $q : \omega \times \omega \rightarrow \omega$ such that for every $m, n \in \omega$

$$
g(m,n) \in \Gamma^{\alpha} \Leftrightarrow m, n \in \Gamma^{\alpha} \wedge L_{\alpha} \models \exists w \neg \psi(H(m), H(n), w).
$$

• Suppose $\mathcal{L}_{\alpha} \models \forall u \exists v \forall w \ \psi(u, v, w)$. That is,

 $\forall m \in \Gamma^{\alpha} \exists n \in \Gamma^{\alpha} g(m,n) \notin \Gamma^{\alpha}.$

 $\bullet\,$ Since the above is in the form $\Pi^0_2(\Gamma^\alpha)$, by the last lemma there exists a $\beta<\alpha$ such that

$$
\forall m \in \Gamma^{\beta} \exists n \in \Gamma^{\beta} g(m,n) \notin \Gamma^{\beta}.
$$

We may assume that β is a ε number, by adding some conditions to the formula.

• Then, by using H again, we get

$$
\mathcal{L}_{\beta} \models \forall v \exists v \forall w \ \psi(u, v, w).
$$

10 / 29

KO KARA KEK (EK) EL VOQO

• Thus, α is a Π_3 -reflecting ordinal.

- Logic and [Computation](#page-0-0)
- K. Tanaka
- [Recap](#page-3-0)
-
- [Projectible](#page-17-0) ordinals
- ordinals and
- Finally, for a contradiction, we assume that there exists a Π_3 -reflecting ordinal β below α .
- Since $\beta < \alpha$, there exists $x \in \Gamma(\Gamma^\beta) \Gamma^\beta$. Since Γ is Π^0_2 , there is a recursive R s.t.,

 $x \in \Gamma(\Gamma^{\beta}) \Leftrightarrow \forall m \exists n R(m,n,\Gamma^{\beta}).$

- Now we consider how to express $\forall m \exists n R(m,n,\Gamma^\beta)$ in $\mathrm{L}_\beta.$
- Since Γ^β is $\Sigma_1({\rm L}_\beta)$, $R(m,n,\Gamma^\beta)$ is $\Delta_2({\rm L}_\beta)$.
- \bullet Although m,n in $R(m,n,\Gamma^{\beta})$ range over natural numbers, they turn into set variables in the corresponding $\Delta_2(L_\beta)$ formula.

11 / 29

- $\bullet\,$ Thus, the interpretation of $\forall m \exists n R(m,n,\Gamma^\beta)$ over L_β is a Π_3 formula.
- For the sake of convenience, if we express this with the same formula, by the Π_3 -reflexivity, there is a $\gamma < \beta(\mathrm{L}_{\gamma} \models \forall m \exists n R(m,n,\Gamma^\gamma).$
- Therefore, $x \in \Gamma(\Gamma^{\gamma}) \subset \Gamma^{\beta}$, which contradicts with the choice of x.
- Thus α is the smallest Π_3 -reflecting ordinal.

K. Tanaka

[Recap](#page-3-0)

- [Stable ordinals](#page-12-0)
- [Projectible](#page-17-0) ordinals
- ordinals and

• Using the hierarchy of second-order set theory, we extend the theorem as follows.

Theorem

 $|\Pi^1_1|$ is the smallest Π^1_1 reflecting ordinal, and $|\Sigma^1_1|$ is the smallest Σ^1_1 reflecting ordinal.

• Note that the hierarchy of second-order set theory is represented by the same symbol as the analytical hierarchy of second-order arithmetic.

12 / 29

KOD KARD KED KED BI YOUN

• We omit the details

K. Tanaka

[Recap](#page-3-0)

[Stable ordinals](#page-12-0)

[Projectible](#page-17-0) ordinals

ordinals and

There are many other ways to characterize large ordinals.

Definition (Stability)

An ordinal α is β -stable if $\alpha < \beta$ and $L_{\alpha} \prec_1 L_{\beta}$. Here, $L_{\alpha} \prec_1 L_{\beta}$ means that if a Σ_1 formula (with parameters in L_{α}) holds in L_{β} , it also holds in L_{α} . The converse is trivial.

✒ ✑

13 / 29

K ロ > K @ > K 경 > K 경 > 시 경

Show the following.

(1) α is admissible if α is β -stable for some β .

(2) If α is β -stable and β is admissible, then α is recursively inaccessible.

K. Tanaka

[Recap](#page-3-0)

[Stable ordinals](#page-12-0)

[Projectible](#page-17-0)

ordinals and

Theorem

For a countable ordinal α , the following are equivalent.

(1) α is Π_n -reflecting for all n (2) α is $(\alpha + 1)$ -stable.

Proof sketch.

 $(1) \implies (2)$

- Suppose α is Π_n -reflecting for all n.
- Now, let $\exists x \varphi(x)$ be a Σ_1 formula, where $\varphi(x) \in \Delta_0$ with parameters in L_{α} .
- First, an atomic formula $x \in v$ appearing in $\varphi(x)$ is replaced by the equivalent Δ_0 formula $\exists y \in v(\forall z(z \in y \leftrightarrow z \in x)).$
- Then all atomic formulas involving x are only of the form $u \in x$. Without loss of generality, assume $\varphi(x)$ is such a Δ_0 formula.

14 / 29

KO KA KO KE KE KE KA KA KA KA KA KA KA A

K. Tanaka

[Recap](#page-3-0)

[Stable ordinals](#page-12-0)

- [Projectible](#page-17-0) ordinals
- ordinals and arithmetic
- Assume $L_{\alpha+1} \models \exists x \varphi(x)$. There exists $a \in L_{\alpha+1}$ and $L_{\alpha+1} \models \varphi(a)$.
- Then there exists a formula $\theta(x)$ such that $a = \{b : L_{\alpha} \models \theta(b)\}.$
- If $\varphi(\theta)$ is the formula obtained from $\varphi(a)$ by replacing $u \in a$ by $\theta(u)$, then $L_{\alpha} \models \varphi(\theta)$ by induction on the construction of Δ_0 formula $\varphi(x)$.
- Since α is reflecting, there exists $\beta < \alpha$ and $L_{\beta} \models \varphi(\theta)$.
- Now, if we set $a' = \{b : \mathrm{L}_{\beta} \models \theta(b)\}$, again by induction on the construction of $\varphi(x)$ $\mathcal{L}_{\beta+1} \models \varphi(a')$ and so $\mathcal{L}_{\alpha} \models \varphi(a').$

15 / 29

KOD KAD KED KED E VOOR

• Thus $L_{\alpha} \models \exists x \varphi(x)$, and hence α is $(\alpha + 1)$ -stable.

K. Tanaka

[Recap](#page-3-0)

[Stable ordinals](#page-12-0)

- [Projectible](#page-17-0) ordinals
- ordinals and
- $(2) \implies (1)$
	- If α is $(\alpha + 1)$ -stable, then α is admissible.
	- Now, let ψ be a Π_n formula, and assume $\mathcal{L}_{\alpha} \models \psi$.
	- Then, the proof roughly goes as follows. We have $L_{\alpha+1} \models \exists \beta \psi^{\mathcal{L}_{\beta}}$, and so by stability, $L_{\alpha} \models \exists \beta \psi^{\mathcal{L}_{\beta}}$ and thus $L_{\beta} \models \psi$.
	- The problem here is that since $L_{\alpha+1}$ is not a model of KP, L_{β} can not be defined as a Σ_1 operator.

16 / 29

KOD KARD KED KED BI YOUN

- So instead of using L_β , we state that there exists a transitive model W of KP that also satisfies a Π_2 condition $V = L$. We omit the details.
- Thus, α is Π_n -reflecting for all n.

K. Tanaka

[Recap](#page-3-0)

[Stable ordinals](#page-12-0)

[Projectible](#page-17-0) ordinals

ordinals and

Among various characterizations of second-order reflecting properties, the following theorem is particularly elegant. We state it without proof.

Theorem

A countable ordinal α is Π^1_1 -reflecting iff it is α^+ stable, where α^+ is the next admissible ordinal after α .

- " Σ_1^1 -reflecting" requires a stronger stability condition.
- If $\alpha^+ + 1$ is stable, it is Σ^1_1 -reflecting, but the converse is not true.
- The smallest Π^1_1 -reflecting ordinal is less than the smallest Σ^1_1 -reflecting ordinal, *i.e.*, $|\Pi_1^1| < |\Sigma_1^1|$.

17 / 29

KO KA KO KE KE KE KA KA KA KA KA KA KA A

K. Tanaka

[Recap](#page-3-0)

[Stable ordinals](#page-12-0)

[Projectible](#page-17-0) ordinals

ordinals and

Finally, we introduce another important notion on ordinals.

Definition (Projectability)

• An admissible ordinal α is **projectible** onto β if there is an α -recursive injection from α to β .

18

K ロ ▶ K 個 ▶ K ミ ▶ K ミ ▶ - ' 큰' - 10 Q Q

- The smallest ordinal β onto which α is projectible is called the **projectum** of α , denoted by α^* .
- α is called **projectible** if $\alpha^* < \alpha$.
- α is called **non-projectible** if $\alpha^* = \alpha$.

K. Tanaka

[Recap](#page-3-0)

[Projectible](#page-17-0) ordinals

ordinals and

Theorem

An admissible ordinal α is not projectible \Leftrightarrow $L_{\alpha} \models \Sigma_1$ -Sep.

Proof sketch (\Rightarrow)

- Let α be a non-projectible admissible ordinal.
- In L_{α} , to show Σ_1 -Sep, we arbitrarily choose $a \in L_{\alpha}$ and $\varphi(x) \in \Sigma_1(L_{\alpha})$. Then we want to show $A = \{u \in a : L_{\alpha} \models \varphi(u)\} \in L_{\alpha}$.
- Since there is an α -recursive bijection between L_{α} and α , by using Σ_1 recursion, we can enumerates the elements of $\Sigma_1(L_\alpha)$ set A by ordinals $(< \alpha$).
- If this enumeration exhausts α in the middle, it conflicts with the non-projectiveness since $a \in L_{\alpha}$ can be enumerated by ordinals smaller than α .

19 / 29

KOD KARD KED KED BI YOUN

• If A is enumerated by an ordinal β smaller than α , then $\beta \in L_{\alpha}$ and there is an α -recursive bijection between A and β , which implies $A \in L_{\alpha}$.

- K. Tanaka
- [Recap](#page-3-0)
- [Stable ordinals](#page-12-0)
- [Projectible](#page-17-0) ordinals
- ordinals and
- (\Leftarrow)
	- For contraposition, suppose α is a projectible admissible ordinal.
	- Then, there is $\beta < \alpha$ and an α -recursive injection F from α to β .
	- Since $F''\alpha \subset \beta$ is $\Sigma_1(L_\alpha)$,

$$
L_{\alpha} \models \Sigma_1\text{-Sep} \implies F^{\mu} \alpha \in L_{\alpha}.
$$

• Since F is a α -recursive injection from α to $F^{\alpha}\alpha$, we have $\alpha \in L_{\alpha}$, which is a contradiction.

All projectible ordinals smaller than the first non-projectible ordinal are projectible to ω . This is a crucial condition in order to develop α recursion theory. For more details, please refer to the following books.

Further reading

- G.E. Sacks, Higher Recursion Theory, Springer 1990.
- C.T. Chong and L. Yu, Recursion Theory: Computational Aspects of Definability, De Gruyter 2015.

K. Tanaka

[Recap](#page-3-0)

[Projectible](#page-17-0)

Admissible ordinals and [second-order](#page-20-0) arithmetic

Admissible ordinals and the subsystems of second-order arithmetic

Recall:

Definition (The system of Recursive Comprehension Axioms)

 $RCA₀$ consists of the following axioms.

- (1) Basic Axioms of Arithmetic: Same as Q_{\leq} .
- (2) Δ_1^0 comprehension axiom $(\Delta_1^0$ -CA): for any $\varphi(x) \in \Sigma_1^0$ and $\psi(x) \in \Pi_1^0$,

 $\forall x(\varphi(x) \leftrightarrow \psi(x)) \rightarrow \exists X \forall x (x \in X \leftrightarrow \varphi(x)).$

(3) Σ_1^0 induction: for any $\varphi(x) \in \Sigma_1^0$, $\varphi(0) \wedge \forall x (\varphi(x) \to \varphi(x+1)) \to \forall x \varphi(x)$.

Definition (Subsystems of Second Order Arithmetic)

 $Γ$ -CA₀ is obtained from RCA₀ by adding $∃X∀x(x ∈ X ↔ φ(x))$, for any $φ(x) ∈ Γ$.

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (º 21 / 29

K. Tanaka

[Recap](#page-3-0)

[Stable ordinals](#page-12-0)

[Projectible](#page-17-0) ordinals

Admissible ordinals and [second-order](#page-20-0) arithmetic

The correspondence between the property of admissible ordinal α and a subsystem of second order arithmetic for $L_{\alpha} \cap \mathcal{P}(\omega)$ is summarized in the following table.

These relationships were already described in Kripke's UCLA lecture notes $\left[\mathsf{Kri}\right]^\mathsf{i}$ in 1967.

ⁱS. Kripke, "Transfinite Recursion, Constructible Sets, and Analogues of Cardinals", Summaries of Talks Prepared in Connection with the Summer Institute on Axiomatic Set Theory, U.C.L.A., American Mathematical Society 1967(<https://saulkripkecenter.org>) $A \sqcup A \rightarrow A \sqcap A \rightarrow A \sqsupseteq A \rightarrow A \sqsupseteq A$ \equiv Ω

K. Tanaka

[Recap](#page-3-0)

[Projectible](#page-17-0)

Admissible ordinals and [second-order](#page-20-0) arithmetic

the smallest Σ_2 admissible ordinal $(L_0 \models \Delta_2\text{-}\mathsf{Sep})$ the smallest non-projective admissible ordinal ($L_{\alpha} \models \Sigma_1$ -Sep) $|\Sigma_1^1| = |\text{mon }\Sigma_1^1|$ \qquad = the smallest Σ_1^1 -reflecting $|\Pi^1_1$ $\frac{1}{1}$ = the smallest Π_1^1 -reflecting \sum_{0}^{1} $|\Sigma_0^1|$ $=$ the smallest Σ_0^1 -reflecting $= (+1)$ stable

 $|\Pi^0_2|=|\Sigma^0_3|\hspace{1cm}$ $\hspace{1cm}$ $\hspace{1cm}$

the smallest recursively Mahlo

the smallest recursively inaccessible

 $\omega_1^{\text{CK}}=|\Pi_1^0|=|\Sigma_2^0|=|\mathrm{mon}\Pi_1^0|=|\mathrm{mon}\Pi_1^1|$ $=$ the smallest Π_2 -reflecting $\omega = |\Sigma_1^0| = |\text{mon}\Sigma_1^0|$

23 / 29

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (º

 Ω

K. Tanaka

[Recap](#page-3-0)

[Projectible](#page-17-0)

Admissible ordinals and [second-order](#page-20-0) arithmetic

Reverse Mathematics Program

H. Friedman, S. Simpson, etc

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

24 / 29

Reverse Mathematics

Which axioms are needed to prove a theorem?

✒ ✑ Big Five subsystems in order of increasing strength: RCA_0 , WKL₀, ACA₀, ATR₀, Π_1^1 -CA₀

• WKL₀ = $RCA_0 + \overline{any}$ infinite binary tree has an infinite path Weak König Lemma $=$ RCA₀ + Σ_1^0 -SP

 Σ^0_1 -SP $(\Sigma^0_1$ separation): $\neg \exists x(\varphi_0(x) \land \varphi_1(x)) \rightarrow \exists X \forall x ((\varphi_0(x) \rightarrow x \in X) \land (\varphi_1(x) \rightarrow x \notin X)),$

where $\varphi_0(x)$ and $\varphi_1(x)$ are Σ^0_1 formulas.

K. Tanaka

[Recap](#page-3-0)

[Stable ordinals](#page-12-0)

[Projectible](#page-17-0) ordinals

Admissible ordinals and [second-order](#page-20-0) arithmetic

$$
\bullet\,\,\mathsf{ACA}_0 = \mathsf{RCA}_0 + \overbrace{\exists X\forall n\,\Bigl(n\in X\leftrightarrow \varphi(n)\Bigr)}^{\text{Arithmetical}\,\, \text{Comprehension}}\\ = \mathsf{RCA}_0 + \Sigma^0_1\text{-}\mathsf{CA}
$$

Arithmetical Transfinite Recursion

• $ATR_0 = RCA_0 + \hat{t}$ he existence of a transfinite hierarchy produced interating arithemetic comprehension along a given well order

K. Tanaka

- [Recap](#page-3-0)
-
- [Projectible](#page-17-0) ordinals
- Admissible ordinals and [second-order](#page-20-0) arithmetic
- $WKL_0 \leftrightarrow$ the maximum principle
	- \leftrightarrow the Cauchy-Peano theorem
	- \leftrightarrow Brouwer's fixed point theorem
- $ACA_0 \leftrightarrow$ the Bolzano-Weierstrass theorem \leftrightarrow the Ascoli-Arzela lemma

 $ATR_0 \leftrightarrow$ the Luzin separation theorem $\leftrightarrow \Sigma^0_1$ -determinacy

 $\Pi^1_1\textsf{-CA}_0 \leftrightarrow$ the Cantor-Bendixson theorem $\leftrightarrow \Sigma^0_1 \wedge \Pi^0_1$ -determinacy

Figure : Su[bs](#page-24-0)[t](#page-25-0)itution[o](#page-28-0)[f](#page-0-0) a rith $\frac{1}{26}/29$

 $26 / 29$

K. Tanaka

[Recap](#page-3-0)

[Projectible](#page-17-0)

Admissible ordinals and [second-order](#page-20-0)
arithmetic

Thank you for your attention!

In this summer break, I will organize seminars as extension of this lecture. Please check our WeChat at least once a week.

27 / 29

KOD KARD KED KED BI YOUN

K. Tanaka

[Recap](#page-3-0)

[Stable ordinals](#page-12-0)

[Projectible](#page-17-0)

Admissible ordinals and [second-order](#page-20-0) arithmetic

Lecture in the next semester

Logic and Foundations I

- Introduction This is an advanced undergraduate and graduate-level course in mathematical logic and foundations of mathematics. It is almost complementary to my last courses "Logic and Computation I and II." So, completion of them is recommended but not required. If not, please self-study with the slides.
- Topics to be presented in the first semester include: theory of equations, Birkhoff's completeness theorem, Boolean algebras, Gentzen-Tait proof sysytem, Goedel's completeness theorem, basic model theory, ultra-products, non-standard analysis, subsystems of first order arithmetic, Presburger arithmetic, non-standard models of arithmetic, saturated models, etc.
- In the second semester, we will move on to theory of real closed fields, second order arithmetic and reverse mathematics.
- Reference [1] K. Tanaka, Logical Foundations of Mathematics (in Japanese), Shokabo 2019.

<https://www.shokabo.co.jp/mybooks/ISBN978-4-7853-1575-7.htm> $\frac{1}{2}$

K. Tanaka

[Recap](#page-3-0)

[Stable ordinals](#page-12-0)

[Projectible](#page-17-0) ordinals

Admissible ordinals and [second-order](#page-20-0) arithmetic

Reference book for next semester

29 / 29

 299

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ X 경

Logical Foundations of Mathematics: a logical approach to

数学の深淵を探る。

裳華房