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Logic and Computation II� �
• Part 4. Formal arithmetic and Gödel’s incompleteness theorems

• Part 5. Automata on infinite objects

• Part 6. Recursion-theoretic hierarchies

• Part 7. Admissible ordinals and second order arithmetic� �
Part 7. Schedule� �
• May 18, (1) KP set theory I

• May 23, (2) KP set theory II

• May 25, (3) α recursion theory

• May 30, (4) Recursively large ordinals I

• Jun. 1, (5) Recursively large ordinals II

• Jun. 6, (6) Second-order arithmetic and reverse mathematics� �
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Recap
• In set theory, the Lévi hierarchy is introduced by imitating the arithmetic hierarchy.

• Σ0(= Π0 = ∆0) formula: all quantifiers are bounded, i.e., ∃x ∈ y,∀x ∈ y.

• A Σn+1 formula is ∃xφ with φ ∈ Πn. A Πn+1 formula is ∀xφ with φ ∈ Σn.

• A ∆n formula is a Πn (or Σn) formula equivalent to a Σn (or Πn) formula.

Definition

For a set Γ of formulas, the axioms of Γ-separation and Γ-collection are defined as

Γ-Sep : ∀x∃y∀z(z ∈ y ↔ z ∈ x ∧ φ(z)) for any φ(z) ∈ Γ.
Γ-Coll : ∀x(∀y∈x∃zφ(z) → ∃u∀y∈x∃z∈uφ(z)) for any φ(z) ∈ Γ.

• The axiom of Γ-separation asserts the existence of set y = {z ∈ x : φ(z)}. So, it is
also called the subset axiom or the comprehension axiom.

• The axiom of Γ-collection can be viewed as a version of axiom of replacement, but
also treated as a kind of reflection principle.
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Definition (Axioms of KP)

KP is a first-order theory in the language {∈} consisting of the following axioms.

KP := axiom of extensionality : ∀z(z ∈ x↔ z ∈ y) → x = y

+ axiom of pairing : ∀x∀y∃z(x ∈ z ∧ y ∈ z)

+ axiom of union : ∀w∃z∀x∀y(x ∈ y ∧ y ∈ w → x ∈ z)

+ axiom of empty set : ∃y∀x(x ̸∈ y)

+ ∆0-Sep + ∆0-Coll

+ axiom of foundation : ∀x[∀y∈xφ(y) → φ(x)] → ∀xφ(x).

KPω := KP+axiom of infinity : ∃x{0 ∈ x ∧ ∀y ∈ x(y ∪ {y} ∈ x)}.

• ZF is KPω + power set ∀x∃z∀y(y ⊂ x→ y ∈ z) + axiom of unrestricted separation
and collection (or replacement). For ZF, the axiom of regularity:
x ̸= ∅ → ∃y ∈ x(y ∩ x = ∅) is often used instead of the axiom of foundation.
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• In KP, the Σ1 formulas are closed under bounded quantifiers. For instance, by using
∆0-Coll, we have

∀x∈y∃zφ↔ ∃u∀x∈y∃z∈uφ (φ ∈ ∆0).

• In KP, the consecutive unbounded quantifiers in a formula can be combined into one
by the axiom of pairing as follows

∃x∃yφ↔ ∃u∃x∈u∃y∈uφ.

• Let Σ denote the smallest class of formulas containing Σ1 formulas and is closed
under ∧, ∨, ∃x∈y, ∀x∈y, ∃x. In KP, the classes Σ and Σ1 are essentially the same.

• One of Platek’s original axioms is Σ reflection principle, stating that any Σ formula
φ is equivalent to a special Σ1 formula ∃uφu, where φu is obtained from φ by
replacing all unbounded quantifiers ∃x, ∀x by ∃x∈u and ∀x∈u, respectively.

Theorem (Σ reflection principle)

KP ⊢ φ↔ ∃uφu for any φ ∈ Σ.

• Note that for a Σ formula φ, KP proves φu ∧ u ⊂ v → φv.
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Some properties of KP
By the axiom of pairing, we can show the existence of ordered pair(x, y) := {{x}, {x, y}}.
In addition, there exists the direct product a× b = {(x, y) : x ∈ a, y ∈ b} as follows.

Lemma

KP ⊢ ∀a, b∃!c(c = a× b).

Proof.

• From the axiom of pairing and ∆0-Sep, ∀x∀y∃z[z = (x, y)].

• ∆0-Coll gives ∀x∃w∀y∈b∃z∈w[z = (x, y)] and again by ∆0-Coll, there exists d such
that ∀x∈a∃w∈d∀y∈b∃z∈w[z = (x, y)].

• Now, by the axiom of union, letting c1 = ∪d, we have ∀x∈a∀y∈b (x, y) ∈ c1.

• By Σ0-Sep, there exists c = {z ∈ c1 : ∃x∈a∃y∈b[z = (x, y)]}.

• The uniqueness follows from the axiom of extensionality. □
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Theorem

KP ⊢ Σ1-Coll.

Proof. Let φ be a Σ1 formula. We want to show the following

∀x(∀y∈x∃zφ→ ∃u∀y∈x∃z∈uφ).

We may assume φ is in the form ∃wθ (θ is Σ0). By the axiom of pairing, we get the
following.

∃z φ = ∃z∃w θ → ∃v∃z∈v∃w∈v θ.

Then, by ∆0-Coll,
∀y∈x∃zφ→ ∃u∀y∈x∃v∈u∃z∈v∃w∈v θ.

Furthermore, setting s =
⋃
u = {z : ∃v ∈ u(z ∈ v)}, we have ∃s∀y∈x∃z∈s ∃w θ. □
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Theorem

KP ⊢ ∆1-Sep.

Proof. Let a Σ1 formula ∃wψ(w, x) (where ψ is Σ0) and a Π1 formula ∀v θ(v, x) (θ is Σ0)
be given so that ∀x[∀vθ(v, x) ↔ ∃wψ(w, x)] holds. That is, either is a ∆1 formula.
Then,

∀x∃w[¬θ(w, x) ∨ ψ(w, x)].

By ∆0-Coll, for any y, there exists z such that

∀x∈y∃w∈z[¬θ(w, x) ∨ ψ(w, x)].

Since ∀x[∀vθ(v, x) ↔ ∃wψ(w, x)], we have ∃wψ(w, x) → ∀v ∈ zθ(v, x) → ∃w ∈ zψ(w, x).
So, {x∈y : ∃wψ(w, x)} = {x∈y : ∃w∈zψ(w, x)} exists by ∆0-Sep. Therefore, ∆1-Sep
holds. □
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Definition (KP+(F))

Let φ(x⃗, y) be a Σ1 formula such that KP ⊢ ∀x⃗∃!yφ(x⃗, y). Then we introduce a functional
(operator) symbol F and call it a Σ1 operator if the following axiom (F) holds.
(F) : ∀x⃗(F(x⃗) = y ↔ φ(x⃗, y)).

• KP+(F) is a conservative extension of KP (i.e., the provability of formulas without F
does not change in both systems).

• Axiom (F) is nothing but a definition. Strictly, its conservation is derived from the
completeness theorem of first-order logic.

• Note that F is a second-order (meta-mathematical) object, called “class” or
“functional”, and so its existence cannot be argued in KP.

• It is easy to see that F(x⃗) = y is ∆1 .
• From the axiom (F), it is Σ1.

• Furthermore, F is Π1 since F(x⃗) ̸= y ↔ ∃z(φ(x⃗, z) ∧ z ̸= y).
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Lemma

Let F be a Σ1 operater. The following sets exist in KP: for any set u,

F↾u := {(x,F(x)) : x ∈ u}, F“u := {F(x) : x ∈ u}

Proof

• By Σ1-Coll, there exists v such that ∀x ∈ u∃y ∈ vF(x) = y, and thus F↾u ⊂ u× v.
Since F is ∆1, F↾u exists by ∆1-Sep.

• Similarly, the existence of F“u = {y ∈ v : ∃x∈uF(x) = y} follows from ∆1-Sep. □
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Theorem (Σ1 recursion)

Let G be a Σ1 operater. There exists a Σ1 operater F such that

KP ⊢ F(x) = G(x, {(y,F(y)) : y ∈ x}).

Proof.

• First, we define a relation Φ(f) as follows.

Φ(f) ≡ “f is a function”∧ “dom(f) is transitive”∧∀x ∈ dom(f)(f(x) = G(x, f ↾x)).

Here Φ(f) roughly means that f is a function F↾domf .

• “f is a function” is expressed as ∀(x, y1)∈f ∀(x, y2)∈f (y1 = y2), which is ∆0.

• “dom(f) is transitive” is ∀y∈dom(f) ∀z∈y (z ∈ dom(f)), which is also ∆0.

• Since G is a Σ1 operater, ∀x ∈ dom(f)(f(x) = G(x, f ↾x)) is ∆1.

• Thus, Φ(f) is also ∆1.
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• Then, F(x) = y can be expressed by the following Σ1 formula Ψ.

Ψ(x, y) ≡ ∃f(Φ(f) ∧ f(x, y))

• To show that F is a Σ1 operater, we need to prove KP ⊢ ∀x∃!y Ψ(x, y)

• First, we prove ∀x∃yΨ(x, y) by way of contradiction. Assume that x exists such that
¬∃yΨ(x, y).

• Then, if we choose a ∈-minimal such x by the axiom of foundation, we get
∀x′ ∈ x∃yΨ(x′, y), i.e.,

∀x′∈x∃f(Φ(f) ∧ x′ ∈ dom(f)).

Then, by Σ1-Coll, there exists v such that

∀x′ ∈ x∃f ∈ v(Φ(f) ∧ x′ ∈ dom(f)).
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• Now, let w = {f ∈ v|Φ(f)} by ∆1-Sep. And let u =
⋃
w, by the axiom of union.

• We can show that u is a function. Otherwise, there exists f1, f2 such that
Φ(f1),Φ(f2) and there is z ∈ dom(f1) ∩ dom(f2), f1(z) ̸= f2(z).

• By the axiom of foundation, we choose a ∈-minimal such z. But then,
f1(z) = G(x, f1 ↾z) = G(x, f2 ↾z) = f2(z) from the definition of Φ(f), which
contradicts our assumption.

• Then we have Φ(u).

• In addition, if u′ = u ∪ {(x,G(x, u↾x))}, then Φ(u′) and x ∈ dom(u′), and so
∃yΨ(x, y), which contradicts the choice of x.

• Finally, KP ⊢ ∀x∃!yΨ(x, y) can be shown in the same way that we proved that u is a
function as above.

• So F is a Σ1 operater. □
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• There are many applications of Σ1 recursion. Let’s look at a simple example.

Definition (Transitive closure)

For any set x, its transitive closure TC(x) is defined as follows.

TC(x) := x ∪
⋃

{TC(y) : y ∈ x}.

• TC(x) is well-defined as a Σ1 operator.

• The property that x is transitive, denoted as Tran(x), is defined by

∀y ∈ x∀z ∈ y(z ∈ x).

Then, TC(x) is the smallest transitive set containing x.
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The Σ1 recursion works best on ordinal recursion.

Definition (Ordinal)

Define a ∆0 predicate Ord(x) that expresses that x is an ordinal as follows.

Ord(x) ≡ Tran(x) ∧ ∀y ∈ x Tran(y)

In addition, the relation α < β on the ordinals is defined as α ∈ β.

The following facts can be easily shown in KP.
• 0 = ∅ is the smallest ordinal.

• The successor order α+ 1 of ordinal α is α ∪ {α}. In particular, the finite ordinal
n+ 1 is {0, 1, . . . , n}.

• Each element of an ordinal is an ordinal.

• For a set of ordinals x, ∪x = supx is an ordinal.

• ≤ on an ordinal is a total (linear) order.
By Σ1-recursion, we can introduces various operaters on ordinals. E.g., the addition +:

α+ β = α ∪ sup{(α+ γ) + 1 : γ < β}.
16 / 20
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Homework� �
For ordinal addition +, show α+ (β + γ) = (α+ β) + γ.� �
• The smallest infinite ordinal is the set of all finite ordinals, written as ω, whose
existence requires a system KPω containing the axiom of infinity.

• If we regard finite ordinals as natural numbers, ω and N are the same.

• In KPω, arithmetical quantifiers can be treated quantifiers bounded by ω (e.g.,
∀n∈ω), and so the arithmetical hierarchy has little effect on the set-theoretic
hierarchy.
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• Now we overview the ordinal numbers after ω.

• The successor of ω is ω + 1 = ω ∪ {ω}, and its successor is (ω + 1) + 1 = ω + 2.

• After that, there are infinite ordinals such as ω + 3, ω + 4, ... with the same order
type as ω, and their limit is denoted by ω + ω or ω · 2.

• The next similar limit ordinal is ω + ω + ω (ω · 3), then ω + ω + ω + ω (ω · 4), etc.

• Let ω2 be the limit after arranging the
limit numbers like this. This is the next
ordinal of ω closed under addition + . a

• Similarly, let ω3 be the third ordinal
closed with +, then ω4, ω5, . . . , and so
on. Let those limit be denoted by ωω,
which is also closed under addition + .

• In general, let ωα be the α-th ordinal
closed under addition + .b

a∀x, y<ω2(x+ y < ω2) or ∀x<ω2(x+ω2 = ω2).
bω0 = 1 is considered the first (0-th) such ordinal.

source: wikipedia 18 / 20
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• Then, we can also consider an ordinal α closed under ωα, which is called a ε number.i

• The first ε number is called ε0. An ordinal α smaller than ε0 can be expressed
uniquely as follows

α = ωα1 + ωα2 + · · ·+ ωαn( However ε0 > α1 ≥ α2 ≥ · · · ≥ αn ≥ 0),

which is called the Cantor normal form.

• Although ε0 looks very large, the admissible ordinals that we will deal with later are
much larger and are closed under all recursive functions.

iAn ε number satisfies ωε = ε.
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Thank you for your attention!
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