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Logic and Computation II� �
• Part 4. Formal arithmetic and Gödel’s incompleteness theorems

• Part 5. Automata on infinite objects

• Part 6. Recursion-theoretic hierarchies

• Part 7. Admissible ordinals and second order arithmetic� �
Part 7. Schedule� �
• May 18, (1) KP set theory I

• May 23, (2) KP set theory II

• May 25, (3) KP set theory III

• May 30, (4) KP set theory IV and α recursion theory

• Jun. 1, (5) Recursively large ordinals I

• Jun. 6, (6) Recursively large ordinals II and second order arithmetic� �
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KP := axioms of extensionality, pairing, union, empty set

+ ∆0-Sep, or ∆1-Sep : ∀x∃y∀z(z ∈ y ↔ z ∈ x ∧ φ(z)).

+ ∆0-Coll, or Σ1-Coll : ∀x(∀y∈x∃zφ(z) → ∃u∀y∈x∃z∈uφ(z)).

+ foundation : ∀x[∀y∈xφ(y) → φ(x)] → ∀xφ(x).

KPω := KP+axiom of infinity : ∃x{0 ∈ x ∧ ∀y ∈ x(y ∪ {y} ∈ x)}.

Definition (Constructible sets)

A Σ1 operater Lα on the ordinals are defined as follows.
L0 := ∅
Lα+1 := Def(Lα)
Lα :=

⋃
β<α Lβ (α is a limit ordinal)

Let L denote a Σ1 class
⋃

α∈Ord Lα. The elements of L are called constructible sets.
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Definition

An ordinal α is said to be admissible if Lα |= KP holds.

The first admissible ordinal is ω� �
• Lω is the set of x such that TC(x) is finite.� �

The second admissible ordinal ω+ is ωCK
1

� �
• LωCK

1

⋂
P(ω) = ∆1

1 = Hyp, the set of hyperarithmetical sets (of natural

numbers) (Slide 06-06, p.18).

• LωCK
1

⋂
Ord = the set of recursive ordinals = the set of hyp ordinals.� �

The third admissible ordinal ω++ is ωCK
1 in oracle O� �

• Lω++

⋂
P(ω) = (∆1

1)
O� �
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Lemma

α ∈ Ord is admissible ⇔ Lα |= ∆0-Coll .

Definition

For an admissible ordinal α,

(1) A ⊂ α is α-finite ⇔ A ∈ Lα,

(2) A ⊂ α is α-recursively enumerable(α-RE) ⇔ A is Σ1(Lα),

(3) A ⊂ α is α-recursive ⇔ A is ∆1(Lα),

(4) f : α→ α is α-recursive ⇔ the graph of f is ∆1(Lα).

• A ⊂ α is said to be Σ1(Lα) if there exists a Σ1 formula φ(x) such that
A = {β < α : Lα |= φ(β)}.

Homework� �
Suppose A ⊂ ω. Prove that

A is ωCK
1 -recursive ⇔ A is ωCK

1 -finite ⇔ A ⊂ ω is hyperarithmetic (i.e., ∆1
1).� �
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Lemma (Spector Gandy)

The following are equivalent.

(1) A ⊂ ω is ωCK
1 -RE.

(2) A ⊂ ω is Π1
1.

Proof. (2) ⇒ (1)

• By Corollary(1) of Lecture06-06, we have for any Π1
1 set A, there exists a recursive

tree T such that n ∈ A⇔ Tn = {t : n∧t ∈ T} ∈ WF.

• By the theorem in P.18 of Lecture06-05, “Tn ∈ WF” is equivalent to “there exist an
ordinal σ < ωCK

1 and an order-preserving function f : Tn → σ+1” which is Σ1(LωCK
1

).

(1) ⇒ (2)

• Note that LωCK
1

is the minimal model of KPω. This was shown as an example.

• Then, for any Σ1 formula φ(x),

LωCK
1

|= φ(n) ⇔ φ(n) holds in any model ξ of KPω,

where the latter can be expressed by a Π1
1 formula. □
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Lemma

α is admissible ⇔ there is no cofinal (unbounded) ∆1(Lα) function from β < α to α.

Proof. (⇒) Assume there is a cofinal function f from β < α to α, whose graph is
represented by a ∆1(Lα) formula θ. Then since ∀u < β∃v θ holds in Lα, there is a γ < α
s.t. ∀u < β∃v < γ θ by ∆1 − Coll, which contradicts with the cofinality of f .

(⇐) Let α be a limit. To show Lα |= ∆0-Coll, let θ be ∆0 and assume ∀u ∈ a∃vθ in Lα.

• Take β such that a ⊂ Lβ . Consider a ∆1(Lα) increasing function f : β → α such that
for each β′ < β, f(β′) is the smallest γ such that ∀u ∈ a ∩ Lβ′ ∃v ∈ Lγθ.

• If there is β′ < β such that the function f : β′ → α is cofinal, which contradicts with
the assumption.

• If there is no such β′, f is a ∆1(Lα) function from β to α, and thus it is not cofinal
by the assumption, and so there exists a γ < α such that ∀u ∈ a∃v ∈ Lγθ. □
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• From the last lemma, admissible ordinals can be viewed as recursive analogues of
regular cardinals in set theory, and hence they are also called recursively regular.

• It is natural to consider what are the recursive versions of large cardinals, such as
regular limit cardinals (weakly inaccessible cardinals).

• First, let us introduce a relatively small analogue of large cardinals.

Definition (Recursive analogues of large cardinals)

(1) Ordinal α is recursively inaccessible ⇔ α is admissible and is a limit of admissibles
(For any β < α, there exists an admissible ordinal γ such that β < γ < α).

(2) Ordinal α is recursively Mahlo ⇔ α is admissible and for any α-recursive function
f : α→ α, there exists an admissible β < α such that ∀γ < β f(γ) < β.

(3) Ordinal α is recursively hyper-Mahlo ⇔ α is admissible and for any α-recursive
function f : α→ α, there exists a recursively Mahlo β < α such that
∀γ < β f(γ) < β.
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Homework� �
Denote the α-th admissible ordinal by τα. Show the following.

(1) ∪n∈ωτn is not admissible.

(2) α = τα ⇔ τα is recursively inaccessible.

(3) Recursive Mahlo ordinals are recursively inaccessible.� �
Homework� �
Show the following.

(1) Let γ be the limit of admissible ordinals, then Lγ satisfies Axiom β.

(2) Let α be recursively inaccessible. Then Lα satisfies (∆1
2-CA) which asserts the

existence of any ∆1
2 subset of ω.� �
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We introduce the following key notion to characterize even larger admissible ordinals.

Definition (Reflecting ordinals)

Let Γ be a set of formulas. We say that α is Γ-reflecting if for any φ ∈ Γ (containing
elements of Lα as parameters ),

Lα |= φ⇒ ∃β < α Lβ |= φ,

where the parameters included in φ are in Lβ .

Lemma

Ordinal α is Σn+1-reflecting ⇔ α is Πn-reflecting.

Proof. (⇒) is obvious.
To show (⇐), let ∃y φ(y) be a Σn+1 formula, where φ is Πn with parameters in Lα.

Lα |= ∃yφ(y) ⇒ Lα |= φ(u) for some u ∈ Lα

⇒ by the Πn-reflecting, there exists β < α such that Lβ |= φ(u)

⇒ Lβ |= ∃yφ(y)
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Theorem

α(> ω) is admissible ⇔ α is Π2-reflecting.

Proof.
(⇒)

• Suppose α is admissible and a Π2 formula ∀x∃yθ holds in Lα.

• Then, by ∆0-Coll, for any β < α, there exists γ < α such that ∀x ∈ Lβ∃y ∈ Lγθ.
Thus, we define an α-recursive function f by taking f(β) as the smallest such γ.

• If there is a β such that β ≥ f(β), then ∀x∃yθ holds in Lβ .

• Otherwise, define an ω-sequence 0 = β0 < β1 < β2 < . . . by βn+1 = f(βn). Then by
the lemma on page 8, β = supn βn < α. Thus, f(β) = β < α, a contradiction.

(⇐)

• Let α be Π2-reflecting. If Π2 formula ∀x∈a∃yθ holds in Lα, it also holds in Lβ for
some β < α. That is, ∀x∈a∃y∈Lβθ holds in Lα.

• Therefore, Lα satisfies ∆0-Coll, and so α is admissible. □
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Lemma

For each n ≥ 1, there exists a Πn+1 sentence θn such that for any limit ordinal α,

α is Πn-reflecting ⇐⇒ Lα |= θn.

In particular, θ2, representing admissibility, is a Π3 sentence.

Proof Sketch.
Let φ(e, x) be a universal Πn formula. Then “α is Πn-reflecting” is expressed as follows.

Lα |= ∀x∀e < α(φ(e, x) → ∃β(x ∈ Lβ ∧ φLβ (e, x))︸ ︷︷ ︸
¬Πn∨Σ1 i.e. Σn

)

︸ ︷︷ ︸
Πn+1

So, letting θn be the above Πn+1 sentence (after Lα |=), the first half of the lemma holds.
The second half also follows from the last theorem. □
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Theorem

A Π3-reflecting ordinal is recursively Mahlo.

Proof.

• Let α be a Π3-reflecting ordinal and take any α-recursive function f : α→ α.

• We want to show that there exists an admissible β < α such that ∀γ < β f(γ) < β.

• The graph of f is represented by a ∆1(Lα) formula φ(x, y) (with parameters in Lα).

• Let θ2 be the Π3 sentence of admissibility, and define

ψ ≡ ∀x∈Ord ∃y∈Ord φ(x, y) ∧ θ2.

Then ψ is Π3.

• Since ψ holds Lα, by Π3-reflecting, there exists a β < α such that ψ holds in Lβ .

• Then since Lβ satisfies θ2, β is admissible. Since Lβ satisfies ∀x∃yφ(x, y),
∀γ < β f(γ) < β. □
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• “α is recursively Mahlo” iff Lα |= θ2 ∧ ∀f : Ord → Ord ∃β (θ
Lβ

2 ∧∀γ < β f(γ) < β).

• Thus, “α is recursively Mahlo” can also be expressed by a Π3 formula π3.

• Then, we can also show that any Π3-reflecting ordinal is a recursively hyper-Mahlo in
the same way as the proof above.

• Moreover, it is also a recursively hyper-hyper-Mahlo, etc.

• In summary,
the smallest Π3-reflecting ordinal

> the smallest recursively hyper-hyper-Mahlo ordinal
> the smallest recursively hyper-Mahlo ordinal
> the smallest recursively Mahlo ordinal
> the smallest recursively inaccessible
> ωCK

1 .
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Inductive definitions

• The smallest Π3-reflecting ordinal is the smallest ordinal that cannot be described by a
Π1

1 formula in second-order set theory, which is thus called a recursively weakly
compact ordinal.

• It seems tremendously large, but from another point of view, it’s not so big. We now
consider the relationship with the inductive definition.

• Inductive definitions appear everywhere, both in mathematics and computer science.
For example, a set of terms, a set of formulas, a set of theorems are defined by
induction.

• However, in most cases, an inductive operator is finitary, and so defined objects are
obtained in finite steps. We here consider infinitary operators, which define objects in
transfinite steps. The construction of the Borel sets is a typical example.
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In the following, we only deal with inductive definitions for sets of natural numbers.
P(ω) denotes the set of all subsets of ω.

Definition (Inductive definition)

• Given a function (also called an operator) Γ : P(ω) → P(ω), we define
Γα =

⋃
{Γ(Γβ) : β < α}

as the transfinite increasing sequence {Γα : α ∈ Ord} of subsets of ω.

• Then, write |Γ| for the first ordinal α such that Γα = Γα+1, which is called the
closure ordinal of operator Γ.

• Γ|Γ| is called the set determined by inductive definition of Γ and also denoted by Γ∞.

• An operator Γ is said to be monotone, if for any X ⊂ Y ⊂ ω, Γ(X) ⊂ Γ(Y ).

• For a monotone Γ, Γ∞ =
⋂
{X : Γ(X) ⊂ X}.

• An operator Γ is Σi
n (or Πi

n) if {(x,X) ∈ ω × P(ω) : x ∈ Γ(X)} is Σi
n (or Πi

n).

• |Σi
n| = sup{|Γ| : Γ ∈ Σi

n} and |monΣi
n| = sup{|Γ| : Γ ∈ Σi

nand monotone}.
• |Πi

n| and |monΠi
n| can be defined similarly.
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• Our next goal is to show |Π0
n| is the smallest Πn+1-reflecting ordinal.

• If this holds, then |Π0
1| is ωCK

1 and |Π0
2| is recursively weakly compact.

• This result is a bit surprising, since Π0
1 and Π0

2 are lowest levels of arithmetic formulas.

• We first review some basics. Σi
n has a universal formula φ(e, x,X). Hence, any Σi

n

operator is also denoted as Γe with index e if x ∈ Γe(X) ⇔ φ(e, x,X).

• On the other hand, if Γ is defined by (e, x) ∈ Γ(X) ⇔ φ(e, x,Xe), (Γe)
α = (Γα)e for

each e. Hence, |Σi
n| is |Γ|. Similarly for Πi

n.

Homework� �
Show |Π0

n| = |Σ0
n+1|.� �
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Lemma

Let Γ be universal Π0
n (n > 0) and α = |Γ|. For any Π0

n formula φ(X), if φ(Γ∞) then
∃β < αφ(Γβ) holds.

Proof.

• Assume φ(Γ∞), where Γ is a universal Π0
n and φ(X) is a Π0

n formula.

• By way of contradiction, assume ∀β < α ¬φ(Γβ).

• Now, let X ⊕ Y = {2n : n ∈ X} ∪ {2n+ 1 : n ∈ Y } and a Π0
n operator Γ′ is defined

as follows

Γ′(X ⊕ Y ) = {2n : n ∈ Γ(X)} ∪ {2n+ 1 : n ∈ Γ(Y ) ∧ φ(X)}.

• Starting with Y = ∅, Γ′ mimics Γ(X). Then, when it reaches a fixed point Γ∞ that
satisfies φ(X), then fix X = Γ∞ and start mimicing Γ(Y ).

• Then |Γ′| > |Γ| is obvious, which conflicts with the universality of Γ. □
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• Recall the following lemma

Lemma (revisited)� �
There is a primitive recursive bijection F : Ord → L such that if α is ω or an ε
number then F“α = Lα.� �

• For admissible α = |Γ|, it is even easier to construct a α-recursive bijection
G : α→Γα such that G“β = Γβ for any limit ordinal β < α.

• Thus, H = F ◦G−1 is a α-recursive bijection from Γα to Lα such that for an ε
number β < α, H“Γβ = Lβ .
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Now we are ready to show

Theorem

For any n > 0, |Π0
n| is the smallest Πn+1-reflecting ordinal.

Proof Sketch.

• We only consider the case n = 2. Other cases can be treated similarly.

• Let Γ be a universal Π0
2 operator with admissible α = |Γ|.

• As already mentioned, there exists an α-recursive bijection H : Γα → Lα.

• Then Γα /∈ Lα, and Γα is Σ1(Lα).

• Moreover, Γα is m-complete. That is, any Σ1(Lα) set of natural numbers is
m-reducible to Γα.
∵ Let φ(n) be a Σ1 formula. Then, there exists an ε number β < α such that
Lβ |= φ(n) whenever Lα |= φ(n). Also, we have H“Γβ = Lβ . We now define a
relation m ∈̃ l by Lβ |= H(m) ∈ H(l), and then it is recursive in Γβ . Hence, a
Σ1(Lβ) set is arithmetic in Γβ and so m-reducible to Γα.
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• Now, for a Σ1 formula ∃w¬ψ(u, v, w), where ψ(u, v, w) is a ∆0 formula with
parameters in Lα, there exists a recursive function g : ω × ω → ω such that for every
m,n ∈ ω

g(m,n) ∈ Γα ⇔ m,n ∈ Γα ∧ Lα |= ∃w¬ψ(H(m), H(n), w).

• Suppose Lα |= ∀u∃v∀w ψ(u, v, w). That is,

∀m ∈ Γα∃n ∈ Γαg(m,n) ̸∈ Γα.

• Since the above is in the form Π0
2(Γ

α), by the last lemma there exists a β < α such
that

∀m ∈ Γβ∃n ∈ Γβg(m,n) ̸∈ Γβ .

We may assume that β is a ε number, by adding some conditions to the formula.

• Then, by using H again, we get

Lβ |= ∀v∃v∀w ψ(u, v, w).

• Thus, α is a Π3-reflecting ordinal.
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• Finally, for a contradiction, we assume that there exists a Π3-reflecting ordinal β
below α.

• Since β < α, there exists x ∈ Γ(Γβ)− Γβ . Since Γ is Π0
2, there is a recursive R s.t.,

x ∈ Γ(Γβ) ⇔ ∀m∃nR(m,n,Γβ).

• Now we consider how to express ∀m∃nR(m,n,Γβ) in Lβ .

• Since Γβ is Σ1(Lβ), R(m,n,Γ
β) is ∆2(Lβ).

• Although m,n in R(m,n,Γβ) range over natural numbers, they turn into set variables
in the corresponding ∆2(Lβ) formula.

• Thus, the interpretation of ∀m∃nR(m,n,Γβ) over Lβ is a Π3 formula.

• For the sake of convenience, if we express this with the same formula, by the
Π3-reflexivity, there is a γ < β(Lγ |= ∀m∃nR(m,n,Γγ).

• Therefore, x ∈ Γ(Γγ) ⊂ Γβ , which contradicts with the choice of x.

• Thus α is the smallest Π3-reflecting ordinal. □
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