K. Tanaka

Reca

Constructible sets

Set theory in second-order arithmetic

Logic and Computation II Part 6. Recursion-theoretic hierarchies

Kazuyuki Tanaka

BIMSA

May 30, 2023

イロト 不同 トイヨト イヨト

≡ ೨۹୯ 1 / 14

K. Tanaka

Recap

Constructible sets

Set theory in second-order arithmetic

Logic and Computation II ·

- Part 4. Formal arithmetic and Gödel's incompleteness theorems
- Part 5. Automata on infinite objects
- Part 6. Recursion-theoretic hierarchies
- Part 7. Admissible ordinals and second order arithmetic

- Part 7. Schedule

- May 18, (1) KP set theory I
- May 23, (2) KP set theory II
- May 25, (3) KP set theory III
- May 30, (4) α recursion theory
- Jun. 1, (5) Recursively large ordinals I
- Jun. 6, (6) Recursively large ordinals II
- Jun. 8, (7) Second-order arithmetic and reverse mathematics

K. Tanaka

Recap

Constructible sets

Set theory in second-order arithmetic

1 Recap

2 Constructible sets

3 Set theory in second-order arithmetic

Today's topics

K. Tanaka

Recap

Constructible sets

Set theory in second-order arithmetic In set theory, the Lévi hierarchy is introduced by imitating the arithmetic hierarchy.
Σ₀(= Π₀ = Δ₀) formula: all quantifiers are bounded, i.e., ∃x ∈ y, ∀x ∈ y.

Recap

- A Σ_{n+1} formula is $\exists x \varphi$ with $\varphi \in \Pi_n$. A Π_{n+1} formula is $\forall x \varphi$ with $\varphi \in \Sigma_n$.
- A Δ_n formula is a Π_n (or Σ_n) formula equivalent to a Σ_n (or Π_n) formula.

 $\begin{array}{l} \mathsf{KP} \text{ is a first-order theory in the language } \{\in\} \end{array}$ $\begin{array}{l} \mathsf{KP} & := \operatorname{axioms of extensionality, pairing, union, empty set} \\ & + \Delta_0 \operatorname{-Sep:} \quad \forall x \exists y \forall z (z \in y \leftrightarrow z \in x \land \varphi(z)) & \text{for } \varphi(z) \in \Delta_0. \\ & + \Delta_0 \operatorname{-Coll} : \quad \forall x (\forall y \in x \exists z \varphi(z) \rightarrow \exists u \forall y \in x \exists z \in u \varphi(z)) & \text{for } \varphi(z) \in \Delta_0. \\ & + \text{ foundation : } \quad \forall x [\forall y \in x \varphi(y) \rightarrow \varphi(x)] \rightarrow \forall x \varphi(x). \end{array}$ $\begin{array}{l} \mathsf{KP}\omega := \mathsf{KP} + \operatorname{axiom of infinity} : \quad \exists x \{0 \in x \land \forall y \in x(y \cup \{y\} \in x)\}. \end{array}$

- $\mathsf{KP} \vdash \Sigma_1$ -Coll.
- $\mathsf{KP} \vdash \Delta_1$ -Sep.

K. Tanaka

Recap

Constructible sets

Set theory in second-order arithmetic

Definition (KP + (F))

Let $\varphi(\vec{x}, y)$ be a Σ_1 formula such that $\mathsf{KP} \vdash \forall \vec{x} \exists ! y \varphi(\vec{x}, y)$. Then we can introduce a Σ_1 operator F by the following axiom: (F) : $\forall \vec{x} \ (F(\vec{x}) = y \leftrightarrow \varphi(\vec{x}, y))$.

Theorem (Σ_1 recursion)

Let G be a Σ_1 operator. There exists a Σ_1 operator F such that

$$\mathsf{KP} \vdash \mathsf{F}(x) = \mathsf{G}(x, \{(y, \mathsf{F}(y)) : y \in x\}).$$

Definition (Ordinals)

A Δ_0 predicate $\operatorname{Ord}(x) \equiv \operatorname{Tran}(x) \land \forall y \in x \operatorname{Tran}(y)$ expresses that x is an ordinal. The relation $\alpha < \beta$ on the ordinals is defined by $\alpha \in \beta$.

• By Σ_1 -recursion, we can introduces various operators on ordinals. E.g., the addition +:

$$\alpha+\beta=\alpha\cup\sup\{(\alpha+\gamma)+1:\gamma<\beta\}.$$

≡ ೨۹৫ 5 / 14

K. Tanaka

Recap

Constructible sets

Set theory in second-order arithmetic

Constructible sets

- By Σ₁ recursion, we define the class of **constructible sets**, which Gödel introduced as a model of the continuum hypothesis and the axiom of choice.
- We first introduce the definability predicate Def(x).
- Roughly speaking, $a \in Def(u)$ means that a is a subset of u defined by some formula $\varphi(x)$. More precisely, there is a formula $\varphi(x, \vec{b})$ with parameters \vec{b} from u s.t.

$$a = \{c \in u : u \models \varphi(c, \vec{b})\} = \{c \in u : \varphi(c, \vec{b})^u\}.$$

Here, $\varphi(c, \vec{b})^u$ is a Δ_0 formula if a formula φ is fixed. However, since φ is treated as a variable by its Gödel number, the use of satisfaction relation \models is inevitable.

• Then, we can rewrite it again as the following Δ_1 formula,

$$a\in \mathrm{Def}(u) \leftrightarrow \exists \varphi \! \in \! \omega \exists \vec{b} \in u (\forall c (c \in a \leftrightarrow c \in u \land u \models \varphi(c, \vec{b}))),$$

where $u \models \varphi$ is a Δ_1 relation defined by recursion on the construction of formula φ .

K. Tanaka

Recap

Constructible sets

Set theory in second-order arithmetic

Definition (Constructible sets)

A Σ_1 operater L_α on the ordinals are defined as follows.

 $\begin{cases} L_0 := \varnothing \\ L_{\alpha+1} := \operatorname{Def}(L_{\alpha}) \\ L_{\alpha} := \bigcup_{\beta < \alpha} L_{\beta} \quad (\alpha \text{ is a limit ordinal}) \end{cases}$

Let L denote a Σ_1 class $\bigcup_{\alpha \in Ord} L_{\alpha}$. The elements of L are called **constructible sets**.

 $\bullet\,$ In KP, we can easily show from the definition of L_{α} that

$$\alpha \leq \beta \Leftrightarrow L_{\alpha} \subset L_{\beta}, \quad \alpha < \beta \Leftrightarrow L_{\alpha} \in L_{\beta}.$$

• Therefore, for any α , L_{α} is transitive, hence it is Δ_0 -absolute. Moreover, if $L_{\alpha} \models KP$, it is Δ_1^{KP} -absolute. ⁱ

ⁱFor a set of formulas Γ , we say that a structure M is Γ -absolute if for any formula in Γ , it is true in the structure iff it is true (in V). Δ_1^T represents a formula shown to be Δ_1 in theory $\mathbb{Z}_{\mathbb{P}} \to \mathbb{Q} \to \mathbb{Q} \to \mathbb{Q}$

K. Tanaka

Recap

Constructible sets

Set theory in second-order arithmetic In Gödel's original paper (1940), an operator $F : \text{Ord} \to V$ is first introduced, and then L is defined as its range. His operator F can be characterized as follows.

Lemma

There is a Δ_1 (primitive recursive) bijection $F : \text{Ord} \to L$ such that for any ε number α (or ω), $F "\alpha = L_{\alpha}$.

Proof idea.

- Suppose $F``\alpha = L_{\alpha}$ and $\alpha \geq \omega$.
- Each element of $L_{\alpha+1}$ is determined by a formula and parameters from L_{α} . Since there are countably many formulas and parameters are from $L_{\alpha} = F^{*}\alpha$, $L_{\alpha+1}$ can be coded by $\alpha^{<\omega}$. Similarly, $L_{\alpha+2}$ can be coded by $(\alpha^{<\omega})^{<\omega} = \alpha^{<\omega}$. Then, $L_{\alpha+\omega}$ by α^{ω} and $L_{\alpha+\omega+\omega}$ by $\alpha^{\omega+\omega}$. Finally, for the next ε number $\beta > \alpha$, L_{β} is coded by $\alpha^{\beta} = \beta$.
- All that remains is to convert this correspondence into an injection and guarantee that it is Δ_1 (primitively recursive).
- In KPω, we can define a well-order <_L on L as a Δ₁ relation. From this, the axiom of choice (AC) holds in L. For more advanced topics, refer to standard textbooks on set theory (such as Jech [Jec]).

K. Tanaka

Recap

Constructible sets

Set theory in second-order arithmetic

Set theory in second-order arithmetic

・ロト・日本・モト・モー・ショー ショー

- We consider a model of set theory from the standpoint of second-order arithmetic.
- By the Löwenheim-Skolem theorem, for any set model (V, ∈), there exists a countable model (Ṽ, ∈̃) which is elementary equivalent to (V, ∈). We can rewrite it as (ω, E) (with E ⊂ ω × ω).
- Furthermore, when $\xi \in {}^{\omega}\omega$ expresses $E = \{(n,m) : \xi(n,m) \ge 1\}$, the formula $\xi \models \varphi$ denotes that φ is true in the structure (ω, E) .
- The relation $\xi \models \varphi$ can be defined as a Δ_1^1 relation by the usual Tarski clause.
- Therefore, $\{\xi : \xi \models \mathsf{ZFC}\}$ is also Δ_1^1 .

K. Tanaka

Recap

Constructible sets

Set theory in second-order arithmetic

- When " ω " in the structure expressed by ξ is isomorphic to the real ω , ξ is said to be an ω -model.
- More strictly, we argue as follows. First, "x is a finite ordinal" can be expressed as

$$\varphi(x) \equiv \forall y (0 \in y \land \forall z \in y (z \cup \{z\} \in y) \to x \in y).$$

• Then, ξ becomes an ω -model, if any n such that $\xi \models \varphi(n)$ is finite. That is, the following Δ_1^1 formula expresses that ξ is an ω -model.

$$\forall n(\xi \models \varphi(n) \to \exists (s_0, s_1, \dots, s_k) (\xi \models s_0 = 0 \land \\ \forall i < k(\xi \models s_{i+1} = s_i \cup \{s_i\}) \land \xi \models s_k = n).$$

- Furthermore, " ξ is a well-founded model" can be expressed by the following Π^1_1 formula

$$\forall \eta \, \exists n \ [\xi \models \eta(n+1) \not\in \eta(n)].$$

K. Tanaka

Recap

Constructible sets

Set theory in second-order arithmetic To further consider models of set theory, we introduce the following axiom called β . Here β stands for "well-order (French: bon ordre)" or "well-founded (bien fondée)".

Definition (Mostowski's Axiom β)

Axiom β asserts: for any well-founded relation $r \subset a \times a$ on any set a, there exists a function f whose domain is a and satisfies

 $f(x)=\{f(y):y\in a\wedge (y,x)\in r\}\quad (\text{for all}x\in a).$

Such an f is called a **collapsing function** of r.

- A collapsing function f of r has two roles. One is to express r as ϵ . So, moreover if r satisfies extensionality: $\forall b_1, b_2 \in a[\forall x \in a((x, b_1) \in r \leftrightarrow (x, b_2) \in r) \rightarrow b_1 = b_2]$, then $f: (a, r) \cong (\operatorname{range}(f), \in)$.
- The other role is to fold the relation by removing unnecessary elements and squeezing it into a smallest set. E.g., if $a = \{0, 2, \{1, 2\}\}$ with $r = \varepsilon$, then $f(a) = \{0, 1, \{1\}\}$.

K. Tanaka

Recap

Constructible sets

Set theory in second-order arithmetic

- Remark that while Σ_1 recursion only defines a Σ_1 operator F, Axiom β asserts the existence of a collapsing function f.
- Axiom β is a very strong assertion, because the well-foundedness of r depends not only on a but also on the outside of a.

Theorem (1)

Axiom β holds in KP + Σ_1 -Sep.

Proof

- Let r be a well-founded relation on a set a. We write $x <_r y$ for $(x, y) \in r$.
- We define a Σ_1 operator F by Σ_1 recursion over ordinals as follows.

$$\mathbf{F}(\alpha) = \{ x \in a : \forall y \!\in\! a(y <_r x \to \exists \beta \!\in\! \alpha \ y \in \mathbf{F}(\beta)) \}.$$

• First, to show $\bigcup_{\alpha} \mathrm{F}(\alpha) = a,$ we put by $\Sigma_1\text{-}\mathsf{Sep},$

$$a_0 := \{ x \in a : \exists \alpha (x \in \mathbf{F}(\alpha)) \}.$$

K. Tanaka

Recap

Constructible sets

Set theory in second-order arithmetic

• Suppose that $a - a_0 \neq \varnothing$. Let x be a $<_r$ -minimal element in this set. Then,

$$\forall y \in a(y <_r x \to \exists \beta \ y \in \mathcal{F}(\beta)).$$

• Using Σ_1 -Coll, we can obtain α such that

$$\forall y \in a(y <_r x \to \exists \beta \in \alpha \ y \in \mathbf{F}(\beta)).$$

- Therefore, by the definition of $F(\alpha)$, we have $x \in F(\alpha)$, i.e., $x \in a_0$, which contradicts the choice of x. Therefore, $\bigcup_{\alpha} F(\alpha) = a$.
- Then again by Σ_1 -Coll, there exists some γ such that $\bigcup_{\alpha < \gamma} F(\alpha) = a$.
- Next, for $\alpha < \gamma$, by Σ_1 recursion, we define a sequence of functions $\{f_\alpha\}$ as follows.

$$f_{\alpha}(x) := \{ f_{\beta}(y) : \beta < \alpha \land y \in \mathcal{F}(\beta) \land y <_{r} x \} \text{ (for any } x \in \mathcal{F}(\alpha)).$$

It is easy to show that if $\beta \leq \alpha$ then $f_{\beta} \subset f_{\alpha}$. So $f = \bigcup_{\alpha < \gamma} f_{\alpha}$ is defined as a function, and we have

$$f(x) = \{f(y) : y \in a \land y <_r x\} \quad (\text{ for any } x \in a)$$

13/14

• Thus, Axiom β is shown.

K. Tanaka

Recap

Constructible sets

Set theory in second-order arithmetic

Thank you for your attention!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ○ ○○○