
Logic and
Computation

K. Tanaka

Recap

Constructible sets

Set theory in
second-order
arithmetic

Logic and Computation II
Part 6. Recursion-theoretic hierarchies

Kazuyuki Tanaka

BIMSA

May 30, 2023

1 / 14



Logic and
Computation

K. Tanaka

Recap

Constructible sets

Set theory in
second-order
arithmetic

Logic and Computation II� �
• Part 4. Formal arithmetic and Gödel’s incompleteness theorems

• Part 5. Automata on infinite objects

• Part 6. Recursion-theoretic hierarchies

• Part 7. Admissible ordinals and second order arithmetic� �
Part 7. Schedule� �
• May 18, (1) KP set theory I

• May 23, (2) KP set theory II

• May 25, (3) KP set theory III

• May 30, (4) α recursion theory

• Jun. 1, (5) Recursively large ordinals I

• Jun. 6, (6) Recursively large ordinals II

• Jun. 8, (7) Second-order arithmetic and reverse mathematics� �
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Today’s topics

1 Recap

2 Constructible sets

3 Set theory in second-order arithmetic
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Recap
• In set theory, the Lévi hierarchy is introduced by imitating the arithmetic hierarchy.

• Σ0(= Π0 = ∆0) formula: all quantifiers are bounded, i.e., ∃x ∈ y,∀x ∈ y.

• A Σn+1 formula is ∃xφ with φ ∈ Πn. A Πn+1 formula is ∀xφ with φ ∈ Σn.

• A ∆n formula is a Πn (or Σn) formula equivalent to a Σn (or Πn) formula.

KP is a first-order theory in the language {∈}� �
KP := axioms of extensionality, pairing, union, empty set

+ ∆0-Sep: ∀x∃y∀z(z ∈ y ↔ z ∈ x ∧ φ(z)) for φ(z) ∈ ∆0.

+ ∆0-Coll : ∀x(∀y∈x∃zφ(z) → ∃u∀y∈x∃z∈uφ(z)) for φ(z) ∈ ∆0.

+ foundation : ∀x[∀y∈xφ(y) → φ(x)] → ∀xφ(x).

KPω := KP+axiom of infinity : ∃x{0 ∈ x ∧ ∀y ∈ x(y ∪ {y} ∈ x)}.� �
• KP ⊢ Σ1-Coll.

• KP ⊢ ∆1-Sep. 4 / 14
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Definition (KP+(F))

Let φ(x⃗, y) be a Σ1 formula such that KP ⊢ ∀x⃗∃!yφ(x⃗, y). Then we can introduce a Σ1

operator F by the following axiom: (F) : ∀x⃗ (F(x⃗) = y ↔ φ(x⃗, y)).

Theorem (Σ1 recursion)

Let G be a Σ1 operator. There exists a Σ1 operator F such that

KP ⊢ F(x) = G(x, {(y,F(y)) : y ∈ x}).

Definition (Ordinals)

A ∆0 predicate Ord(x) ≡ Tran(x) ∧ ∀y ∈ x Tran(y) expresses that x is an ordinal.
The relation α < β on the ordinals is defined by α ∈ β.

• By Σ1-recursion, we can introduces various operators on ordinals. E.g., the addition +:

α+ β = α ∪ sup{(α+ γ) + 1 : γ < β}.
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Constructible sets
• By Σ1 recursion, we define the class of constructible sets, which Gödel introduced as
a model of the continuum hypothesis and the axiom of choice.

• We first introduce the definability predicate Def(x).

• Roughly speaking, a ∈ Def(u) means that a is a subset of u defined by some formula

φ(x). More precisely, there is a formula φ(x, b⃗) with parameters b⃗ from u s.t.

a = {c ∈ u : u |= φ(c, b⃗)} = {c ∈ u : φ(c, b⃗)u}.

Here, φ(c, b⃗)u is a ∆0 formula if a formula φ is fixed. However, since φ is treated as a
variable by its Gödel number, the use of satisfaction relation |= is inevitable.

• Then, we can rewrite it again as the following ∆1 formula,

a ∈ Def(u) ↔ ∃φ∈ω∃⃗b ∈ u(∀c(c ∈ a ↔ c ∈ u ∧ u |= φ(c, b⃗))),

where u |= φ is a ∆1 relation defined by recursion on the construction of formula φ.
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Definition (Constructible sets)

A Σ1 operater Lα on the ordinals are defined as follows.
L0 := ∅
Lα+1 := Def(Lα)
Lα :=

⋃
β<α Lβ (α is a limit ordinal)

Let L denote a Σ1 class
⋃

α∈Ord Lα. The elements of L are called constructible sets.

• In KP, we can easily show from the definition of Lα that

α ≤ β ⇔ Lα ⊂ Lβ , α < β ⇔ Lα ∈ Lβ .

• Therefore, for any α, Lα is transitive, hence it is ∆0-absolute. Moreover, if Lα |= KP,
it is ∆KP

1 -absolute. i

iFor a set of formulas Γ, we say that a structure M is Γ-absolute if for any formula in Γ, it is true in the
structure iff it is true (in V ). ∆T

1 represents a formula shown to be ∆1 in theory T .
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In Gödel’s original paper (1940), an operator F : Ord → V is first introduced, and then L
is defined as its range. His operator F can be characterized as follows.

Lemma

There is a ∆1 (primitive recursive) bijection F : Ord → L such that for any ε number α
(or ω), F“α = Lα.

Proof idea.
• Suppose F“α = Lα and α ≥ ω.

• Each element of Lα+1 is determined by a formula and parameters from Lα. Since
there are countably many formulas and parameters are from Lα = F“α, Lα+1 can be
coded by α<ω. Similarly, Lα+2 can be coded by (α<ω)<ω = α<ω. Then, Lα+ω by αω

and Lα+ω+ω by αω+ω. Finally, for the next ε number β > α, Lβ is coded by αβ = β.

• All that remains is to convert this correspondence into an injection and guarantee that
it is ∆1 (primitively recursive). □

• In KPω, we can define a well-order <L on L as a ∆1 relation. From this, the axiom of
choice (AC) holds in L. For more advanced topics, refer to standard textbooks on set
theory (such as Jech [Jec]).
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Set theory in second-order arithmetic

• We consider a model of set theory from the standpoint of second-order arithmetic.

• By the Löwenheim-Skolem theorem, for any set model (V,∈), there exists a countable
model (Ṽ , ∈̃) which is elementary equivalent to (V,∈). We can rewrite it as (ω,E)
(with E ⊂ ω × ω).

• Furthermore, when ξ ∈ ωω expresses E = {(n,m) : ξ(n,m) ≥ 1}, the formula ξ |= φ
denotes that φ is true in the structure (ω,E).

• The relation ξ |= φ can be defined as a ∆1
1 relation by the usual Tarski clause.

• Therefore, {ξ : ξ |= ZFC} is also ∆1
1.
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• When “ω” in the structure expressed by ξ is isomorphic to the real ω, ξ is said to be
an ω-model.

• More strictly, we argue as follows. First, “x is a finite ordinal” can be expressed as

φ(x) ≡ ∀y(0 ∈ y ∧ ∀z ∈ y(z ∪ {z} ∈ y) → x ∈ y).

• Then, ξ becomes an ω-model, if any n such that ξ |= φ(n) is finite. That is, the
following ∆1

1 formula expresses that ξ is an ω-model.

∀n(ξ |= φ(n) → ∃(s0, s1, . . . , sk)(ξ |= s0 = 0 ∧
∀i < k(ξ |= si+1 = si ∪ {si}) ∧ ξ |= sk = n).

• Furthermore, “ξ is a well-founded model” can be expressed by the following Π1
1

formula
∀η ∃n [ξ |= η(n+ 1) ̸∈ η(n)].
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To further consider models of set theory, we introduce the following axiom called β.
Here β stands for “well-order (French: bon ordre)” or “well-founded (bien fondée)”.

Definition (Mostowski’s Axiom β)

Axiom β asserts: for any well-founded relation r ⊂ a× a on any set a, there exists a
function f whose domain is a and satisfies

f(x) = {f(y) : y ∈ a ∧ (y, x) ∈ r} (for allx ∈ a).

Such an f is called a collapsing function of r.

• A collapsing function f of r has two roles. One is to express r as ϵ. So, moreover if r
satisfies extensionality: ∀b1, b2 ∈ a[∀x ∈ a((x, b1) ∈ r ↔ (x, b2) ∈ r) → b1 = b2], then
f : (a, r) ∼= (range(f),∈).

• The other role is to fold the relation by removing unnecessary elements and squeezing
it into a smallest set. E.g., if a = {0, 2, {1, 2}} with r = ε, then f(a) = {0, 1, {1}}.
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• Remark that while Σ1 recursion only defines a Σ1 operator F, Axiom β asserts the
existence of a collapsing function f .

• Axiom β is a very strong assertion, because the well-foundedness of r depends not
only on a but also on the outside of a.

Theorem (1)

Axiom β holds in KP+Σ1-Sep.

Proof

• Let r be a well-founded relation on a set a. We write x <r y for (x, y) ∈ r.

• We define a Σ1 operator F by Σ1 recursion over ordinals as follows.

F(α) = {x ∈ a : ∀y∈a(y <r x → ∃β∈α y ∈ F(β))}.

• First, to show
⋃

α F(α) = a, we put by Σ1-Sep,

a0 := {x ∈ a : ∃α(x ∈ F(α))}.
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• Suppose that a− a0 ̸= ∅. Let x be a <r-minimal element in this set. Then,

∀y ∈ a(y <r x → ∃β y ∈ F(β)).

• Using Σ1-Coll, we can obtain α such that

∀y ∈ a(y <r x → ∃β∈α y ∈ F(β)).

• Therefore, by the definition of F(α), we have x ∈ F(α), i.e., x ∈ a0, which contradicts
the choice of x. Therefore,

⋃
α F(α) = a.

• Then again by Σ1-Coll, there exists some γ such that
⋃

α<γ F(α) = a.

• Next, for α < γ, by Σ1 recursion, we define a sequence of functions {fα} as follows.

fα(x) := {fβ(y) : β < α ∧ y ∈ F(β) ∧ y <r x} ( for any x ∈ F(α)).

It is easy to show that if β ≤ α then fβ ⊂ fα. So f =
⋃

α<γ fα is defined as a
function, and we have

f(x) = {f(y) : y ∈ a ∧ y <r x} ( for any x ∈ a)

• Thus, Axiom β is shown. □
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Thank you for your attention!
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