K. Tanaka

[Recap](#page-2-0)

[Linear orders and](#page-5-0) well-orders

[Kleene's](#page-16-0) O

Logic and Computation II Part 6. Recursion-theoretic hierarchies

Kazuyuki Tanaka

BIMSA

May 18, 2023

19

 B OQC

メロメメ 倒 メメ きょくきょう

K. Tanaka

[Recap](#page-2-0)

[Linear orders and](#page-5-0)

[Kleene's](#page-16-0) O

Logic and Computation II -

• Part 4. Formal arithmetic and Gödel's incompleteness theorems

✒ ✑

- Part 5. Automata on infinite objects
- Part 6. Recursion-theoretic hierarchies
- Part 7. Admissible ordinals and second order arithmetic

Part 4. Schedule

- Apr.25, (1) Oracle computation and relativization
- Apr.27, (2) m-reducibility and simple sets
- May 4, (3) T-reducibility and Post's problem
- May 9, (4) Arithmetical hierarchy and polynomial-time hierarchy
- May 11, (5) Analytical hierarchy and descriptive set theory I
- May 16, (6) Analytical hierarchy and descriptive set theory II

 \overline{AB} \rightarrow \overline{B} \rightarrow \overline{B} \rightarrow \overline{B} \rightarrow \overline{BA} $2/19$

K. Tanaka

[Recap](#page-2-0)

- [Linear orders and](#page-5-0)
- [Kleene's](#page-16-0) O

Recap

3 / 19

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익단

- • We identify a natural number n with the set $\{0, 1, \ldots, n-1\}$, and denote the set of natural numbers by $\omega = \{0, 1, \dots\}$. By X, Y, \dots , we will usually denote subsets of ω .
- Let XY denote the set of functions from X to Y, read as "Y-pre-X".
- Moreover, we define

$$
{}^{\underline{\omega}}X:=X^{<\omega}=\bigcup_{n\in\omega}{}^nX.
$$

- For $\xi \in {}^{\omega}X$ or $\xi \in {}^nX(n \ge m)$, a sequence $(\xi(0), \xi(1), \ldots, \xi(m-1))$, denoted $\xi \upharpoonright m$ or $\xi[m]$, is called an **initial segment** of ξ (with length m).
- For $s \in \omega$, let $[s] = \{ \xi \in \omega : s \in \xi \}$. $\{ [s] : s \in \omega \}$ is an open base of the Baire space $^{\omega}\omega$.
- A set $G\subset {}^\omega\omega$ is **open** if there exists some $A\subset {}^\omega\omega$ such that $G=\bigcup_{s\in A}[s].$
- The complement of an open set is called **closed**.

K. Tanaka

[Recap](#page-2-0)

[Linear orders and](#page-5-0)

[Kleene's](#page-16-0) O

- We say that a set $G \subset \omega \omega$ is $\Sigma_1^0(\xi)$ if there exists a ξ -CE set A s.t. $G = \bigcup_{s \in A}[s]$, or equivalently there exists a Σ^0_1 formula φ s.t. $G = \{ \eta \in \omega \omega : \varphi(\eta, \xi) \}.$
- The class $\mathcal G$ of open sets coincides with $\bigcup_\xi \Sigma_1^0(\xi)$, which is denoted as $\mathbf{\Sigma}_1^0$ or \mathbb{Z}_1^0 .
- A set $F\subset\mathbb{C}^\omega\omega$ is $\Pi^0_1(\xi)$ if its complement is $\Sigma^0_1(\xi).$ The class of closed sets $\mathcal{F} = \bigcup_{\xi} \Pi_1^0(\xi)$ is denoted as Π_1^0 or Π_2^0 .
- Also, the class of countable unions of closed sets $\mathcal{F}_{\sigma} = \bigcup_{\xi} \Sigma^0_2(\xi)$ is Σ^0_2 or Σ^0_2 .
- An analytic set is obtained as a projection of a a closed set, the class of such sets $\mathcal{A} = \bigcup_{\xi} \Sigma_1^1(\xi)$ is denoted as $\mathbf{\Sigma}_1^1$ or \mathbb{Z}_1^1 .
- The class of **co-analytic set** $CA = \bigcup_{\xi} \Pi_1^1(\xi)$ is denoted as $\mathbf{\Pi}_1^1$ or \coprod_1^1 .
- The class of projections of co-analytic set is ${\cal PCA}=\bigcup_\xi \Sigma^1_2(\xi)$ is written as $\mathbf{\Sigma}^1_2$ or \mathbb{S}^1_2 .
- The finite hierarchy of such **projective sets** corresponds with the analytical hierarchy (with arbitrary oracles).

4 / 19

KO KA KO KE KE KE KA KA KA KA KA KA KA A

K. Tanaka

[Recap](#page-2-0)

[Linear orders and](#page-5-0) well-orders

[Kleene's](#page-16-0) O

1 [Recap](#page-2-0)

2 [Linear orders and well-orders](#page-5-0)

Today's topics

K. Tanaka

[Recap](#page-2-0)

[Linear orders and](#page-5-0) well-orders

[Kleene's](#page-16-0) O

• A pair (m, n) is identified with its code $\frac{(m+n)(m+n+1)}{2} + m$. We say that $\xi(\in \omega_\omega)$ is a linear order (abbreviated as LO) if

 $\{(m, n): \xi(m, n) > 1\}$ is a linear ordering on N.

We denote $\xi(m, n) \geq 1$ by $m \leq_{\xi} n$ or simply $m \leq n$.

• A linear order with no infinite descending sequence is called a **well-order** (abbreviated as WO). By using \leq , we rewrite it as

 $\text{WO}(\leq) \Leftrightarrow \text{LO}(\leq) \wedge \forall \eta \exists n (\eta(n) \leq \eta(n+1)).$

Note that this expression is $\Pi^1_1.$

• A finite sequence $s = (s_0, s_1, \ldots, s_{n-1}) \in \mathcal{L} \omega$ can also be identified with a code. Then, the concatenation of two sequences $s * t$ is a binary operation of natural numbers. A relation $t \text{ ⊂ } s$, defined by $\exists u(t * u = s)$, represents "t is an initial segment of s ".

 $6/19$

KO KARA KEK (EK) EL VOQO

K. Tanaka

[Recap](#page-2-0)

[Linear orders and](#page-5-0) well-orders

[Kleene's](#page-16-0) O

• $T \subset \mathcal{Z} \omega$ is said to be a tree if it is closed under initial segment, i.e.

 $\forall s \in T \; \forall t (t \subset s \rightarrow t \in T)$

- A path P through T is a subtree with no branching, i.e., $\forall s, t \in P(t \subset s \vee s \subset t)$.
- We consider a partial order \leq on $\mathcal{L} \omega$, defined by $t \leq s \Leftrightarrow s \subseteq t$. Then, in a tree, an infinite path $\emptyset = s_0 \subset s_1 \subset s_2 \subset \cdots$ is an infinite descending sequence. So, a tree with no infinite paths is said to be well-founded.
- $\bullet\,$ The well-foundedness of a tree T can be expressed by the following Π^1_1 formula,

 $WF(T) \Leftrightarrow \neg \exists f \forall n (f(n) \in T \land f(n) \subset f(n+1))$

- In a tree T, a node $s^{\wedge}k = s * (k) \in T$ is called a **child** of s.
- A tree T is said to be **finitely branching** if every $s \in T$ has only finitely many children.
- For $s \in T$, the subtree rooted at s is written as $T_s = \{t : s * t \in T\}$.

Theorem (König's lemma)

Any finitely branching infinite tree T has an infinite path.

K. Tanaka

[Recap](#page-2-0)

[Linear orders and](#page-5-0) well-orders

[Kleene's](#page-16-0) O

Recap: Ordinals and well-founded trees

• Ordinals can be considered as an extension of the natural numbers to enumarate infinite sets. The natural numbers (the finite ordinals) are defined as:

 $0 := \emptyset$, $1 := \{0\}$, $2 := \{0, 1\}$, ..., in general, $n + 1 := n \cup \{n\}$.

- Any ordinal σ is the set of ordinals less than σ . So, \lt on the ordinals is expressed as \in .
- An ordinal $\sigma + 1$ (the **successor** of σ) is defined as $\{0, 1, \ldots, \sigma\}$. An ordinal which is not a successor is called a limit ordinal.
- The first limit ordinal (except for 0) is the set of finite ordinals, denoted ω or ω_0 . The second limit ordinal is the limit of $\omega + n$, denoted $\omega + \omega = \omega \cdot 2$. After that, come $\omega\cdot 3$, ..., $\omega\cdot \omega = \omega^2$, ω^3 , ..., ω^ω , etc.

Theorem

A tree T is well-founded \iff there exists an ordinal number σ and a function $f: T \to \sigma + 1$ such that f is order-preserving $(s \subsetneq t \Leftrightarrow t < s \Leftrightarrow f(t) < f(s))$.

Such an [o](#page-8-0)[r](#page-4-0)der-preserving function f is denoted as $f:T \xrightarrow[]{0. \mathrm{p}} \sigma+1$ $f:T \xrightarrow[]{0. \mathrm{p}} \sigma+1$ $f:T \xrightarrow[]{0. \mathrm{p}} \sigma+1$ or $T \xrightarrow[]{f} \sigma+1.$ $T \xrightarrow[]{f} \sigma+1.$

 $\mathcal{O}(\mathcal{O})$ of the 1 state $\mathcal{O}(\mathcal{O})$ and $\mathcal{O}(\mathcal{O})$ and $\mathcal{O}(\mathcal{O})$ of the 1,1.1, or $\mathcal{O}(\mathcal{O})$

(⇒) 結論を否定して,T がパス ∅ = s⁰ ⊂ s¹ ⊂ ··· をもつことを帰納的 に示す.仮定から,T[∅] は順序保存関数をもたない.そして,T^s が順序保存関

ことに、f : T o.p. → のに対して、f o.p. → のことに の順序数 σ を T の**高さ** (height) といい,T で表す.T が再帰的な整礎木の

K. Tanaka

Recap

[Linear orders and](#page-5-0) Emean orders and
well-orders

Kleene's O

であるから,順序保存関数 f に対して

Ex. Tanaka ∴ Definition t ⇔ t<s ⇔ f(t) < f(s)).

- **The height** of T is the smallest ordinal number σ such that there exists $f:T \xrightarrow[]{\text{o.p.}} \sigma+1$, **Expresented by** $||T||$ **.**
	- **•** If T is a recursive well-founded tree, $||T||$ is said to be computable.
- **•** In addition, set $||T|| = -1$ when T is empty, and $\mathsf{S} = \mathsf{S} \mathsf{S} = \mathsf{S} \mathsf{S} \mathsf{S} = \mathsf{S} \$

9 / 19

 \sim Example \sim Example \sim \sim . The contract of the contract in the contract of the contract in the contract of the contract in the contract of the co o.p. −−→

^o.p. −−→ ^σ となって仮定に反する. □

Right-hand-ride is a typical well-founded tree T. **Each vertex has an order-preserving ordinal, and** its height $||T||$ is shown on the right side.

K. Tanaka

[Recap](#page-2-0)

[Linear orders and](#page-5-0) well-orders

[Kleene's](#page-16-0) O

If f is an order-preserving function of a tree T, then $f_s(t) = f(s * t)$ is an order-preserving function of subtree $T_s = \{t : s * t \in T\}$, and $f(s) = f_s(\varepsilon) > ||T_s||$.

Theorem

For any T, $||T|| = \sup_{s \neq \varepsilon} (||T_s|| + 1)$.

Proof.

- If T is not well-founded, then both sides are $+\infty$. Therefore, we assume T is well-founded, and suppose $\sigma = ||T||$ and $f : T \xrightarrow{\text{o.p.}} \sigma + 1$.
- If $s \neq \varepsilon$, then $||T_s|| \leq f(s) < f(\varepsilon) = ||T||$. So, $\sup(||T_s|| + 1) < ||T||$.
- Suppose $\sigma = \sup(||T_s|| + 1) < ||T||$.
- We define a function $h: T \to \sigma + 1$ as

$$
h(s) = \begin{cases} ||T_s|| & \text{if } s \neq \varepsilon \\ \sigma & \text{if } s = \varepsilon. \end{cases}
$$

- Then h is order-preserving, and so $||T|| \leq \sigma$, which is a contradiction.
- \bullet Hence, $||T|| = \sigma$.

K. Tanaka

[Recap](#page-2-0)

[Linear orders and](#page-5-0) well-orders

[Kleene's](#page-16-0) O

Theorem

Let S, T be trees. $||S|| \le ||T|| \Leftrightarrow$ there exists an order-preserving function f from S to T.

Proof.

 (\Leftarrow) It is clear when $||T||=\infty.$ When $||T||<\infty,$ there exists h such that $T\stackrel{h}{\rightarrow}||T||+1.$ Moreover, by $S\stackrel{f}{\to}T$, we have $h\circ f:S\stackrel{\text{o.p.}}{\longrightarrow}||T||+1$, which implies $||S||\leq ||T||.$

 (\Rightarrow) First, consider the case $||T|| = \infty$. Then, let $s_0 \subset s_1 \subset \cdots = \xi$ be an infinite path through T. We enumerate the elements of \mathfrak{S}_2 as $\{b_i\}$ such that the length of $b_i <$ the length of b_i if $i < j$. Then, define a function $h: \mathcal{L}_2 \to \{s_i\}$ by $h(b_i) = s_i$ for all i. Obviously, $h: \mathcal{L}_2 \to \{s_i\}$ is an order-preserving from \mathcal{L}_2 to T. We also define an order-preserving injection $q : \mathcal{L}\omega \to \mathcal{L}2$ as, for instance,

Then, $h\circ g: {}^\omega\omega\stackrel{g}{\rightarrow} {}^\omega2\stackrel{h}{\rightarrow} T$ is also order-preserving, and so $f=h\circ g$ is an order-preserving function f from S to T .. K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q Q ·

K. Tanaka

[Recap](#page-2-0)

[Linear orders and](#page-5-0) well-orders

[Kleene's](#page-16-0) O

- Next suppose $||T|| < \infty$. We will prove by induction on $||S||$.
	- When $||S|| = 0$, S is a singleton set, and then any function from S to T is order-preserving.
	- Assume $||S|| > 0$. Then, for each $(n) \in S$, $||S_n|| < ||S|| \le ||T|| = \sup_{t \ne \varepsilon} (||T_t|| + 1)$.
		- Then, for each $(n) \in S$, take t_n such that $||S_n|| \le ||T_{t_n}||$.
		- By the induction hypothesis, there exists a $f_n: S_n \to T_{t_n}.$
		- Then, we define a function f as follows

$$
f(s) = \begin{cases} \varepsilon & \text{if } s = \varepsilon \\ t_n * f_n(t) & \text{if } s = n^\wedge t \in S. \end{cases}
$$

12 / 19

KOD KAD KED KED E VOOR

• Thus f is an order-preserving function from S to T .

K. Tanaka

[Recap](#page-2-0)

[Linear orders and](#page-5-0) well-orders

[Kleene's](#page-16-0) O

Corollary "||S|| \leq ||T||" is Σ_1^1 .

Proof. We can easily see that $A=\{(\xi,\eta):\xi,\eta$ are codes of S,T respectively, and $||S||\leq ||T||\}$ is Σ^1_1 , since $(\xi, \eta) \in A \Leftrightarrow \exists f \forall s, t(\xi(s) \cdot \xi(t)) > 1 \wedge s \subset t$ \rightarrow $n(f(s)) \cdot n(f(t)) > 1 \wedge f(s) \subset f(t)$.

Note that variables s, t are treated as number variables, and f as a function variable.

Corollary

If T is a well-founded tree, then $\{S:||S||\leq ||T||\}$ is $\Delta^1_1.$

Proof. Assume T is a well-founded tree. Then

$$
||S|| \nleq ||T|| \Leftrightarrow ||T|| < ||S|| \Leftrightarrow \underbrace{\exists n \ ||T|| \leq ||S_n||}_{\Sigma_1^1}
$$

So " $||S||\leq ||T||$ " is $\Delta^1_1.$ Note that if we allow $||T||=\infty,$ the rightmost formula does not imply the middle formula. \Box

K. Tanaka

[Recap](#page-2-0)

[Linear orders and](#page-5-0) well-orders

[Kleene's](#page-16-0) O

- $\bullet\,$ A tree $T\subset {}^{\omega}(^2\omega)$ consisting of a finite sequence of ordered pairs of natural numbers is called a tree of pairs.
- It can also be viewed as a set of pairs of sequences s, t of the same length.
- Define the set of paths in a tree T of pairs

 $[T] := \{(\xi, \eta) \in {}^2({}^\omega \omega) : \forall m(\xi \upharpoonright m, \eta \upharpoonright m) \in T\}.$

Theorem (Recall: Normal form theorem for analytical formulas, Lecture04-06)

For each $i\geq 1$, for any Σ^1_i formula (or Π^1_i formula), there exists an equivalent ${\rm Inc}\text{-}\Sigma^1_i$ formula (or ${\rm Inc-}\Pi^1_i$ formula) whose arithmetical part is Σ^0_1 or $\Pi^0_1.$

• So, let $\varphi(\xi)$ be any Σ^1_1 formula of the normal form $\exists \eta \forall k R(e,\xi \restriction k, \eta \restriction k)$ $(R$ is primitive recursive). We put

$$
T_e = \{(s,t): \text{leng}(s) = \text{leng}(t) \land R(e,s,t)\}
$$

where leng(x) denotes the length of x, and T_e can be viewed as the e-th tree of pairs.

• Finally, $\varphi(\xi)$ can be expressed as

 $\varphi(\xi) \leftrightarrow \exists \eta \ (\xi, \eta) \in [T_e].$ $14 / 19$

K. Tanaka

[Recap](#page-2-0)

[Linear orders and](#page-5-0) well-orders

[Kleene's](#page-16-0) O

Corollary (1)

For any Σ^1_1 formula $\varphi(\xi)$ there exists a primitive recursive pair tree T_e such that $\varphi(\xi) \Leftrightarrow T_e^{\xi} \notin \text{WF},$

where $T_e^{\xi} := \{ t \in \omega : (\xi \upharpoonright \text{leng}(t), t) \in T_e \}.$

Corollary (2)

WF is Π^1_1 , but not Σ^1_1 .

Proof. The first half is clear from Corollary (1). To show the second half, assume for the contrary that WF be \sum_{1}^{1} . Then there exists a Σ_1^1 formula $\varphi(\xi,\eta)$ and an oracle γ such that $\varphi(\xi,e^\wedge\gamma)\Leftrightarrow T_e^\xi\in\mathrm{WF}$ for all e and $\xi.$ Again by Corollary (1), there exists some d such that $\varphi(\xi,\xi) \Leftrightarrow T_d^\xi \not\in \text{WF.}$ Since $T_d^\xi\not\in \text{WF} \Leftrightarrow \neg \varphi(\xi,d^\wedge\gamma)$, letting $\xi=d^\wedge\gamma$, we reaches a contradiction. $\hfill\Box$

15 / 19

KORK EXTERNS ORA

K. Tanaka

[Recap](#page-2-0)

[Linear orders and](#page-5-0) well-orders

[Kleene's](#page-16-0) O

For an ordinal σ , let $WF_{\sigma} \equiv \{T : ||T|| \leq \sigma\}.$

Theorem $(\Sigma_1^1$ boundedness theorem)

If A is a Σ^1_1 subset of WF, then there exists a $\sigma(<\omega^{\rm CK}_1)$ such that $A\subset {\rm WF}_{\sigma}.$

The ordinal $\omega_{1}^{\text{CK}}(\text{read as "omega-1 Church Kleene")$ is the upper bound of recursive ordinal numbers, i.e., the smallest non-recursive (countable) ordinals.

Proof. Let A be a Σ^1_1 subset of WF. By way of contradiction, assume $\forall \sigma < \omega_1^{\text{CK}} \exists S \in A (||S|| \geq \sigma)$. Then,

 $T \in \text{WF} \Leftrightarrow \exists S[S \in A \wedge ||S|| \ge ||T||].$

□

16 / 19

KO KARA KEK (EK) EL VOQO

So WF is Σ^1_1 , which contradicts Corollary (2).

K. Tanaka

[Recap](#page-2-0)

[Linear orders and](#page-5-0)

[Kleene's](#page-16-0) O

Kleene's \varnothing

- \bullet So far, we have treated countable ordinals $(<\omega_{1}^{\text{CK}})$ in terms of recursive well-founded trees. There is another way to express them as natural numbers. Here, we will introduce Kleene's notation system O.
- Kleene's system consists of set $\mathcal O$ of natural numbers and a binary relation $\langle \gamma \rangle$ on it. Then, $(0, \leq_{\Omega})$ is the minimal transitive set satisfying
	- (1) 1 $\in \mathcal{O}$
	- (2) If $y \in \mathcal{O}$, then $y <_{\mathcal{O}} 2^y$
	- (3) If a recursive function $\{y\}(n)$ is monotonically increasing with respect to $\langle \phi, \phi \rangle$ then for all $n, \{y\}(n) <_{\mathcal{O}} 3 \cdot 5^y$.
- Then $\mathcal O$ and $<_{\mathcal O}$ are m-complete Π^1_1 sets.
- The ordinal number |a| represented by $a \in \mathcal{O}$ is determined inductively as follows:

$$
|1|=0, \ |2^y|=|y|+1, \ |3\cdot 5^y|=\lim_n |\{y\}(n)|.
$$

• Then, for a recursive well-founded tree T, there exists $y \in \mathcal{O}$ such that $||T|| = |y|$. **KORK EXTERNS ORA** 17 / 19

K. Tanaka

[Recap](#page-2-0)

[Linear orders and](#page-5-0)

[Kleene's](#page-16-0) O

• Kleene used the notation system $\mathcal O$ to extend the arithmetic hierarchy on the set of natural numbers to the transfinite hierarchy. For each $y \in \mathcal{O}$, we define the set H_y of natural numbers as follows:

$$
H_1:=\varnothing,\ H_{2^y}:=H'_y\ \text{(jump)},\ H_{3\cdot 5^y}:=\{(x,n): x\in H_{\{y\}(n)}\}.
$$

- A set of natural numbers that can be computed with H_y ($y \in \mathcal{O}$) as an oracle is called hyperarithmetic.
- Then it can be shown that Hyp, the class of hyperarithmetic sets, coinsides with the class of Δ^1_1 sets (reference [Rog]).
- The hyperarithmetic hierarchy Σ_{α} in the Baire space ω_{α} is defined by relativizing the hierarchy $\{H_y\}$ as follows: $R(\subset^\omega{\omega})$ is $\Sigma_{|y|}$ if there exists some $e\in\omega$ such that

$$
\xi \in R \Leftrightarrow e \in H_y^\xi
$$

18 / 19

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 → 9 Q @

• Even in the Baire space, the class of hyperarithmetic sets coincides with the class of Δ^1_1 sets (see **Souslin-Kleene theorem**, [Rog], page 454). .

K. Tanaka

[Recap](#page-2-0)

[Linear orders and](#page-5-0) well-orders

[Kleene's](#page-16-0) O

Thank you for your attention!

