K. Tanaka

Recap

Stable ordinals

Projectible ordinals

Admissible ordinals and second-order arithmetic

Logic and Computation II Part 6. Recursion-theoretic hierarchies

Kazuyuki Tanaka

BIMSA

June 8, 2023

K. Tanaka

Recap

Stable ordinals

Projectible ordinals

Admissible ordinals and second-order arithmetic Logic and Computation II -

- Part 4. Formal arithmetic and Gödel's incompleteness theorems
- Part 5. Automata on infinite objects
- Part 6. Recursion-theoretic hierarchies
- Part 7. Admissible ordinals and second order arithmetic

- Part 7. Schedule

- May 18, (1) KP set theory I
- May 23, (2) KP set theory II
- May 25, (3) KP set theory III
- May 30, (4) KP set theory IV and α recursion theory
- Jun. 1, (5) Recursively large ordinals I
- Jun. 6, (6) Recursively large ordinals II and second order arithmetic

K. Tanaka

Recap

Stable ordinals

Projectible ordinals

Admissible ordinals and second-order arithmetic

1 Recap

2 Stable ordinals

3 Projectible ordinals

4 Admissible ordinals and second-order arithmetic

Today's topics

K. Tanaka

Recap

- KP := axioms of extensionality, pairing, union, empty set
 - + Δ_0 -Sep, or Δ_1 -Sep : $\forall x \exists y \forall z (z \in y \leftrightarrow z \in x \land \varphi(z)).$
 - + Δ_0 -Coll, or Σ_1 -Coll : $\forall x (\forall y \in x \exists z \varphi(z) \rightarrow \exists u \forall y \in x \exists z \in u \varphi(z)).$
 - + foundation : $\forall x [\forall y \in x \varphi(y) \rightarrow \varphi(x)] \rightarrow \forall x \varphi(x).$

 $\mathsf{KP}\omega := \mathsf{KP} + \text{axiom of infinity}: \quad \exists x \{ 0 \in x \land \forall y \in x (y \cup \{y\} \in x) \}.$

Definition (Constructible sets)

A Σ_1 operator L_{α} on the ordinals is defined as follows.

$$\left\{ \begin{array}{l} L_0 := \varnothing \\ L_{\alpha+1} := \operatorname{Def}(L_{\alpha}) \\ L_{\alpha} := \bigcup_{\beta < \alpha} L_{\beta} \ (\alpha \text{ is a limit ordinal}) \end{array} \right.$$

Let L denote a Σ_1 class $\bigcup_{\alpha \in Ord} L_{\alpha}$. The elements of L are called **constructible sets** / 29

Recap

K. Tanaka

Recap

table ordinals

Projectible ordinals

Admissible ordinals and second-order arithmetic

Definition

An ordinal α is said to be **admissible** if $L_{\alpha} \models KP$ holds, i.e., $L_{\alpha} \models \Delta_0$ -Coll

Definition

For an admissible ordinal α ,

- (2) $A \subset \alpha$ is α -recursively enumerable(α -RE) $\Leftrightarrow A$ is $\Sigma_1(L_\alpha)$,
- (4) $f: \alpha \to \alpha$ is α -recursive \Leftrightarrow the graph of f is $\Delta_1(L_\alpha)$.

Lemma

 α is admissible \Leftrightarrow there is no cofinal (unbounded) $\Delta_1(L_\alpha)$ function from $\beta < \alpha$ to α .

- (1) Ordinal α is **recursively inaccessible** $\Leftrightarrow \alpha$ is admissible and is a limit of admissibles (For any $\beta < \alpha$, there exists an admissible ordinal γ such that $\beta < \gamma < \alpha$).
- (2) Ordinal α is **recursively Mahlo** $\Leftrightarrow \alpha$ is admissible and for any α -recursive function $f: \alpha \to \alpha$, there exists an admissible $\beta < \alpha$ such that $\forall \gamma < \beta \ f(\gamma) < \beta$.

5 / 29

K. Tanaka

Recap

Stable ordinals

Projectible ordinals

Admissible ordinals and second-orde arithmetic

Definition (Reflecting ordinals)

For a set Γ of formulas, α is called Γ -reflecting if for any $\varphi \in \Gamma$ with parameters in L_{α} ,

$$\mathbf{L}_{\alpha}\models\varphi\Rightarrow\exists\beta<\alpha\ \mathbf{L}_{\beta}\models\varphi.$$

- Ordinal α is Σ_{n+1} -reflecting $\Leftrightarrow \alpha$ is Π_n -reflecting.
- For each $n \ge 1$, there exists a \prod_{n+1} sentence θ_n such that for any limit ordinal α ,

$$\alpha$$
 is Π_n -reflecting $\iff L_\alpha \models \theta_n$.

Theorem

- $\alpha(>\omega)$ is admissible $\Leftrightarrow \alpha$ is Π_2 -reflecting.
- A Π_3 -reflecting ordinal is recursively Mahlo and so recursively inaccessible.

smallest Π_3 -reflecting > smallest recursively Mahlo > smallest recursively inaccess. > ω_1^{CK} .

K. Tanaka

Recap

Stable ordinals

Projectible ordinals

Admissible ordinals and second-orde arithmetic $\mathcal{P}(\omega)$ denotes the set of all subsets of $\omega.$

Definition (Inductive definition)

- Given an **operator** $\Gamma : \mathcal{P}(\omega) \to \mathcal{P}(\omega)$, we define a transfinite increasing sequence $\{\Gamma^{\alpha} : \alpha \in \text{Ord}\}$ of subsets of ω by $\Gamma^{\alpha} = \bigcup \{\Gamma(\Gamma^{\beta}) : \beta < \alpha\}.$
- Then, write $|\Gamma|$ for the first ordinal α such that $\Gamma^{\alpha} = \Gamma^{\alpha+1}$, which is called the closure ordinal of operator Γ .
- $\Gamma^{|\Gamma|}$, also denote Γ^{∞} , is the set determined by **inductive definition** of Γ .
- An operator Γ is said to be **monotone**, if for any $X \subset Y \subset \omega$, $\Gamma(X) \subset \Gamma(Y)$.
- For a monotone Γ , $\Gamma^{\infty} = \bigcap \{ X : \Gamma(X) \subset X \}.$
- An operator Γ is Σ_n^i (or Π_n^i) if $\{(x, X) \in \omega \times \mathcal{P}(\omega) : x \in \Gamma(X)\}$ is Σ_n^i (or Π_n^i).
- $|\Sigma_n^i| = \sup\{|\Gamma|: \Gamma \in \Sigma_n^i\}$ and $|mon\Sigma_n^i| = \sup\{|\Gamma|: \Gamma \in \Sigma_n^i \text{ and monotone}\}.$
- $|\Pi_n^i|$ and $|{
 m mon}\Pi_n^i|$ can be defined similarly.

K. Tanaka

Recap

Stable ordinals

Projectible ordinals

Admissible ordinals and second-order arithmetic • There is a universal Σ_n^i formula $\varphi(e, x, X)$, hence also a universal Σ_n^i operator Γ . Thus, $|\Sigma_n^i| = |\Gamma|$. Similarly for Π_n^i .

Lemma

Let Γ be universal Π_n^0 (n > 0) and $\alpha = |\Gamma|$. For any Π_n^0 formula $\varphi(X)$, if $\varphi(\Gamma^{\infty})$ then $\exists \beta < \alpha \varphi(\Gamma^{\beta})$ holds.

– Lemma (revisited)

There is a primitive recursive bijection $F: \operatorname{Ord} \to L$ such that if α is ω or an ε number then $F^{*}\alpha = L_{\alpha}$.

- For admissible $\alpha = |\Gamma|$, it is even easier to construct a α -recursive bijection $G: \alpha \to \Gamma^{\alpha}$ such that $G^{*}\beta = \Gamma^{\beta}$ for any limit ordinal $\beta < \alpha$.
- Thus, $H = F \circ G^{-1}$ is an α -recursive bijection from Γ^{α} to L_{α} such that for an ε number $\beta < \alpha$, $H^{*}\Gamma^{\beta} = L_{\beta}$. Moreover, a relation $m \in l$ defined by $L_{\beta} \models H(m) \in H(l)$ is recursive in Γ^{β} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

K. Tanaka

Recap

Stable ordinals

Projectible ordinals

Admissible ordinals and second-order arithmetic

Theorem

For any n > 0, $|\Pi_n^0|$ is the smallest Π_{n+1} -reflecting ordinal.

Proof Sketch.

- We only consider the case n = 2. Other cases can be treated similarly.
- Let Γ be a universal Π_2^0 operator. We may assume that $|\Gamma|$ is admissible, denoted as α .
- As already mentioned, there exists an α -recursive bijection $H: \Gamma^{\alpha} \to L_{\alpha}$.
- Then $\Gamma^{\alpha} \notin L_{\alpha}$, and Γ^{α} is $\Sigma_1(L_{\alpha})$.
- Moreover, Γ^{α} is m-complete. That is, any $\Sigma_1(L_{\alpha})$ set of natural numbers is m-reducible to Γ^{α} .

: Let $\varphi(n)$ be a Σ_1 formula. Then, there exists an ε number $\beta < \alpha$ such that $L_\beta \models \varphi(n)$ for all n such that $L_\alpha \models \varphi(n)$. Also, we have $H^*\Gamma^\beta = L_\beta$. Since $L_\beta \models H(m) \in H(l)$ is recursive in Γ^β , a $\Sigma_1(L_\beta)$ set is arithmetic in Γ^β and so m-reducible to Γ^α .

- Logic and Computation
- K. Tanaka
- Recap
- Stable ordinals
- Projectible ordinals
- Admissible ordinals and second-order arithmetic

• Now, for a Σ_1 formula $\exists w \neg \psi(u, v, w)$, where $\psi(u, v, w)$ is a Δ_0 formula with parameters in L_{α} , there exists a recursive function $g: \omega \times \omega \rightarrow \omega$ such that for every $m, n \in \omega$

$$g(m,n) \in \Gamma^{\alpha} \Leftrightarrow m, n \in \Gamma^{\alpha} \wedge \mathcal{L}_{\alpha} \models \exists w \neg \psi(H(m), H(n), w).$$

• Suppose $L_{\alpha} \models \forall u \exists v \forall w \ \psi(u, v, w)$. That is,

 $\forall m \in \Gamma^{\alpha} \exists n \in \Gamma^{\alpha} g(m, n) \notin \Gamma^{\alpha}.$

- Since the above is in the form $\Pi^0_2(\Gamma^\alpha),$ by the last lemma there exists a $\beta<\alpha$ such that

$$\forall m \in \Gamma^{\beta} \exists n \in \Gamma^{\beta} g(m, n) \notin \Gamma^{\beta}.$$

We may assume that β is a ε number, by adding some conditions to the formula.

• Then, by using H again, we get

$$\mathbf{L}_{\beta} \models \forall v \exists v \forall w \ \psi(u, v, w).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

10 / 29

• Thus, α is a Π_3 -reflecting ordinal.

- Logic and Computation
- K. Tanaka
- Recap
- Stable ordinals
- Projectible ordinals
- Admissible ordinals and second-orde arithmetic

- Finally, for a contradiction, we assume that there exists a $\Pi_3\text{-reflecting ordinal }\beta$ below $\alpha.$
- Since $\beta < \alpha$, there exists $x \in \Gamma(\Gamma^{\beta}) \Gamma^{\beta}$. Since Γ is Π_2^0 , there is a recursive R s.t.,

 $x\in \Gamma(\Gamma^\beta) \Leftrightarrow \forall m \exists n R(m,n,\Gamma^\beta).$

- Now we consider how to express $\forall m \exists n R(m, n, \Gamma^{\beta})$ in L_{β} .
- Since Γ^{β} is $\Sigma_1(L_{\beta})$, $R(m, n, \Gamma^{\beta})$ is $\Delta_2(L_{\beta})$.
- Although m, n in $R(m, n, \Gamma^{\beta})$ range over natural numbers, they turn into set variables in the corresponding $\Delta_2(L_{\beta})$ formula.

11/29

- Thus, the interpretation of $\forall m \exists n R(m, n, \Gamma^{\beta})$ over L_{β} is a Π_3 formula.
- For the sake of convenience, if we express this with the same formula, by the Π_3 -reflexivity, there is a $\gamma < \beta(L_\gamma \models \forall m \exists n R(m, n, \Gamma^\gamma))$.
- Therefore, $x \in \Gamma(\Gamma^{\gamma}) \subset \Gamma^{\beta}$, which contradicts with the choice of x.
- Thus α is the smallest Π_3 -reflecting ordinal.

K. Tanaka

Recap

- Stable ordinals
- Projectible ordinals
- Admissible ordinals and second-order arithmetic

• Using the hierarchy of second-order set theory, we extend the theorem as follows.

Theorem

 $|\Pi_1^1|$ is the smallest Π_1^1 reflecting ordinal, and $|\Sigma_1^1|$ is the smallest Σ_1^1 reflecting ordinal.

• Note that the hierarchy of second-order set theory is represented by the same symbol as the analytical hierarchy of second-order arithmetic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• We omit the details.

K. Tanaka

Stable ordinals

There are many other ways to characterize large ordinals.

Definition (Stability)

An ordinal α is β -stable if $\alpha < \beta$ and $L_{\alpha} \prec_1 L_{\beta}$. Here, $L_{\alpha} \prec_1 L_{\beta}$ means that if a Σ_1 formula (with parameters in L_{α}) holds in L_{β} , it also holds in L_{α} . The converse is trivial.

イロト イロト イヨト イヨト 二日

Show the following.

(1) α is admissible if α is β-stable for some β.
(2) If α is β-stable and β is admissible, then α is recursively inaccessible.

K. Tanaka

Recap

Stable ordinals

Projectible ordinals

Admissible ordinals and second-order arithmetic

Theorem

For a countable ordinal $\alpha,$ the following are equivalent.

- (1) α is Π_n -reflecting for all n
- (2) α is $(\alpha + 1)$ -stable.

Proof sketch.

 $(1)\implies (2)$

- Suppose α is Π_n -reflecting for all n.
- Now, let $\exists x \varphi(x)$ be a Σ_1 formula, where $\varphi(x) \in \Delta_0$ with parameters in L_{α} .
- First, an atomic formula $x \in v$ appearing in $\varphi(x)$ is replaced by the equivalent Δ_0 formula $\exists y \in v(\forall z (z \in y \leftrightarrow z \in x)).$
- Then all atomic formulas involving x are only of the form $u \in x$. Without loss of generality, assume $\varphi(x)$ is such a Δ_0 formula.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

14 / 29

K. Tanaka

Recap

Stable ordinals

- Projectible ordinals
- Admissible ordinals and second-order arithmetic

- Assume $L_{\alpha+1} \models \exists x \varphi(x)$. There exists $a \in L_{\alpha+1}$ and $L_{\alpha+1} \models \varphi(a)$.
- Then there exists a formula $\theta(x)$ such that $a = \{b : L_{\alpha} \models \theta(b)\}.$
- If $\varphi(\theta)$ is the formula obtained from $\varphi(a)$ by replacing $u \in a$ by $\theta(u)$, then $L_{\alpha} \models \varphi(\theta)$ by induction on the construction of Δ_0 formula $\varphi(x)$.
- Since α is reflecting, there exists $\beta < \alpha$ and $L_{\beta} \models \varphi(\theta)$.
- Now, if we set $a' = \{b : L_{\beta} \models \theta(b)\}$, again by induction on the construction of $\varphi(x)$ $L_{\beta+1} \models \varphi(a')$ and so $L_{\alpha} \models \varphi(a')$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

15/29

• Thus $L_{\alpha} \models \exists x \varphi(x)$, and hence α is $(\alpha + 1)$ -stable.

K. Tanaka

Recap

Stable ordinals

- Projectible ordinals
- Admissible ordinals and second-order arithmetic

- $(2) \implies (1)$
 - If α is $(\alpha + 1)$ -stable, then α is admissible.
 - Now, let ψ be a Π_n formula, and assume $L_{\alpha} \models \psi$.
 - Then, the proof roughly goes as follows. We have $L_{\alpha+1} \models \exists \beta \psi^{L_{\beta}}$, and so by stability, $L_{\alpha} \models \exists \beta \psi^{L_{\beta}}$ and thus $L_{\beta} \models \psi$.
 - The problem here is that since $L_{\alpha+1}$ is not a model of KP, L_β can not be defined as a Σ_1 operator.

16 / 29

- So instead of using L_{β} , we state that there exists a transitive model W of KP that also satisfies a Π_2 condition V = L. We omit the details.
- Thus, α is Π_n -reflecting for all n.

K. Tanaka

Recap

Stable ordinals

Projectible ordinals

Admissible ordinals and second-order arithmetic Among various characterizations of second-order reflecting properties, the following theorem is particularly elegant. We state it without proof.

Theorem

A countable ordinal α is Π_1^1 -reflecting iff it is α^+ stable, where α^+ is the next admissible ordinal after α .

- " Σ_1^1 -reflecting" requires a stronger stability condition.
- If α^++1 is stable, it is $\Sigma^1_1\text{-reflecting, but the converse is not true.$
- The smallest Π_1^1 -reflecting ordinal is less than the smallest Σ_1^1 -reflecting ordinal, *i.e.*, $|\Pi_1^1| < |\Sigma_1^1|$.

K. Tanaka

Recap

table ordinals

Projectible ordinals

Admissible ordinals and second-order arithmetic

Finally, we introduce another important notion on ordinals.

Definition (Projectability)

• An admissible ordinal α is **projectible** onto β if there is an α -recursive injection from α to β .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

18.

- The smallest ordinal β onto which α is projectible is called the **projectum** of α , denoted by α^* .
- α is called **projectible** if $\alpha^* < \alpha$.
- α is called **non-projectible** if $\alpha^* = \alpha$.

K. Tanaka

Recap

Stable ordinals

Projectible ordinals

Admissible ordinals and second-order arithmetic

Theorem

An admissible ordinal α is not projectible $\Leftrightarrow L_{\alpha} \models \Sigma_1 - Sep$.

Proof sketch (\Rightarrow)

- Let α be a non-projectible admissible ordinal.
- In L_{α} , to show Σ_1 -Sep, we arbitrarily choose $a \in L_{\alpha}$ and $\varphi(x) \in \Sigma_1(L_{\alpha})$. Then we want to show $A = \{u \in a : L_{\alpha} \models \varphi(u)\} \in L_{\alpha}$.
- Since there is an α -recursive bijection between L_{α} and α , by using Σ_1 recursion, we can enumerates the elements of $\Sigma_1(L_{\alpha})$ set A by ordinals $(< \alpha)$.
- If this enumeration exhausts α in the middle, it conflicts with the non-projectiveness since $a \in L_{\alpha}$ can be enumerated by ordinals smaller than α .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

19.

• If A is enumerated by an ordinal β smaller than α , then $\beta \in L_{\alpha}$ and there is an α -recursive bijection between A and β , which implies $A \in L_{\alpha}$.

K. Tanaka

Recap

Stable ordinals

Projectible ordinals

Admissible ordinals and second-order arithmetic

- (\Leftarrow)
 - $\bullet\,$ For contraposition, suppose α is a projectible admissible ordinal.
 - Then, there is $\beta < \alpha$ and an α -recursive injection F from α to β .
 - Since $F ``\alpha \subset \beta$ is $\Sigma_1(\mathcal{L}_\alpha)$,

$$L_{\alpha} \models \Sigma_1$$
-Sep $\implies F ``\alpha \in L_{\alpha}.$

• Since F is a α -recursive injection from α to F " α , we have $\alpha \in L_{\alpha}$, which is a contradiction.

All projectible ordinals smaller than the first non-projectible ordinal are projectible to ω . This is a crucial condition in order to develop α recursion theory. For more details, please refer to the following books.

Further reading

- G.E. Sacks, Higher Recursion Theory, Springer 1990.
- C.T. Chong and L. Yu, *Recursion Theory: Computational Aspects of Definability*, De Gruyter 2015.

K. Tanaka

Recap

Stable ordinals

Projectible ordinals

Admissible ordinals and second-order arithmetic

Admissible ordinals and the subsystems of second-order arithmetic

Recall:

Definition (The system of Recursive Comprehension Axioms)

 RCA_0 consists of the following axioms.

- (1) Basic Axioms of Arithmetic: Same as $\ \ Q_{<}.$
- (2) Δ_1^0 comprehension axiom (Δ_1^0 -CA): for any $\varphi(x) \in \Sigma_1^0$ and $\psi(x) \in \Pi_1^0$,

 $\forall x(\varphi(x) \leftrightarrow \psi(x)) \rightarrow \exists X \forall x(x \in X \leftrightarrow \varphi(x)).$

 $(3) \ \Sigma_1^0 \ \text{induction: for any } \varphi(x) \in \Sigma_1^0 \text{, } \varphi(0) \land \forall x (\varphi(x) \to \varphi(x+1)) \to \forall x \varphi(x).$

Definition (Subsystems of Second Order Arithmetic)

 Γ -CA₀ is obtained from RCA₀ by adding $\exists X \forall x (x \in X \leftrightarrow \varphi(x))$, for any $\varphi(x) \in \Gamma$.

K. Tanaka

Recap

Stable ordinals

Projectible ordinals

Admissible ordinals and second-order arithmetic The correspondence between the property of admissible ordinal α and a subsystem of second order arithmetic for $L_{\alpha} \cap \mathcal{P}(\omega)$ is summarized in the following table.

ordinal $lpha$	admissible	limit of admissibles	recursively inaccessible	non-projective
Second order				
arithmetic T	Δ^1_1 -CA $_0$	Π^1_1 -CA $_0$	Δ^1_2 -CA $_0$	Π^1_2 - CA $_0$

These relationships were already described in Kripke's UCLA lecture notes [Kri]ⁱ in 1967.

ⁱS. Kripke, "Transfinite Recursion, Constructible Sets, and Analogues of Cardinals", *Summaries of Talks Prepared in Connection with the Summer Institute on Axiomatic Set Theory, U.C.L.A.*, American Mathematical Society 1967(https://saulkripkecenter.org)

K. Tanaka

Recap

Stable ordinals

Projectible ordinals

Admissible ordinals and second-order arithmetic the smallest Σ_2 admissible ordinal $(L_{\alpha} \models \Delta_2$ -Sep) the smallest non-projective admissible ordinal $(L_{\alpha} \models \Sigma_1$ -Sep) $|\Sigma_1^1| = |\text{mon } \Sigma_1^1| = \text{the smallest } \Sigma_1^1\text{-reflecting}$ $|\Pi_1^1| = \text{the smallest } \Pi_1^1\text{-reflecting}$ $|\Sigma_0^1| = \text{the smallest } \Sigma_0^1\text{-reflecting} = (+1) \text{ stable}$

 $|\Pi_2^0| = |\Sigma_3^0|$ = the smallest Π_3 -reflecting

the smallest recursively Mahlo

the smallest recursively inaccessible

$$\begin{split} \omega_1^{CK} &= |\Pi_1^0| = |\Sigma_2^0| = |\text{mon}\Pi_1^0| = |\text{mon}\Pi_1^1| = \text{the smallest } \Pi_2\text{-reflecting} \\ \omega &= |\Sigma_1^0| = |\text{mon}\Sigma_1^0| \\ \ddots \end{split}$$

(ロ) (同) (三) (三) (三) (0)

23/29

K. Tanaka

Recap

table ordinals

Projectible ordinals

Admissible ordinals and second-order arithmetic

Reverse Mathematics Program

H. Friedman, S. Simpson, etc

Reverse Mathematics

Which axioms are needed to prove a theorem?

Big Five subsystems in order of increasing strength: RCA_0 , WKL₀, ACA₀, ATR₀, Π_1^1 -CA₀

Weak König Lemma

• WKL₀ = RCA₀ + any infinite binary tree has an infinite path = RCA₀ + Σ_1^0 -SP

$$\begin{split} \Sigma_1^0\text{-}\mathsf{SP}\ \big(\Sigma_1^0\ \textit{separation}\big):\\ \neg \exists x(\varphi_0(x) \land \varphi_1(x)) \to \exists X \forall x((\varphi_0(x) \to x \in X) \land (\varphi_1(x) \to x \notin X)), \end{split}$$

where $\varphi_0(x)$ and $\varphi_1(x)$ are Σ_1^0 formulas.

K. Tanaka

Recap

Stable ordinals

Projectible ordinals

Admissible ordinals and second-order arithmetic

•
$$ACA_0 = RCA_0 + \exists X \forall n (n \in X \leftrightarrow \varphi(n))$$
 for all arithmetical $\varphi(n)$
= $RCA_0 + \Sigma_1^0 - CA$

Arithmetical Transfinite Recursion

• ATR₀ = RCA₀ + the existence of a transfinite hierarchy produced interating arithemetic comprehension along a given well order

K. Tanaka

Recap

Stable ordinals

Projectible ordinals

Admissible ordinals and second-order arithmetic

- $\label{eq:WKL} \begin{array}{l} \mathsf{WKL}_0 \leftrightarrow \mathsf{the} \mbox{ maximum principle} \\ \leftrightarrow \mathsf{the} \mbox{ Cauchy-Peano theorem} \end{array}$
 - \leftrightarrow Brouwer's fixed point theorem

 $\label{eq:ACA_0} \begin{array}{l} \leftrightarrow \text{ the Bolzano-Weierstrass theorem} \\ \leftrightarrow \text{ the Ascoli-Arzela lemma} \end{array}$

 $\begin{array}{l} \mathsf{ATR}_0 \leftrightarrow \mathsf{the} \ \mathsf{Luzin} \ \mathsf{separation} \ \mathsf{theorem} \\ \leftrightarrow \Sigma_1^0 \text{-}\mathsf{determinacy} \end{array}$

$$\begin{split} \Pi^1_1\text{-}\mathsf{C}\mathsf{A}_0&\leftrightarrow \mathsf{the}\,\,\mathsf{Cantor}\text{-}\mathsf{Bendixson}\,\,\mathsf{theorem}\\ &\leftrightarrow \Sigma^0_1\wedge\Pi^0_1\text{-}\mathsf{determinacy} \end{split}$$

イロト イポト イヨト イヨト 二日

K. Tanaka

Recap

Stable ordinals

Projectible ordinals

Admissible ordinals and second-order arithmetic

Thank you for your attention!

In this summer break, I will organize seminars as extension of this lecture. Please check our WeChat at least once a week.

イロン 人間 とくほとくほど

- 14

K. Tanaka

Recap

table ordinals

Projectible ordinals

Admissible ordinals and second-order arithmetic

Lecture in the next semester

Logic and Foundations I

- Introduction This is an advanced undergraduate and graduate-level course in mathematical logic and foundations of mathematics. It is almost complementary to my last courses "Logic and Computation I and II." So, completion of them is recommended but not required. If not, please self-study with the slides.
- **Topics** to be presented in the first semester include: theory of equations, Birkhoff's completeness theorem, Boolean algebras, Gentzen-Tait proof sysytem, Goedel's completeness theorem, basic model theory, ultra-products, non-standard analysis, subsystems of first order arithmetic, Presburger arithmetic, non-standard models of arithmetic, saturated models, etc.
- In the second semester, we will move on to theory of real closed fields, second order arithmetic and reverse mathematics.
- **Reference** [1] K. Tanaka, Logical Foundations of Mathematics (in Japanese), Shokabo 2019.

https://www.shokabo.co.jp/mybooks/ISBN978-4-7853-1575-7.htm

K. Tanaka

Recap

Stable ordinals

Projectible ordinals

Admissible ordinals and second-order arithmetic

Reference book for next semester

イロト 不得 トイヨト イヨト 一日

29

29

Logical Foundations of Mathematics: a logical approach to

数学の深淵を探る。

裳華房