K. Tanaka

Recap

Some propertie of KP

 Σ_1 operato

 Σ_1 recursi

Ordinals

Logic and Computation II Part 6. Recursion-theoretic hierarchies

Kazuyuki Tanaka

BIMSA

May 25, 2023

イロト 不得下 不同下 不同下

≡ ∽۹° 1 / 20

K. Tanaka

Recap

Some properties of KP

 Σ_1 operator

 Σ_1 recursion

Ordinals

Logic and Computation II -

- Part 4. Formal arithmetic and Gödel's incompleteness theorems
- Part 5. Automata on infinite objects
- Part 6. Recursion-theoretic hierarchies
- Part 7. Admissible ordinals and second order arithmetic

- Part 7. Schedule

- May 18, (1) KP set theory I
- May 23, (2) KP set theory II
- May 25, (3) α recursion theory
- May 30, (4) Recursively large ordinals I
- Jun. 1, (5) Recursively large ordinals II
- Jun. 6, (6) Second-order arithmetic and reverse mathematics

K. Tanaka

Recap

Some propertie of KP

 Σ_1 operator

 Σ_1 recursio

Ordinals

1 Recap

2 Some properties of KP

3 Σ_1 operator

4 Σ_1 recursion

5 Ordinals

Today's topics

K. Tanaka

Recap

Some propertie of KP

- Σ_1 operator
- Σ_1 recursio

Ordinals

• In set theory, the Lévi hierarchy is introduced by imitating the arithmetic hierarchy.

- $\Sigma_0 (= \Pi_0 = \Delta_0)$ formula: all quantifiers are bounded, i.e., $\exists x \in y, \forall x \in y$.
- A Σ_{n+1} formula is $\exists x \varphi$ with $\varphi \in \Pi_n$. A Π_{n+1} formula is $\forall x \varphi$ with $\varphi \in \Sigma_n$.
- A Δ_n formula is a Π_n (or Σ_n) formula equivalent to a Σ_n (or Π_n) formula.

Definition

For a set Γ of formulas, the axioms of $\Gamma\text{-}{\bf separation}$ and $\Gamma\text{-}{\bf collection}$ are defined as

$$\begin{array}{ll} \Gamma \mbox{-Sep}: & \forall x \exists y \forall z (z \in y \leftrightarrow z \in x \land \varphi(z)) & \mbox{for any } \varphi(z) \in \Gamma. \\ \Gamma \mbox{-Coll}: & \forall x (\forall y \in x \exists z \varphi(z) \rightarrow \exists u \forall y \in x \exists z \in u \varphi(z)) & \mbox{for any } \varphi(z) \in \Gamma. \end{array}$$

- The axiom of Γ -separation asserts the existence of set $y = \{z \in x : \varphi(z)\}$. So, it is also called the subset axiom or the comprehension axiom.
- The axiom of Γ-collection can be viewed as a version of axiom of replacement, but also treated as a kind of reflection principle.

4 / 20

Recap

K. Tanaka

Recap

Some propertie of KP

 Σ_1 operato

 Σ_1 recursi

Ordinals

Definition (Axioms of KP)

KP is a first-order theory in the language $\{\in\}$ consisting of the following axioms.

 $\mathsf{KP} \ := \text{axiom of extensionality}: \ \forall z(z \in x \leftrightarrow z \in y) \rightarrow x = y$

+ axiom of pairing : $\forall x \forall y \exists z (x \in z \land y \in z)$

+ axiom of union : $\forall w \exists z \forall x \forall y (x \in y \land y \in w \rightarrow x \in z)$

+ axiom of empty set : $\exists y \forall x (x \notin y)$

 $+ \Delta_0$ -Sep $+ \Delta_0$ -Coll

 $+ \text{ axiom of foundation}: \quad \forall x [\forall y \in x \, \varphi(y) \to \varphi(x)] \to \forall x \varphi(x).$

 $\mathsf{KP}\omega := \mathsf{KP} + \text{axiom of infinity}: \quad \exists x \{ 0 \in x \land \forall y \in x (y \cup \{y\} \in x) \}.$

• ZF is KP ω + power set $\forall x \exists z \forall y (y \subset x \to y \in z)$ + axiom of <u>unrestricted</u> separation and collection (or replacement). For ZF, the axiom of regularity: $x \neq \emptyset \to \exists y \in x (y \cap x = \emptyset)$ is often used instead of the axiom of foundation.

K. Tanaka

Recap

Some properties of KP

- Σ_1 operator
- Σ_1 recursio

Ordinals

• In KP, the Σ_1 formulas are closed under bounded quantifiers. For instance, by using $\Delta_0\text{-}Coll,$ we have

 $\forall x \!\in\! y \exists z \varphi \leftrightarrow \exists u \forall x \!\in\! y \exists z \!\in\! u \varphi \ (\varphi \in \Delta_0).$

• In KP, the consecutive unbounded quantifiers in a formula can be combined into one by the axiom of pairing as follows

 $\exists x \exists y \varphi \leftrightarrow \exists u \exists x \in u \exists y \in u \varphi.$

- Let Σ denote the smallest class of formulas containing Σ_1 formulas and is closed under \land , \lor , $\exists x \in y$, $\forall x \in y$, $\exists x$. In KP, the classes Σ and Σ_1 are essentially the same.
- One of Platek's original axioms is Σ reflection principle, stating that any Σ formula φ is equivalent to a special Σ_1 formula $\exists u \varphi^u$, where φ^u is obtained from φ by replacing all unbounded quantifiers $\exists x, \forall x$ by $\exists x \in u$ and $\forall x \in u$, respectively.

Theorem (Σ reflection principle)

```
\mathsf{KP}\vdash\varphi\leftrightarrow\exists u\varphi^u\text{ for any }\varphi\in\Sigma.
```

• Note that for a Σ formula φ , KP proves $\varphi^u \wedge u \subset v \to \varphi^v$.

K. Tanaka

Recap

Some properties of KP

 Σ_1 operato

 Σ_1 recursion

Ordinals

Lemma $\mathsf{KP} \vdash \forall a, b \exists ! c(c = a \times b).$

Proof.

- From the axiom of pairing and Δ_0 -Sep, $\forall x \forall y \exists z [z = (x, y)]$.
- Δ_0 -Coll gives $\forall x \exists w \forall y \in b \exists z \in w[z = (x, y)]$ and again by Δ_0 -Coll, there exists d such that $\forall x \in a \exists w \in d \forall y \in b \exists z \in w[z = (x, y)]$.
- Now, by the axiom of union, letting $c_1 = \cup d$, we have $\forall x \in a \forall y \in b \ (x, y) \in c_1$.
- By Σ_0 -Sep, there exists $c = \{z \in c_1 : \exists x \in a \exists y \in b[z = (x, y)]\}.$
- The uniqueness follows from the axiom of extensionality.

Some properties of KP

By the axiom of pairing, we can show the existence of ordered pair $(x, y) := \{\{x\}, \{x, y\}\}$. In addition, there exists the direct product $a \times b = \{(x, y) : x \in a, y \in b\}$ as follows.

K. Tanaka

Recap

Some properties of KP

 Σ_1 operato

 Σ_1 recursion

Ordinals

Theorem

 $\mathsf{KP} \vdash \Sigma_1\text{-}\mathrm{Coll.}$

Proof. Let φ be a Σ_1 formula. We want to show the following

١

$$\forall x (\forall y \in x \exists z \varphi \to \exists u \forall y \in x \exists z \in u \varphi).$$

We may assume φ is in the form $\exists w \theta$ (θ is Σ_0). By the axiom of pairing, we get the following.

$$\exists z \, \varphi = \exists z \exists w \, \theta \to \exists v \exists z \in v \exists w \in v \, \theta.$$

Then, by Δ_0 -Coll,

 $\forall y \! \in \! x \exists z \varphi \rightarrow \exists u \forall y \! \in \! x \exists v \! \in \! u \exists z \! \in \! v \exists w \! \in \! v \; \theta.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Furthermore, setting $s = \bigcup u = \{z : \exists v \in u (z \in v)\}$, we have $\exists s \forall y \in x \exists z \in s \exists w \theta$.

K. Tanaka

Recap

Some properties of KP

 Σ_1 operato

 Σ_1 recursion

Ordinals

Theorem

 $\mathsf{KP} \vdash \Delta_1\text{-}\mathrm{Sep.}$

Proof. Let a Σ_1 formula $\exists w \, \psi(w, x)$ (where ψ is Σ_0) and a Π_1 formula $\forall v \, \theta(v, x)$ (θ is Σ_0) be given so that $\forall x [\forall v \theta(v, x) \leftrightarrow \exists w \psi(w, x)]$ holds. That is, either is a Δ_1 formula. Then,

 $\forall x \exists w [\neg \theta(w, x) \lor \psi(w, x)].$

By Δ_0 -Coll, for any y, there exists z such that

 $\forall x \!\in\! y \exists w \!\in\! z [\neg \theta(w, x) \lor \psi(w, x)].$

Since $\forall x [\forall v \theta(v, x) \leftrightarrow \exists w \psi(w, x)]$, we have $\exists w \psi(w, x) \rightarrow \forall v \in z \theta(v, x) \rightarrow \exists w \in z \psi(w, x)$. So, $\{x \in y : \exists w \psi(w, x)\} = \{x \in y : \exists w \in z \psi(w, x)\}$ exists by Δ_0 -Sep. Therefore, Δ_1 -Sep holds.

<ロト < 回 ト < 目 ト < 目 ト < 目 ト 目 の Q (* 9 / 20

K. Tanaka

Recap

Some properties of KP

 $\boldsymbol{\Sigma}_1$ operator

 Σ_1 recursio

Ordinals

Definition (KP + (F))

Let $\varphi(\vec{x}, y)$ be a Σ_1 formula such that $\mathsf{KP} \vdash \forall \vec{x} \exists ! y \varphi(\vec{x}, y)$. Then we introduce a functional (operator) symbol F and call it a Σ_1 **operator** if the following axiom (F) holds. (F) : $\forall \vec{x}(\mathsf{F}(\vec{x}) = y \leftrightarrow \varphi(\vec{x}, y))$.

• KP + (F) is a conservative extension of KP (i.e., the provability of formulas without F does not change in both systems).

- Axiom $({\rm F})$ is nothing but a definition. Strictly, its conservation is derived from the completeness theorem of first-order logic.
- Note that ${\rm F}$ is a second-order (meta-mathematical) object, called "class" or "functional", and so its existence cannot be argued in KP.
- It is easy to see that ${\rm F}(\vec{x})=y$ is Δ_1 .
 - From the axiom (F), it is Σ_1 .
 - Furthermore, F is Π_1 since $F(\vec{x}) \neq y \leftrightarrow \exists z (\varphi(\vec{x}, z) \land z \neq y)$.

K. Tanaka

Recap

Some properti of KP

 $\boldsymbol{\Sigma}_1$ operator

 Σ_1 recursio

Ordinals

Lemma

Let F be a Σ_1 operater. The following sets exist in KP: for any set u,

$$F \upharpoonright u := \{(x, F(x)) : x \in u\}, F "u := \{F(x) : x \in u\}$$

Proof

- By Σ_1 -Coll, there exists v such that $\forall x \in u \exists y \in v F(x) = y$, and thus $F \upharpoonright u \subset u \times v$. Since F is Δ_1 , $F \upharpoonright u$ exists by Δ_1 -Sep.
- Similarly, the existence of $F^{u} = \{y \in v : \exists x \in u F(x) = y\}$ follows from Δ_1 -Sep.

 \square

11 / 20

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

K. Tanaka

Recap

Some properties of KP

 Σ_1 operator

 Σ_1 recursion

Ordinals

Theorem (Σ_1 recursion)

Let G be a Σ_1 operater. There exists a Σ_1 operater F such that

$$\mathsf{KP} \vdash \mathsf{F}(x) = \mathsf{G}(x, \{(y, \mathsf{F}(y)) : y \in x\}).$$

Proof.

• First, we define a relation $\Phi(f)$ as follows.

 $\Phi(f) \equiv "f \text{ is a function"} \land "\operatorname{dom}(f) \text{ is transitive"} \land \forall x \in \operatorname{dom}(f)(f(x) = \operatorname{G}(x, f \restriction x)).$ Here $\Phi(f)$ roughly means that f is a function $\operatorname{F} \restriction \operatorname{dom} f$.

- "f is a function" is expressed as $\forall (x, y_1) \in f \ \forall (x, y_2) \in f \ (y_1 = y_2)$, which is Δ_0 .
- "dom(f) is transitive" is $\forall y \in \operatorname{dom}(f) \ \forall z \in y \ (z \in \operatorname{dom}(f))$, which is also Δ_0 .
- Since G is a Σ_1 operater, $\forall x \in \operatorname{dom}(f)(f(x) = \operatorname{G}(x, f \restriction x))$ is Δ_1 .
- Thus, $\Phi(f)$ is also Δ_1 .

K. Tanaka

Recap

Some propertie of KP

- Σ_1 operator
- Σ_1 recursion

Ordinal

• Then, F(x) = y can be expressed by the following Σ_1 formula Ψ .

 $\Psi(x,y) \equiv \exists f(\Phi(f) \land f(x,y))$

- To show that F is a Σ_1 operater, we need to prove $\mathsf{KP} \vdash \forall x \exists ! y \ \Psi(x,y)$
- First, we prove $\forall x \exists y \Psi(x, y)$ by way of contradiction. Assume that x exists such that $\neg \exists y \Psi(x, y)$.
- Then, if we choose a \in -minimal such x by the axiom of foundation, we get $\forall x' \in x \exists y \Psi(x',y),$ i.e.,

 $\forall x' \in x \exists f(\Phi(f) \land x' \in \operatorname{dom}(f)).$

Then, by Σ_1 -Coll, there exists v such that

 $\forall x' \in x \exists f \in v(\Phi(f) \land x' \in \operatorname{dom}(f)).$

K. Tanaka

- Recap
- Some properties of KP
- Σ_1 operator
- Σ_1 recursion

Ordinals

- Now, let $w = \{f \in v | \Phi(f)\}$ by Δ_1 -Sep. And let $u = \bigcup w$, by the axiom of union.
- We can show that u is a function. Otherwise, there exists f_1, f_2 such that $\Phi(f_1), \Phi(f_2)$ and there is $z \in \text{dom}(f_1) \cap \text{dom}(f_2), f_1(z) \neq f_2(z)$.
- By the axiom of foundation, we choose a \in -minimal such z. But then, $f_1(z) = G(x, f_1 \upharpoonright z) = G(x, f_2 \upharpoonright z) = f_2(z)$ from the definition of $\Phi(f)$, which contradicts our assumption.
- Then we have $\Phi(u)$.
- In addition, if $u' = u \cup \{(x, G(x, u \upharpoonright x))\}$, then $\Phi(u')$ and $x \in dom(u')$, and so $\exists y \Psi(x, y)$, which contradicts the choice of x.
- Finally, $\mathsf{KP} \vdash \forall x \exists ! y \Psi(x, y)$ can be shown in the same way that we proved that u is a function as above.

14 / 20

• So F is a Σ_1 operater.

K. Tanaka

Recap

Some properti of KP

 Σ_1 operato

 Σ_1 recursion

Ordinals

• There are many applications of $\boldsymbol{\Sigma}_1$ recursion. Let's look at a simple example.

Definition (Transitive closure)

For any set x, its **transitive closure** TC(x) is defined as follows.

$$\mathrm{TC}(x):=x\cup\bigcup\{\mathrm{TC}(y):y\in x\}.$$

- TC(x) is well-defined as a Σ_1 operator.
- The property that x is **transitive**, denoted as Tran(x), is defined by

$$\forall y \in x \forall z \in y (z \in x).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ○ ○○○

15 / 20

Then, TC(x) is the smallest transitive set containing x.

K. Tanaka

Recap

Some propertie of KP

 Σ_1 operator

 Σ_1 recursio

Ordinals

The $\boldsymbol{\Sigma}_1$ recursion works best on ordinal recursion.

Definition (Ordinal)

Define a Δ_0 predicate Ord(x) that expresses that x is an **ordinal** as follows.

```
\operatorname{Ord}(x) \equiv \operatorname{Tran}(x) \land \forall y \in x \operatorname{Tran}(y)
```

In addition, the relation $\alpha < \beta$ on the ordinals is defined as $\alpha \in \beta$.

The following facts can be easily shown in KP.

- $0 = \emptyset$ is the smallest ordinal.
- The successor order $\alpha + 1$ of ordinal α is $\alpha \cup \{\alpha\}$. In particular, the finite ordinal n + 1 is $\{0, 1, \dots, n\}$.
- Each element of an ordinal is an ordinal.
- For a set of ordinals x, $\cup x = \sup x$ is an ordinal.
- \leq on an ordinal is a total (linear) order.

By $\Sigma_1\text{-}\mathsf{recursion},$ we can introduces various operaters on ordinals. E.g., the addition +:

$$\alpha + \beta = \alpha \cup \sup\{(\alpha + \gamma) + 1 : \gamma < \beta\}.$$

K. Tanaka

Homework

Recap

Some properties of KP

- Σ_1 operator
- Σ_1 recursio
- Ordinals

For ordinal addition +, show $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$.

- The smallest infinite ordinal is the set of all finite ordinals, written as ω , whose existence requires a system KP ω containing the axiom of infinity.
- If we regard finite ordinals as natural numbers, ω and $\mathbb N$ are the same.
- In KPω, arithmetical quantifiers can be treated quantifiers bounded by ω (e.g., ∀n∈ω), and so the arithmetical hierarchy has little effect on the set-theoretic hierarchy.

イロト イヨト イヨト イヨト

K. Tanaka

Recap

Some propertie of KP

- Σ_1 operator
- Σ_1 recursio
- Ordinals

- Now we overview the ordinal numbers after ω .
- The successor of ω is $\omega + 1 = \omega \cup \{\omega\}$, and its successor is $(\omega + 1) + 1 = \omega + 2$.
- After that, there are infinite ordinals such as ω + 3, ω + 4, ... with the same order type as ω, and their limit is denoted by ω + ω or ω · 2.
- The next similar limit ordinal is $\omega + \omega + \omega$ ($\omega \cdot 3$), then $\omega + \omega + \omega + \omega$ ($\omega \cdot 4$), etc.
- Let ω^2 be the limit after arranging the limit numbers like this. This is the next ordinal of ω closed under addition + . ^a
- Similarly, let ω^3 be the third ordinal closed with +, then ω^4 , ω^5 , ..., and so on. Let those limit be denoted by ω^{ω} , which is also closed under addition +.
- In general, let ω^{α} be the α -th ordinal closed under addition + .^b

 $\label{eq:starseq} \begin{array}{l} {}^{s}\!\forall \!x,y\!<\!\omega^{2}(x\!+\!y<\omega^{2}) \text{ or } \forall \!x\!<\!\omega^{2}(x\!+\!\omega^{2}=\omega^{2}). \\ {}^{b}\!\omega^{0}=1 \text{ is considered the first (0-th) such ordinal.} \end{array}$

K. Tanaka

Recap

- Some properti of KP
- Σ_1 operator
- Σ_1 recursio
- Ordinals

- Then, we can also consider an ordinal α closed under ω^{α} , which is called a ε number.ⁱ
- The first ε number is called ε_0 . An ordinal α smaller than ε_0 can be expressed uniquely as follows

 $\alpha = \omega^{\alpha_1} + \omega^{\alpha_2} + \dots + \omega^{\alpha_n} (\text{However } \varepsilon_0 > \alpha_1 \ge \alpha_2 \ge \dots \ge \alpha_n \ge 0),$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

19 / 20

which is called the Cantor normal form.

• Although ε_0 looks very large, the admissible ordinals that we will deal with later are much larger and are closed under all recursive functions.

K. Tanaka

Recap

Some propertie of KP

 Σ_1 operato

 Σ_1 recursio

Ordinals

Thank you for your attention!

