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e ¢ Part 4. Formal arithmetic and Godel’s incompleteness theorems
¢ Part 5. Automata on infinite objects

® Part 6. Recursion-theoretic hierarchies
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® May 18, (1) KP set theory |
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® May 25, (3) « recursion theory
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® Jun. 1, (5) Recursively large ordinals Il
® Jun. 6, (6) Second-order arithmetic and reverse mathematics
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Recap

® T C %w is said to be a tree if it is closed under initial segment, i.e.
VseTVtitCs—teT).

e A path P through T is a subtree with no branching, i.e., Vs,t € P(t C sV s C t).
® We consider a partial order < on “w, defined by t < s < s Ct. Then, in a tree, an
infinite path @ = sg C s1 C sy C --- is an infinite descending sequence. A tree with
no infinite paths is said to be well-founded.
Theorem

A tree T is well-founded <= there exists an ordinal number o and a function
f:T — o+ 1 such that f is order-preserving (s Ct <t < s < f(t) < f(s)).

® Such an order-preserving function f is denoted as f : T' 2Py +lor T ENg + 1.

® The height of T is the smallest ordinal number ¢ such that there exists
f:T 22 0 4+ 1, represented by ||T].
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1S]] < [IT]] is X3
If T is a well-founded tree, then {S :||S|| < ||T||} is A}

Recap

® Atree T C “(%w) consisting of a finite sequence of ordered pairs of natural numbers is
called a tree of pairs.

® |t can also be viewed as a set of pairs of sequences s,t of the same length.
® Define the set of paths in a tree T of pairs

[T] = {(&,m) € *(“w) : Ym(& [m,n[m) € T}.
Corollary
For any X1 formula (&) there exists a primitive recursive pair-tree T" such that

o(&) & T¢ ¢ WF,

where T := {t € “w : (¢ leng(t),t) € T}.
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Kondo's theorem
The final topic in this part is Kondo's theorem (1938). This result was appreciated by von
Neumann and Godel in their personal correspondence.

Kondo's original proof was very difficult, but Addison used Kleene's hierarchy to
reformulate the statement and gave a concise proof.
Theorem (Addison’s uniformization theorem)

If AC “w x “wis a II} relation, then there exists a [T function F' C A with the same
domain, i.e., InA(§,n) <> £ € domF'. Such an F' is said to unifomize A.
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Proof(1/3).
® Let A C “w x “w be a I} relation. Then there exists a computable tree T such that

(&n) € A YyIn(€ln,nin,yIn) ¢ T < TS" € WF.
® For finite sequences s,t, € "w, we define the following finite tree
T := {u < n: (s|leng(u),t[leng(u),u) € T}.

We here note that a finite sequence wu is identified with its natural number code. We
may assume that leng(u) < u(< n), and so s[leng(u) and t[leng(u) are well-defined.

® Then the following are obvious.

TET A = TEfann’ T — U én,min

n<w
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Proof(2/3).
® Next, we define a relation R(s,t,v) which holds iff there exists n s.t. s,t € "w and

v € "(wPK) is an order-preserving function on 7% and takes value 0 on the outside.

So far, we do not claim that R(s,t,v) is recursive, since it includes w{¥.

Now we have

EneA & TS"eWF & 3f 76 22y ) OK
~ 3fvnfn . T 2By OK

< 3fvnREIn,nln, fn).

® Fix a £ and suppose that R¢ has multiple paths (1,7), i.e., VnR(& [n,n[n,v[n).

® The key point of the proof is how to select n = F(£) such that (¢,7) € A. We first
select the leftmost path 79 such that R¢(1j9,7) for some 7. Then, select the leftmost
path g such that R¢(ng, o). Noticing that 7 is still the leftmost path 1 such that
R&(n,70), we can show F is II}.

® Thus, I uniformizes A.
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Proof(3/3).
® Next we show F is IT{. Assume F(£) = 1. Since (&,7) € A, a function
fTén 22y (CK exists. Without loss of generality, we may assume

flu) = || TS| if ue T,
fu) = ||T5n\| =0, otherwise.
® Then fis Al in &, 7, and it is the leftmost such that R(&,n, f).
® Finally, the selection of the leftmost path 7 is expressed as follows:

F&)=n & T e WFA

v'vn{[ntn = ' In Ak < nl|TE"|) = || T8 |

= [n(n) </ (n) V (n(n) =1 (n) AT < TSN

Corollary (Kondo)

A TI7 set A C “w X “w can be uniformized (by a II{ function ).
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For two X} sets A and B that AN B = & in Baire spaces, show that there exists a A}
set C that separates them, ie., ACCABNC =g.

Recap

Homework

(1) Show that there is a ¥} set that cannot be uniformized.
(2) Show that the X3 set can be uniformized (by the ¥} function).

Further Reading

® H. Rogers, Theory of Recursive Functions and Effective Computability, The MIT
Press, 5th edition, 1987
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@ X reflection
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Introduction e KP set theory, introduced by Kripke and Platek, is a generalization of

Kreisel and Sacks' recursion theory on w$¥ (meta-recursion theory).

® |t is an extension to the theory of computational structures or
constructive properties on arbitrary ordinals and sets.

® The sets subject to the theory are called admissible sets, and the KP
set theory that describes the world is obtained from the well-known
Zermelo-Frenkel set theory (ZF set theory) by removing non-constructive R, Platek
axioms. .

® |n other words, KP removes the axiom of infinity and power set axioms
from ZF, and further restricts the separation axiom schema and -
replacement axiom schema to logical expressions whose quantifiers are G Kreisel
bounded. 3

® Without the axiom of infinity, we can only guarantee the existence of a @
finite set, so KPw with an axiom of infinity is often used.

G.E. Sacks
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Competation To state precisely the axioms of KP set theory, we first define a hierarchy of

K. Tanaka formulas in set theory. Both KP and ZF are first-order theories in the language
consisting only of relational symbol €, and various set concepts are introduced
by definition.
Lévi hierarchy A set theory hierarchy, called the Lévi hierarchy, is introduced by imitating L
Azriel Lévy

the arithmetic hierarchy.
Since the same symbols ¥,, and II,, are used for both the hierarchies, we will always use

0 and II? for the arithmetic hierarchy from now on.
Definition (Lévy hierarchy)

® Yo(=1Ip = Ap) formula: all quantifiers are bounded, i.e., 3z € y,Va € y.

® A 3,41 formula is in the form of Jz¢ with ¢ a II,, formula. A II,, 11 formula is in the
form of Vap with ¢ a ¥,, formula.

e A A, formula is a II,, formula that is equivalent to X,, or a 3J,, formula that is
equivalent to a II,, formula.

iSet theory also handles second-order hierarchy =1 or II}, sometimes. In such a case, Levy's hierarchy
may be expressed as 0 or T19.
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Definition
For a set I' of formulas, the axioms of I'-separation and I'-collection are defined as
follows.

I-Sep: VedyVz(z €y <+ z €z Ap(z)) for any ¢(z) € T

I-Coll : Vax(VyexIzp(z) — JuVyeaxIzcup(z)) for any p(z) €T

® The axiom of I'-separation asserts the existence of set y = {z € z : ¢(2)}. From this,

it is easy to see that for any set a, b, there exists an intersection of them
anNb={z €a:xe€b}

® The axiom of I'-collection can be regarded as a weak version of the axiom of

replacement, but it is often treated as a kind of reflection principle, which will be

discussed later.
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KP is a first-order theory of the language with only relational symbols €, and consists of
the following axioms.

- KP := axiom of extensionality : Vz(z€zx <+ z€y) 2 z=y
+ axiom of pairing : VaVy3dz(z € z Ay € 2)

+ axiom of union : VYwIVaVy(x e yAy € w — x € 2)

+ axiom of empty set : JyVa(xz & y)

+ Ap-Sep + Ap-Coll

+ axiom of foundation : Vz[Vyez p(y) — ¢(z)] = Yap(z).

KPw := KP +axiom of infinity : Jx{0 € z AVy € z(y U {y} € z)}.

14 /19



Computation

KP

Logic and

K. Tanaka

The axiom of pairing asserts the existence of a set z such that {z,y} C z. Then, by
using Ag-Sep, there exists

pair{z,y} :={wecz:w=2Vw=y}
The uniqueness of this set follows from the axiom of extensionality.

The axiom of union asserts that there exists a set z such that
Uw:={z:Jylrcyrycw)} C =z
Using Ap-Sep and the axiom of extensionality, union Uw uniquely exists.

ZF is KPw + power set Va32Vy(y C x — y € z) + axiom of unrestricted separation
and collection (or replacement).

For ZF, the axiom of regularity: © # @ — Jy € x(y N« = &) is often used instead of
the axiom of foundation. Note that the axiom of regularity is equivalent to the axiom
of foundation for quantifier-free (), but also equivalent to the unrestricted
foundation with help of the unrestricted separation.
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“The X formulas are closed under bounded quantifiers” is provable in KP. The consecutive
unbounded quantifiers in front of a ¥; formula (a TI; formula) can be combined into one.

3 reflection Proof.

® The essential step in the first half is
Ve eydzp < JuVzeyIzcup (p € Ay),
which is obvious from Ag-Coll.

® For the second half, we can use the axiom of pairing to combine the consecutive
unbounded quatifiers of the same kind into one as follows

JxIyp < Judr euldy € up.
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® Lemma (1) shows that in KP, the classes ¥ and ¥, are essentially the same. One of
Platek’s original axioms of KP is X reflection principle, stating that any X formula ¢
is equivalent to a special ¥; formula Jup®, where " is obtained from ¢ by replacing
all unbounded quantifiers 3z, Vo with 3z € u and Vx €u, respectively.

3 reflection

® Also, ¢" is often denoted as u |= ¢, though free variables of ¢ may not be evaluated
by elements of w.
Theorem (3 reflection principle)

KP F ¢ < Jup™ for any ¢ € X.

® First, note that for a X formula ¢, KP proves ¢* A u C v — ¢”. This can be shown
by induction on the construction of formulas. Since only the difference between ¢
and " is that dx € w in " is changed to dx € v in ¢". Obviously, the key induction
step Jdz € ub* Au C v — Jz € v0Y holds.
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® By induction on the construction of formula .

® \We may consider the following induction steps.
® The case ¢ = Yz eyy:
By the induction hypothesis ¢ <> Jvyp*, so
@ & Veeydvy? & JwVr eyvewy? holds in KP.
Let u = Uw. v € w means v C u. So JwVx € yFv cwy? — JuVr Eyyp™.
On the other hand, JuVz € yy* — Va € yFuy® is obvious, so ¢ < Jup™.

3 reflection

® The case ¢ = Jdz:
By the induction hypothesis, ¥ +» Jvy?, so if we set u=v U {x},
Jxyp — Judzr € urp™.
Conversely, Judx € uyp* — JxJFuyp™ — Jx1). 0
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Thank you for your attention!
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