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¢ Part 4. Formal arithmetic and Godel’s incompleteness theorems
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® Part 6. Recursion-theoretic hierarchies
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-~ Part 4. Schedule

® Apr.25, (1) Oracle computation and relativization
® Apr.27, (2) m-reducibility and simple sets

* May 4, (3)
e May 9, (4) Arithmetical hierarchy and polynomial-time hierarchy

® May 11, (5) Analytical hierarchy and descriptive set theory |
May 16, (6)

T-reducibility and Post’s problem

Analytical hierarchy and descriptive set theory Il
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Recap

® We identify a natural number n with the set {0,1,...,n — 1}, and denote the set of
natural numbers by w = {0,1,...}. By X, Y, ..., we will usually denote subsets of w.

e Let XY denote the set of functions from X to Y, read as “Y-pre-X".

® Moreover, we define
eX =X = J"X

new

® Foré e“X or £ € X (n >m), asequence (£(0),£(1),...,&(m — 1)), denoted £ |m
or £[m], is called an initial segment of £ (with length m).

® Forsc¥w, let [s] ={{ €“w:sC &} {[s]:s€%w}isan open base of the Baire
space “w.

® Aset G C “w is open if there exists some A C “w such that G = [J, 4[s]-

® The complement of an open set is called closed.

3/19



Logic and
Computation

K. Tanaka

Recap

We say that a set G C “w is X9(€) if there exists a ¢-CE set As.t. G =
equivalently there exists a X9 formula p s.t. G = {n € “w: p(n,&)}.

sealsl, or

The class G of open sets coincides with |J, X9(€), which is denoted as 39 or 9.

A set F C “w is TIY(&) if its complement is $9(&). The class of closed sets
F=Uk I19(€) is denoted as II9 or I19.

Also, the class of countable unions of closed sets F, = [J, £9(¢) is £ or X9.

An analytic set is obtained as a projection of a a closed set, the class of such sets
A =J, Zi(€) is denoted as i or 1.

The class of co-analytic set CA = |J, I} (€) is denoted as IT} or IT;.

The class of projections of co-analytic set is PCA = |J, 25(§) is written as 33 or 33.

The finite hierarchy of such projective sets corresponds with the analytical hierarchy
(with arbitrary oracles).
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Linear orders and
well-orders

Kleene's O

@ Recap

@ Linear orders and well-orders

© Kleene's O

Today's topics
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Linear orders and
well-orders

® A pair (m,n) is identified with its code w + m. We say that (€ “w) is a

linear order (abbreviated as LO) if
{(m,n) : £(m,n) > 1} is a linear ordering on N.
We denote £(m,n) > 1 by m <¢ n or simply m < n.

A linear order with no infinite descending sequence is called a well-order (abbreviated
as WO). By using <, we rewrite it as

WO(<) < LO(<) AVnan(n(n) < n(n+1)).
Note that this expression is II}.

A finite sequence s = (Sg, S1,--.,8n—1) € “w can also be identified with a code.
Then, the concatenation of two sequences s x t is a binary operation of natural
numbers. A relation ¢t C s, defined by Ju(t xu = s), represents “t is an initial segment
of s".
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VseTVi(tCs—teT)

Linear orders and

mear orce A path P through T is a subtree with no branching, i.e., Vs,t € P(t C sV s C t).

® We consider a partial order < on “w, defined by t < s < s Ct. Then, in a tree, an
infinite path @ = sg C 81 C so C --- is an infinite descending sequence. So, a tree
with no infinite paths is said to be well-founded.

® The well-foundedness of a tree T can be expressed by the following IT formula,
WEF(T) < —-3fVn(f(n) € T A f(n) C f(n+1))

® In atree T, a node s"k = s« (k) € T is called a child of s.
® A tree T is said to be finitely branching if every s € T has only finitely many children.
® For s € T, the subtree rooted at s is written as Ts = {t : sxt € T'}.

Theorem (Konig's lemma)

Any finitely branching infinite tree 7" has an infinite path.
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Recap: Ordinals and well-founded trees

® QOrdinals can be considered as an extension of the natural numbers to enumarate
infinite sets. The natural numbers (the finite ordinals) are defined as:

0:=w, 1:={0}, 2:={0,1},..., in general, n+ 1 :=nU{n}.

® Any ordinal o is the set of ordinals less than o. So, < on the ordinals is expressed as €.

® An ordinal o 4 1 (the successor of o) is defined as {0,1,...,0}. An ordinal which is
not a successor is called a limit ordinal.

® The first limit ordinal (except for 0) is the set of finite ordinals, denoted w or wy. The

second limit ordinal is the limit of w 4+ n, denoted w + w = w - 2. After that, come

w-3, ..., wrw=w? Wl ..., wY, etc.

Theorem
A tree T is well-founded <= there exists an ordinal number o and a function
f:T — o+ 1 such that f is order-preserving (s Ct <t < s < f(t) < f(s)).
Such an order-preserving function f is denoted as f: T -5 o+ 1 or T ENgS + L
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Definition
® The height of T is the smallest ordinal number o

such that there exists f : T 25 5 41,
represented by ||T||.

e If T is a recursive well-founded tree, ||T'|| is said
to be computable.

® |n addition, set ||T'|| = —1 when T is empty, and
set ||T'|| = oo when T is not well-founded.
Example

Right-hand-ride is a typical well-founded tree T
Each vertex has an order-preserving ordinal, and
its height ||T'|| is shown on the right side.

Tree

height
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If f is an order-preserving function of a tree T', then f,(t) = f(s*t) is an order-preserving
function of subtree Ty = {t: sxt € T}, and f(s) = fs(e) > ||Ts]|-

Theorem

For any T', ||T'|| = sup,_..(||Ts|| + 1).

Proof.
e |f T is not well-founded, then both sides are +oco. Therefore, we assume T is
well-founded, and suppose o = ||T|| and f: T >2% o + 1.

If s # e, then [|Ts|| < f(s) < f(e) = ||T]|. So, sup(||Ts|| + 1) < [|T[|.
® Suppose o = sup(||Ts|| + 1) < [|T]].

We define a function h: T — o+ 1 as

h(s)_{ TS| ifs#e

o if s=e¢.

Then h is order-preserving, and so ||T'|| < o, which is a contradiction.
Hence, ||T|| = o. O
10/19



Logic and

e Theorem

K. Tanaka

Let S, T be trees. ||S|| < ||T|| & there exists an order-preserving function f from S to T.

Linear orders and
well-orders

Proof.
(«<=) It is clear when ||T|| = co. When ||T'|| < oo, there exists h such that T UN |7 + 1.

Moreover, by S LT, we have hof:8 225 ||T|| + 1, which implies ||S]| < ||T|.

(=) First, consider the case ||T'|| = co. Then, let so C s1 C --- = £ be an infinite path
through T. We enumerate the elements of £2 as {b;} such that the length of b; < the
length of b; if ¢ < j. Then, define a function h : 2 — {s;} by h(b;) = s; for all 7.
Obviously, h : ¥2 — {s;} is an order-preserving from ¢2 to T'. We also define an
order-preserving injection g : $w — ¥2 as, for instance,

l m n

—N—  —— ——
(,m,n)— (1,1,...,1,0,1,1,...,1,0,1,1,...,1).

Then, hog:%w 9o wo 7 is also order-preserving, and so f = ho g is an
order-preserving function f from S to 7T'..
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Next suppose ||T|| < co. We will prove by induction on ||S]|.

R ® When ||S|| =0, S is a singleton set, and then any function from S to T is
well-orders order-preserving.

® Assume ||S]| > 0. Then, for each (n) € S, [[Su|| <|[IS|| < ||T[| = sup,..(||T¢[| +1).
® Then, for each (n) € S, take t, such that ||S,|| < ||T%, |-

® By the induction hypothesis, there exists a f,, : S, — 1%, .

® Then, we define a function f as follows
€ ifs=¢
f(s)—{ Lo flt) ifs=nitesS,

® Thus f is an order-preserving function from S to 7T'. O
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Corollary
"SI < IT||" is =i
Proof. We can easily see that
A={(&m): & n are codes of S, T respectively, and ||S|| < ||T||} is £}, since

&n)eA & 3Tfvs,t&(s)-Et)>1AsCt

= n(f(s))-n(f(t)) = 1A f(s) C f(t)).

Note that variables s, ¢ are treated as number variables, and f as a function variable. O
Corollary
If T is a well-founded tree, then {S : ||S|| < ||T|} is Al

Proof. Assume T is a well-founded tree. Then
S| TN < [Tl < [IS]] < 3n (|T] < [|Sn]|
—_—
b

So “||S]| < ||IT||" is Ai. Note that if we allow [|T|| = oo, the rightmost formula does not
imply the middle formula. Ll
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K. Tanaka called a tree of pairs.

® |t can also be viewed as a set of pairs of sequences s,t of the same length.
Linear orders and ® Define the set of paths in a tree T' of pairs

well-orders

[T] := {(&,n) € 2(“w) : Ym(£ [m,n[m) € T}.

Theorem (Recall: Normal form theorem for analytical formulas, Lecture04-06)

For each i > 1, for any X! formula (or IT} formula), there exists an equivalent fnc-3}
formula (or fnc-TI} formula) whose arithmetical part is X9 or T19.

® So, let (&) be any ¥} formula of the normal form InVkR(e, & Tk, k) (R is
primitive recursive). We put

T. = {(s,t) : leng(s) = leng(t) A R(e, s,t)}
where leng(z) denotes the length of z, and T, can be viewed as the e-th tree of pairs.
® Finally, (&) can be expressed as

@(§) < In (&n) € [Te].
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Corollary (1)
For any I formula ¢(€) there exists a primitive recursive pair tree T}, such that
() & T¢ ¢ WF,

where TS = {t € “w : (¢ [leng(t),t) € T.}.

Corollary (2)
WF is IT}, but not ¥1.

Proof. The first half is clear from Corollary (1). To show the second half, assume for the
contrary that WF be g% Then there exists a X1 formula (£,7) and an oracle 7y such that

©(&,eMy) & TS € WF for all e and €.
Again by Corollary (1), there exists some d such that ¢(¢,§) < T§ Z WF. Since
Tf € WF & —p(€,d"y), letting £ = d", we reaches a contradiction. O
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For an ordinal o, let WF, = {T": ||T|| < ¢}.

Theorem (X} boundedness theorem)

If Aisa X} subset of WF, then there exists a o(< w{) such that A ¢ WF,,.

The ordinal w{X (read as “omega-1 Church Kleene”) is the upper bound of recursive
ordinal numbers, i.e., the smallest non-recursive (countable) ordinals.

Proof. Let A be a X1 subset of WF. By way of contradiction, assume
Vo < w38 € A(||S|| > o). Then,

T e WF < 3S[S € AA||S]| > ||T]]].

So WF is 31, which contradicts Corollary (2).
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Kleene's O

So far, we have treated countable ordinals (< w{’¥) in terms of recursive well-founded
trees. There is another way to express them as natural numbers. Here, we will
introduce Kleene's notation system O.

Kleene's system consists of set O of natural numbers and a binary relation <¢ on it.
Then, (O, <) is the minimal transitive set satisfying

(1)1e0O

(2) fy € O, then y <p 2Y

(3) If a recursive function {y}(n) is monotonically increasing with respect to <o,
then for all n, {y}(n) <o 3-5Y.

Then O and < are m-complete I1} sets.

The ordinal number |a| represented by a € O is determined inductively as follows:

[1]=0, 2] = [yl + 1, [3- 57| = Tim [{y}(n)].
Then, for a recursive well-founded tree T', there exists y € O such that ||T|| = |y|.
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Kleene used the notation system O to extend the arithmetic hierarchy on the set of
natural numbers to the transfinite hierarchy. For each y € O, we define the set H,, of
natural numbers as follows:

Hy =9, Hyy := H?/J (jump), Hs.5v :={(x,n):x € H{y}(n)}

A set of natural numbers that can be computed with H, (y € O) as an oracle is called
hyperarithmetic.

Then it can be shown that Hyp, the class of hyperarithmetic sets, coinsides with the
class of Af sets (reference [Rog]).

The hyperarithmetic hierarchy ¥, in the Baire space “w is defined by relativizing the
hierarchy {H,} as follows: R(C “w) is ¥, if there exists some e € w such that

(ERs ec H

Even in the Baire space, the class of hyperarithmetic sets coincides with the class of
Al sets (see Souslin-Kleene theorem, [Rog], page 454). .
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Thank you for your attention!
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