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Recap
® |n set theory, the Lévi hierarchy is introduced by imitating the arithmetic hierarchy.
® Yo(=1Ilp = Ag) formula: all quantifiers are bounded, i.e., 3z € y,Vz € y.
® A 3,41 formulais Jzp with ¢ € I1,,. A II,,41 formula is Vxp with ¢ € 3,,.

® A A, formulais a IL, (or ¥,) formula equivalent to a ¥,, (or IL,,) formula.
Definition

For a set I' of formulas, the axioms of I'-separation and I'-collection are defined as

I-Sep: VeIyVz(z €y <+ z€xAp(z)) for any p(z) € T.
I-Coll: Vz(Vyex3zp(z) - JuVyecaIzcup(z)) for any p(z) € I

® The axiom of I'-separation asserts the existence of set y = {z € x : p(z)}. So, it'is
also called the subset axiom or the comprehension axiom.

® The axiom of I'-collection can be viewed as a version of axiom of replacement, but
also treated as a kind of reflection principle.
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Definition (Axioms of KP)

KP is a first-order theory in the language {€} consisting of the following axioms.

KP := axiom of extensionality : Vz(z €z z€y) oz =1y

+ axiom of pairing : VazVy3z(x € z Ay € 2)

+ axiom of union : VwIzVaVy(zx e yAy € w — x € z)

+ axiom of empty set : JyVz(z & y)

+ Ap-Sep + Ap-Coll

+ axiom of foundation : Vz[Vyecz p(y) — ¢(z)] — Yap(x).
KPw := KP +axiom of infinity : Jz{0 €z AVy € 2(y U {y} € 2)}.

® 7F is KPw + power set Vo32Vy(y C x — y € z) + axiom of unrestricted separation
and collection (or replacement). For ZF, the axiom of regularity:
T # I — Jy € x(yNa =) is often used instead of the axiom of foundation.
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In KP, the 3, formulas are closed under bounded quantifiers. For instance, by using
Ap-Coll, we have

Veeydzp < JuVzeyIzcup (v € Ay).

In KP, the consecutive unbounded quantifiers in a formula can be combined into one
by the axiom of pairing as follows

JxIyp - FJudr cudy e up.

Let X denote the smallest class of formulas containing ¥, formulas and is closed
under A, V, dJx ey, Ve ey, Jx. In KP, the classes X and ¥ are essentially the same.

One of Platek’s original axioms is 3 reflection principle, stating that any X formula
 is equivalent to a special ¥; formula Jup", where " is obtained from ¢ by
replacing all unbounded quantifiers 3z, VY by Jz €w and Va € u, respectively.

Theorem (X reflection principle)

KP I ¢ <> Jup" for any ¢ € .

® Note that for a X formula ¢, KP proves o* Au C v — ¢".
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Some properties of KP
By the axiom of pairing, we can show the existence of ordered pair(x,y) := {{z},{z,y}}.
In addition, there exists the direct product a x b = {(z,y) : « € a,y € b} as follows.
Lemma
KP I Va, b3le(c = a x b).

Proof.
® From the axiom of pairing and Ag-Sep, VaVy3z[z = (z,y)].

Ap-Coll gives VaIwVy € bIz € wlz = (z,y)] and again by Ag-Coll, there exists d such
that Ve cadwedvVyebIzew(z = (z,y))].

Now, by the axiom of union, letting c; = Ud, we have Vz€aVyeb (z,y) € 1.

By Xo-Sep, there exists ¢ = {z € ¢1 : Ix€aldyeb[z = (z,y)]}.

The uniqueness follows from the axiom of extensionality. d
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ST KP F 2;-Coll.

Proof. Let ¢ be a ¥; formula. We want to show the following
Vo (Vy exIzp — JuVyExIz Eup).

We may assume ¢ is in the form Jwé (6 is ¥y). By the axiom of pairing, we get the
following.
dzp = 3Jz3wh — JvIzcvIwevb.

Then, by Ag-Coll,
Vyexdze - JuVycaxIveudzcviwew 6.

Furthermore, setting s = Ju = {z : v € u(z € v)}, we have IsVyczIz€s Jw 6. O
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Smepopetis KD |- A} Sep.
Proof. Let a 3y formula 3w (w, ) (where v is ¥) and a II; formula Yo (v, x) (0 is 3o)
be given so that Vz[Vul (v, z) < Jwy(w, z)] holds. That is, either is a A; formula.

Then,
Vedw[—-0(w, z) V Y(w, x)].

By Ay-Coll, for any y, there exists z such that
Ve eydwe z[-0(w, z) V Y (w, ).
Since V[Vl (v, x) <> Jw(w, z)], we have Jwy(w, z) — Yv € 20(v,x) — Jw € zp(w, x).

)
So, {z€y : Jwyp(w,z)} = {re€y: Jwezip(w, x)} exists by Ag-Sep. Therefore, A;-Sep
holds. g
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Let o(Z,y) be a X1 formula such that KP - VZ3lyp(Z, y). Then we introduce a functional
(operator) symbol F and call it a ¥; operator if the following axiom (F) holds.
S et (F) : VE(F@) =y < ¢(Z,y)).

e KP +(F) is a conservative extension of KP (i.e., the provability of formulas without F
does not change in both systems).

® Axiom (F) is nothing but a definition. Strictly, its conservation is derived from the
completeness theorem of first-order logic.

® Note that F is a second-order (meta-mathematical) object, called “class” or
“functional”, and so its existence cannot be argued in KP.

® |t is easy to see that F(Z) =y is Ay .
® From the axiom (F), it is ;.

® Furthermore, F is I1; since F(&) # y < Jz(p(Z, 2) A 2 # y).
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1 operator Let F be a X5 operater. The following sets exist in KP: for any set w,
Flu:={(z,F(z)):z€u}, Fu:={F(z):z€u}

Proof

® By X;-Coll, there exists v such that Va € uJy € vF(z) =y, and thus F[u C u X v.
Since F is Ay, F[u exists by A;-Sep.

® Similarly, the existence of F“u = {y € v : Iz €uF(x) = y} follows from A;-Sep. O
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Let G be a X operater. There exists a ¥; operater F such that
KP+F(z) = G(z,{(y,F(y)) : y € z}).

337 recursion

Proof.
® First, we define a relation ®(f) as follows.

®(f) = "f is a function” A “dom(f) is transitive” AVz € dom(f)(f(x) = G(z, fx)).

Here ®(f) roughly means that f is a function F [dom/f.

“f is a function” is expressed as V(z,y1) € f V(z,y2) € f (y1 = y2), which is Ag.

® “dom(f) is transitive” is Vyedom(f) Vzey (2 € dom(f)), which is also Ay.

Since G is a Xy operater, Vo € dom(f)(f(z) = G(z, f [x)) is Ay.

Thus, ®(f) is also A;.
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Then, F(x) = y can be expressed by the following 3, formula U.
U(x,y) =3I (@(F) A flz,y))
To show that F is a X, operater, we need to prove KP + Vaz3ly U(x,y)

First, we prove Vz3y¥(z,y) by way of contradiction. Assume that x exists such that
~Jy¥(z,y).

Then, if we choose a €-minimal such x by the axiom of foundation, we get
Vo' € x3yP (2, y), ie.,

Vo' ex3f(P(f) Az’ € dom(f)).
Then, by ¥1-Coll, there exists v such that

Vo' € z3f € v(®(f) Ax’ € dom(f)).
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Now, let w = {f € v|®(f)} by A1-Sep. And let u = |Jw, by the axiom of union.

We can show that w is a function. Otherwise, there exists f1, fo such that
D(f1), ®(f2) and there is z € dom(f1) Ndom(f2), f1(2) # fa(2).

By the axiom of foundation, we choose a €-minimal such z. But then,
fi(z) = Gz, f1[z) = G(z, f2 [ z) = f2(z) from the definition of ®(f), which
contradicts our assumption.

Then we have ®(u).

In addition, if ' = wU {(z,G(z,u]z))}, then ®(v') and z € dom(u'), and so
JyU(x,y), which contradicts the choice of x.

Finally, KP F Vz3lyW¥(z,y) can be shown in the same way that we proved that u is a
function as above.

So F is a ¥ operater. O
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® There are many applications of 31 recursion. Let's look at a simple example.

Definition (Transitive closure)

For any set z, its transitive closure TC(z) is defined as follows.

TC(z) := z U U{TC(y) (Y € x}

e TC(x) is well-defined as a X operator.
® The property that z is transitive, denoted as Tran(x), is defined by
Yy € aVz € y(z € x).

Then, TC(x) is the smallest transitive set containing x.
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Definition (Ordinal)

Define a Ag predicate Ord(x) that expresses that « is an ordinal as follows.

Ord(z) = Tran(z) A Vy € x Tran(y)
o In addition, the relation a < 3 on the ordinals is defined as a € §.

The following facts can be easily shown in KP.
e 0 = & is the smallest ordinal.

e The successor order o + 1 of ordinal a is U {a}. In particular, the finite ordinal
n+1is{0,1,...,n}.

e Each element of an ordinal is an ordinal.
e For a set of ordinals x, Uz = supx is an ordinal.
e < on an ordinal is a total (linear) order.
By X;-recursion, we can introduces various operaters on ordinals. E.g., the addition +:
a+fB=aUsup{(a+v)+1:v <8}
16 / 20
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Homework

For ordinal addition +, show a + (8 +7) = (a+ ) + 7.

Ordinals

® The smallest infinite ordinal is the set of all finite ordinals, written as w, whose
existence requires a system KPw containing the axiom of infinity.

® If we regard finite ordinals as natural numbers, w and N are the same.

® In KPw, arithmetical quantifiers can be treated quantifiers bounded by w (e.g.,
Vn €w), and so the arithmetical hierarchy has little effect on the set-theoretic
hierarchy.

17 /20



Logic and
Computation

K. Tanaka

Ordinals

Now we overview the ordinal numbers after w.

The successor of w is w + 1 = w U {w}, and its successor is (w+ 1) +1 =w + 2.

After that, there are infinite ordinals such as w + 3, w + 4, ... with the same order
type as w, and their limit is denoted by w + w or w - 2.

The next similar limit ordinal is w + w 4+ w (w - 3), then w + w + w + w (w - 4), etc.
1

Let w? be the limit after arranging the
limit numbers like this. This is the next
ordinal of w closed under addition + . ?
Similarly, let w? be the third ordinal
closed with +, then w*, w®, ..., and so
on. Let those limit be denoted by w*,

which is also closed under addition + .

In general, let w® be the a-th ordinal
closed under addition + .°

Wz, y<w?(z+y < w?) or Vo <w?(z +w? = w?).
b0 =1 is considered the first (0-th) such ordinal.

2
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® Then, we can also consider an ordinal « closed under w®, which is called a € number.'

® The first € number is called 3. An ordinal o smaller than £y can be expressed

ordinae uniquely as follows

a=w +w*? 4+ w"( However g > a3 > ag > -+ > ayy > 0),
which is called the Cantor normal form.

® Although ¢¢ looks very large, the admissible ordinals that we will deal with later are
much larger and are closed under all recursive functions.

'An € number satisfies w® = ¢.
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