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Logic and Computation II� �
• Part 4. Formal arithmetic and Gödel’s incompleteness theorems

• Part 5. Automata on infinite objects

• Part 6. Recursion-theoretic hierarchies

• Part 7. Admissible ordinals and second order arithmetic� �
Part 7. Schedule� �
• May 18, (1) KP set theory I

• May 23, (2) KP set theory II

• May 25, (3) KP set theory III

• May 30, (4) KP set theory IV and α recursion theory

• Jun. 1, (5) Recursively large ordinals I

• Jun. 6, (6) Recursively large ordinals II and second order arithmetic� �
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Recap

KP := axioms of extensionality, pairing, union, empty set

+ ∆0-Sep, or ∆1-Sep : ∀x∃y∀z(z ∈ y ↔ z ∈ x ∧ φ(z)).

+ ∆0-Coll, or Σ1-Coll : ∀x(∀y∈x∃zφ(z) → ∃u∀y∈x∃z∈uφ(z)).

+ foundation : ∀x[∀y∈xφ(y) → φ(x)] → ∀xφ(x).

KPω := KP+axiom of infinity : ∃x{0 ∈ x ∧ ∀y ∈ x(y ∪ {y} ∈ x)}.

Let φ(x⃗, y) be a Σ1 formula such that KP ⊢ ∀x⃗∃!yφ(x⃗, y). Then we can introduce a Σ1

operator F by the following axiom: (F) : ∀x⃗ (F(x⃗) = y ↔ φ(x⃗, y)).

Theorem (Σ1 recursion)

Let G be a Σ1 operator. There exists a Σ1 operator F such that

KP ⊢ F(x) = G(x, {(y,F(y)) : y ∈ x}).
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Definition (Constructible sets)

A Σ1 operater Lα on the ordinals are defined as follows.
L0 := ∅
Lα+1 := Def(Lα)
Lα :=

⋃
β<α Lβ (α is a limit ordinal)

Let L denote a Σ1 class
⋃

α∈Ord Lα. The elements of L are called constructible sets.

Definition (Mostowski’s Axiom β)

Axiom β asserts: for any well-founded relation r ⊂ a× a on any set a, there exists a
function f whose domain is a and satisfies

f(x) = {f(y) : y ∈ a ∧ (y, x) ∈ r} (for allx ∈ a).

Such an f is called a collapsing function of r.

5 / 24



Logic and
Computation

K. Tanaka

Recap

α recursion

• A collapsing function f of r has two roles. One is to express r as ϵ. So, moreover if r
satisfies extensionality: ∀b1, b2 ∈ a[∀x ∈ a((x, b1) ∈ r ↔ (x, b2) ∈ r) → b1 = b2], then
f : (a, r) ∼= (range(f),∈).

• The other role is to fold the relation by removing unnecessary elements and squeezing
it into a smallest set. E.g., if a = {0, 2, {1, 2}} with r = ε, then f(a) = {0, 1, {1}}.

Theorem (1)

Axiom β holds in KP+Σ1-Sep.

Proof

• Let r be a well-founded relation on a set a. We write x <r y for (x, y) ∈ r.

• We define a Σ1 operator F by Σ1 recursion over ordinals as follows.

F(α) = {x ∈ a : ∀y∈a(y <r x→ ∃β∈α y ∈ F(β))}.

• First, to show
⋃

α F(α) = a, we put by Σ1-Sep,

a0 := {x ∈ a : ∃α(x ∈ F(α))}.
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• Suppose that a− a0 ̸= ∅. Let x be a <r-minimal element in this set. Then,

∀y ∈ a(y <r x→ ∃β y ∈ F(β)).

• Using Σ1-Coll, we can obtain α such that

∀y ∈ a(y <r x→ ∃β∈α y ∈ F(β)).

• Therefore, by the definition of F(α), we have x ∈ F(α), i.e., x ∈ a0, which contradicts
the choice of x. Therefore,

⋃
α F(α) = a.

• Then again by Σ1-Coll, there exists some γ such that
⋃

α<γ F(α) = a.

• Next, for α < γ, by Σ1 recursion, we define a sequence of functions {fα} as follows.

fα(x) := {fβ(y) : β < α ∧ y ∈ F(β) ∧ y <r x} ( for any x ∈ F(α)).

It is easy to show that if β ≤ α then fβ ⊂ fα. So f =
⋃

α<γ fα is defined as a
function, and we have

f(x) = {f(y) : y ∈ a ∧ y <r x} ( for any x ∈ a)

• Thus, Axiom β is shown. □
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• Axiom β is effective in downscaling the hierarchy of formulas.

• For example, “r is well-founded” can be expressed as “there is no infinite descending
sequence” which is Π1. But it can also be expressed as “there is a collapsing function”
which is Σ1. Thus, the well-foundedness is ∆1.

• It is also useful to consider the relationship between analytical and set hierarchies.

Theorem (2)

In KP+ axiom β, if φ(ξ) is a Σ1
2 formula, then there is an equivalent Σ1 formula, and vice

versa.

Proof.

• It is relatively easy to represent a Σ1
2 formula as a Σ1 formula.

• A Π1
1 formula can be expressed as “T ξ is well-founded”, and it is equivalent to

∃f(f : (T ξ, <) ∼= (range(f),∈)) as Σ1. A Σ1
2 formula has a function existential

quantifier ∃g ∈ ωω in front of a Π1
1 formula. Since a function quantifier is a kind of

set quantifier, a Σ1
2 formula remains Σ1.
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• The reverse direction is a little more difficult.

• To treat formulas of set theory in second-order arithmetic, we use a method of coding
countable models of set theory with real numbers. Such a model must be a
well-founded ω-model satisfying the axiom of extensionality.

• Then, a set-theoretic Σ1 formula φ(ξ)(where, ξ ∈ ωω) can be expressed as a formula
ψ(ξ) in second-order arithmetic as follows

∃η[η is a well-founded ω model of extensionality ∧ ξ ∈ η ∧ η |= φ(ξ)]. (1)

Here, “η is a well-founded ω-model of extensionality” can be expressed as Π1
1 as

explained before. ξ ∈ η means that ξ belongs to the model coded by η, which is
expressed as ∆1

1. Finally, η |= φ(ξ) is ∆1
1. So the whole ψ(ξ) becomes Σ1

2.

• Next we show that ψ(ξ) in (1) is equivalent to φ(ξ).
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• First assume that a Σ1 formula φ(ξ) ≡ ∃xθ(x, ξ) (where θ is Σ0) holds. Then there
exists a set ν such that θ(ν, ξ).

• Now, consider the transitive closure TC({ν, ξ}). This is a model of θ(ν, ξ) and thus a
model of φ(ξ).

• Since ξ is countable, TC(ξ) is also countable. By the Löwenheim–Skolem theorem,
there exists a countable elementary substructure of TC({ν, ξ}) which contains TC(ξ)
as it is.

• Finally, again by axiom β, we transform it to a transitive model (M, ϵ) of φ(ξ) with
ξ ∈M .

• Therefore, ψ(ξ) holds.

• Conversely, suppose that a Σ1
2 formula ψ(ξ) holds.

• By axiom β, a model η of ψ(ξ) in (1) can be collapsed into a transitive set model
(M,∈). Since φ(ξ) is a Σ1 formula, (M,∈) |= φ(f(ξ)) implies (V |=)φ(f(ξ)). □
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• This theorem can be generalized to the equivalence of Σ1
n+1 and Σn formulas under

stronger assumptions.

• First, it is easy to see that Σ1
n+1 formula becomes Σn from the above proof. To show

the converse, we use the following notion.

• We say that M is a βk-model if it is an ω-model such that for any Σ1
k formula ψ(ξ)

(including the elements of M as parameters), the following ∆1
n+1 formula holds

∀ξ∈M(ψ(ξ) ↔M |= ψ(ξ)).

• Then, a Σn formula φ(ξ) is expressed by a Σ1
n+1 formula ψ(ξ) as follows.

∃η[η is a βn model ∧ ξ ∈ η ∧ η |= φ(ξ)].

• Any well-founded model is a β1-model, and its existence follows from axiom β.

• Constructing a βk model requires even stronger axioms. See Sections 7.3 and 7.7 of
Simpson [Sim] for details.
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Theorem (Shoenfield absoluteness)

(In KPω+Σ1-Sep
i) For any Σ1

2 formula φ(ξ), ∀ξ∈L (φ(ξ) ⇔ L |= φ(ξ)).

Proof.

• By theorem (2), any Σ1
2 formula φ(ξ) is Σ1, so L |= φ(ξ) ⇒ (V |=)φ(ξ) is obvious.

• Suppose a Σ1
2 formula φ(ξ) is in the form ∃ηA(ξ, η) with A ∈ Π1

1. By the
Kondo-Addison theorem, let A∗ be a Π1

1 function uniformizing A.

• Then η = η∗ ∈ ωω that satisfies A∗(ξ, η) can be expressed as the following ∆1
2(ξ)

formula

η∗(m) = n↔ ∃η(A∗(ξ, η) ∧ η(m) = n) ↔ ∀η(A∗(ξ, η) → η(m) = n).

• Then by theorem (2), η∗⊂ ω×ω is ∆1(ξ). So if ξ ∈ L then η∗∈ L.

• Since A∗(ξ, η) is a ∆1 relation, if ξ, η∗∈ L and (V |=)A∗(ξ, η∗) then L |= A∗(ξ, η∗).

• Therefore, we have L |= φ(ξ). □
iIn fact, Axiom β and the Kondo-Addison theorem are sufficient for the theorem.
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Introduction

• Among various challenges to extend the theory of computation over the natural
numbers to more general structures, one of the most successful generalizations is
α-recursion theory, that is, recursion theory over so-called admissble ordinals. Also,
there are set versions of admissible recursion theory.

• Admissible ordinals inherit many properties of ω. In particular, they are closed under
many operations such as primitive recursive operators.

• It is also possible to define α-computability by generalizing the length of the tape of a
Turing machine to ordinal α.

• Let us begin with the definition of primitive recursive operators on ordinals.
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Definition (PRO)

The Primitive recursive ordinal operators (PRO) on Ord are defined as follows.

1. Constant 0, Successor S(x) = x+ 1, projection Pn
i (x1, x2, . . . , xn) = xi (1 ≤ i ≤ n),

and less-than operator C(x, y, u, v) are the initial PRO’s, where

C(x, y, u, v) :=

{
x if u < v

y o.w.

2. Operator composition. If Gi : Ordn → Ord (1 < i < m), H : Ordm → Ord are PRO,
the operator F = H(G1, . . . , Gm) : Ordn → Ord defined as follows is also PRO

F (x1, . . . , xn) = H(G1(x1, . . . , xn), . . . , Gm(x1, . . . , xn)).

3. Primitive recursion. If G : Ordn+2 → Ord is PRO, the operator F : Ordn+1 → Ord
defined as below is also PRO

F (y, x1, . . . , xn) = G(sup
z<y

F (z, x1, . . . , xn), y, x1, . . . , xn)

In 3 above, supz<y is the same as
⋃

z<y. If y = 0, it takes value 0.
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Example� �
The following primitive recursive operators are the natural extensions of the correspond-
ing operators of arithmetic.

x+ y =

{
x if y = 0

supu<y((x+ u) + 1) otherwise

x · y =

{
0 if y = 0

supu<y((x · u) + x) otherwise� �
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Primitive recursive operators are defined over all the ordinals, but we often consider
functions over an ordinal, i.e., an initial segment of the ordinals. Thus, the following
definitions are important.

Definition

An ordinal α is said to be closed under PRO if for all PRO operators F (x⃗),

∀β⃗ < α F (β⃗) < α.

Definition

The Veblen function φα(β) is defined as follows.

• φ0(β) = ωβ for the β-th ordinal closed under addition.

• φα+1(β) for the β-th ordinal γ closed under φα(x), i.e., φα(γ) = γ.
In particular, φ1(0) = ε0.

• For limit ordinal λ, φλ(β) is the β-th ordinal γ of
⋂

α<λ Range(φα).

Oswald
Veblen
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Example� �
• φω(0) is the next ordinal of ω that is closed under PRO.

• To show this, we claim that for any PRO F (x1, . . . , xn), there exists some i ∈ ω
such that for all ordinals α1, . . . , αn,

F (α1, . . . , αn) < φi(max{α1, . . . , αn})

• This can be proved in a way similar to the proof that the Ackermann function is
not primitive recursive (part 1 of of this course).

• The first ordinal ξ such that φξ(0) = ξ is called Γ0.

• Although these definitions of ordinals by φα(β) seem to be highly
non-constructive at first glance, all of them are recursive ordinals, and can be
expressed in a generalized Cantor’s normal form.� �
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• From now on, we will arbitrarily fix an ordinal α that is closed under PRO and
consider its subsets.

• An n-arity relation R ⊂ αn is primitive recursive if its characteristic function χR

with domain αn is PRO.

• It can be shown that primitive recursive relations are closed under Boolean operations
and bounded quantifiers, as is the case for primitive recursive relations on ω.

Definition

For an ordinal α closed under PRO, A ⊂ α is α recursively enumerable (α-RE), if there
exist a primitive recursive relation R(x, y, z) and parameters γ < α such that

A = {x < α : ∃y < αR(x, y, γ)}.

We say that A ⊂ α is α-recursive if both A and its complement α−A are α-RE.
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“ω-RE” is the ordinary RE or CE . Also, many of the theorems in recursion theory over ω
can be generalized to ordinals closed under PRO. We give two basic lemmas without
proofs.

Lemma

There exists an α-RE relation W (e, x) such that any α-RE set X can be expressed as

X =We = {x < α :W (e, x)} for some e < α

Lemma

There are two α-RE sets that cannot be separated by an α-recursive set.

19 / 24



Logic and
Computation

K. Tanaka

Recap

α recursion

• Many-to-one reducibility can also be defined naturally. However, there are some
variations in the formulation of the notion that “A is α-recursive in oracle B”, and it
becomes difficult to treat only under the condition that α is closed under PRO.

• In order to mimic arguments of recursion theory on ω, we need some stronger closure
conditions, which needs KP set theory again.

Definition

An ordinal α is said to be admissible if Lα |= KP holds.

Example: The first admissible ordinal is ω� �
• It is easy to see that Lω is the set of x such that TC(x) is finite, and it satisfies
the axiom of KP.� �
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Example: The next admissible ordinal ω+ after ω is ωCK
1

� �
• Lω+1 contains all definable sets on ω, in particular, all recursive trees.

• Since Lω+ satisfies KP, by the Σ1 recursion, the ordinal ||T || of every
well-founded tree T exists in Lω+ .

• All that is left is to show that LωCK
1

is a model of KP.

• “ξ is an ω-model of KPω” can be expressed by ∆1
1 formula φ(ξ).

Assume ∃ξφ(ξ). By Gandy’s basis theorem (page 420 of [Rog]), we can take ξ

such that ωξ
1 = ωCK

1 and φ(ξ).

• If M is the well-founded part of the ω model represented by ξ, then M is also a
model of KPω (Truncation Lemma, [Bar] p.73).

• Since ωξ
1 = ωCK

1 , it is clear that for any ordinal α ∈M , α < ωCK
1 .

• Conversely, all α < ωCK
1 are included in M . Since x = Lα is ∆1, (Lα)

M = Lα.

• So M = LωCK
1

and ωCK
1 is admissible.� �
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Homework� �
What is the third admissible ordinal number?� �

Lemma

α ∈ Ord is admissible ⇔ Lα |= ∆0-Coll .

Proof
⇒ is obvious.
To show ⇐.
Assume Lα |= ∆0-Coll. Then α is a limit ordinal and by the definition of Lα, it is easy to
see that all the axioms of KP hold in Lα. □
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In KP set theory, we define

Definition

For an admissible ordinal α,

(1) A ⊂ α is α-finite ⇔ A ∈ Lα,

(2) A ⊂ α is α-recursively enumerable(α-RE) ⇔ A is Σ1(Lα),

(3) A ⊂ α is α-recursive ⇔ A is ∆1(Lα),

(4) f : α→ α is α-recursive ⇔ the graph of f is ∆1(Lα).

• Here, A ⊂ α is said to be Σ1(Lα) if there exists a Σ1 formula φ(x) such that
A = {β < α : Lα |= φ(β)}.
Similarly for ∆1(Lα).

• We defined α-REfor ordinals closed under PRO on page 18, which can be shown to be
equivalent to the above definition on admissible ordinals. But to prove their
equivalence, we have to do something similar to what we did for the equivalence on ω
in lecture03-06.

• Now, we discard the old definition, and adopt the new one.
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Thank you for your attention!
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