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s Part 7. Schedule ~
® May 18, (1) KP set theory |
® May 23, (2) KP set theory Il
® May 25, (3) KP set theory IlI
® May 30, (4) « recursion theory
e Jun. 1, (5) Recursively large ordinals |
® Jun. 6, (6) Recursively large ordinals Il
9 ® Jun. 8, (7) Second-order arithmetic and reverse mathematics )
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Recap ® |n set theory, the Lévi hierarchy is introduced by imitating the arithmetic hierarchy.
® Yo(=1IIp = Ag) formula: all quantifiers are bounded, i.e., 3z € y,Vz € y.

® A 3,41 formula is Jzp with ¢ € II,,. A II,,41 formula is Vxp with ¢ € ;..

® A A, formulais a IL, (or ¥,) formula equivalent to a ¥,, (or IL,) formula.

-~ KP is a first-order theory in the language {€} ~
KP := axioms of extensionality, pairing, union, empty set
+ Ag-Sep: VeIyVz(z €y < z € x A p(z)) for o(z) € Ay.

+ Ag-Coll: Va(VyexIzp(z) —» JuVyexIzcup(z))  for p(z) € Ao.
+ foundation: Vz[Vyeczp(y) — ¢(z)] — Veo(x).

KPw := KP 4axiom of infinity : Jz{0 € x AVy € x(y U{y} € 2)}.
- J
® KP F 3;-Coll.
e KP - A;-Sep.
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comoion Definition (KP +(F))

Let o(Z,y) be a X1 formula such that KP - VZ3lyp(Z, y). Then we can introduce a 3
operator F by the following axiom:  (F) : VZ (F(Z) =y < ¢(Z,v)).

Recap

Theorem (X, recursion)

Let G be a X; operator. There exists a 31 operator F such that

KP b F(z) = G(a, {(4.F(y)) : y € a}).

Definition (Ordinals)

A Ay predicate Ord(z) = Tran(z) A Vy € « Tran(y) expresses that z is an ordinal.
The relation a < 8 on the ordinals is defined by a € 5.

® By X;-recursion, we can introduces various operators on ordinals. E.g., the addition +:
a+pB=aUsup{(a+v)+1:v<}
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Constructible sets

By X1 recursion, we define the class of constructible sets, which Godel introduced as
a model of the continuum hypothesis and the axiom of choice.

We first introduce the definability predicate Def(z).

Roughly speaking, a € Def(u) means that a is a subset of u defined by some formula
©(x). More precisely, there is a formula ¢(z,b) with parameters b from u s.t.

-, -,

a={ccu:ulEplcb}={ceu:pcb)"}.

Here, ©(c,b)" is a Ap formula if a formula ¢ is fixed. However, since ¢ is treated as a
variable by its Godel number, the use of satisfaction relation |= is inevitable.

Then, we can rewrite it again as the following A formula,
a € Def(u) < Jpewdb € u(Ve(c € a < c € uAu = ¢(c, b)),

where u |= ¢ is a A; relation defined by recursion on the construction of formula .
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A X, operater L, on the ordinals are defined as follows.

Constructible sets
LO =y
Lot1 = Def(Lq)
Lo :=Ugp<o Ls (ais a limit ordinal)

Let L denote a X class Uanrd L,. The elements of L are called constructible sets.

® In KP, we can easily show from the definition of L, that
a<pfeL,CLlsg, a<fB&L,els.

® Therefore, for any «, L,, is transitive, hence it is Ag-absolute. Moreover, if L, = KP,
it is AKP-absolute.

iFor a set of formulas T, we say that a structure M is ['-absolute if for any formula in T', it is true in the
structure iff it is true (in V). AT represents a formula shown to be A1 in theory 7%
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In Godel's original paper (1940), an operator F': Ord — V is first introduced, and then L
is defined as its range. His operator F' can be characterized as follows.

Lemma

There is a A; (primitive recursive) bijection F : Ord — L such that for any € number «
(or w), Fa = L.

Proof idea.
® Suppose F'“a =L, and a > w.

® Each element of L1 is determined by a formula and parameters from L. Since
there are countably many formulas and parameters are from L, = F“«, L,y1 can be
coded by a<%. Similarly, L,42 can be coded by (a<¥)<¥ = a<“. Then, Ly, by o*
and Lo tw+w by ¥, Finally, for the next £ number 8 > «, Lg is coded by af = 3.

o All that remains is to convert this correspondence into an injection and guarantee that
it is Ay (primitively recursive). O

® |n KPw, we can define a well-order <1, on L as a A relation. From this, the axiom of
choice (AC) holds in L. For more advanced topics, refer to standard textbooks on set
theory (such as Jech [Jec]).
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Set theory in second-order arithmetic

We consider a model of set theory from the standpoint of second-order arithmetic.

By the Lowenheim-Skolem theorem, for any set model (V, €), there exists a countable
model (V| €) which is elementary equivalent to (V, €). We can rewrite it as (w, F)
(with F C w X w).

Furthermore, when & € “w expresses E = {(n,m) : £&(n,m) > 1}, the formula { = ¢
denotes that ¢ is true in the structure (w, F).

The relation £ |= ¢ can be defined as a Al relation by the usual Tarski clause.

Therefore, {¢ : ¢ = ZFC} is also Af.
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ol ® When “w" in the structure expressed by ¢ is isomorphic to the real w, ¢ is said to be

an w-model.
Set theory in ® More strictly, we argue as follows. First, “z is a finite ordinal” can be expressed as

second-order
arithmetic

o) =Vy(0 ey AVzey(zU{z} €y) = x<y).

® Then, £ becomes an w-model, if any n such that £ = ¢(n) is finite. That is, the
following A}l formula expresses that £ is an w-model.

Yn(€ = o(n) = (s, s1,-.-,56)(EFE so =0A
Vi < k(€ siv1 =siU{si}) ANEE sy =n).

® Furthermore, “¢ is a well-founded model” can be expressed by the following IT}
formula

Vnan [ En(n+1) € n(n)].
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To further consider models of set theory, we introduce the following axiom called 3.

”

Here (3 stands for “well-order (French: bon ordre)” or “well-founded (bien fondée)”.

Definition (Mostowski's Axiom [3)

Axiom (3 asserts: for any well-founded relation » C a X a on any set a, there exists a
function f whose domain is a and satisfies

flz)={fly):y€an(y,x) er} (forallz € a).

Such an f is called a collapsing function of r.

® A collapsing function f of r has two roles. One is to express r as €. So, moreover if r
satisfies extensionality: Vb1,bs € a[Vx € a((x,b1) € r <> (z,b2) € 1) — by = ba), then

f1 (a,r) = (range(f), €).

® The other role is to fold the relation by removing unnecessary elements and squeezing
it into a smallest set. E.g., if a = {0,2, {1,2}} with r = ¢, then f(a) = {0,1,{1}}.
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e e ® Remark that while X1 recursion only defines a ¥3; operator F', Axiom [ asserts the
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K. Tanaka existence of a collapsing function f.
® Axiom [ is a very strong assertion, because the well-foundedness of r depends not

only on a but also on the outside of a.

Set theory in
second-order

arithmetic Theorem (1)
Axiom (3 holds in KP 4+X;-Sep.
Proof
® et r be a well-founded relation on a set a. We write z <, y for (z,y) € r.
® We define a 31 operator F' by ¥4 recursion over ordinals as follows.
Fla)={x €a:Vyecaly <,z —3IBcaycF(B))}.
® First, to show |J, F(a) = a, we put by ¥;-Sep,

ag :={z € a: Ja(x € F(a))}.
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Suppose that a — ag # @. Let = be a <,-minimal element in this set. Then,
Yy €aly <,z — 36y eF(B)).
Using ¥1-Coll, we can obtain « such that
Yy €aly <,z — Bea y € F(P)).

Therefore, by the definition of F(«), we have x € F(a), i.e., € ag, which contradicts
the choice of z. Therefore, |, F(a) = a.

Then again by X1-Coll, there exists some v such that ., F(a) = a.

Next, for o < v, by X recursion, we define a sequence of functions {f,} as follows.

fal@) = {fs(y) : B< a Ay € F(B) Ay <, a} ( for any @ € F(a)).

It is easy to show that if 3 < « then f3 C fo. So f=UJ
function, and we have

<~ Ja is defined as a

f@) = {fw) ycany <, 2} (forany z € a)
Thus, Axiom 3 is shown. O
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Thank you for your attention!
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