K. Tanaka

Reca

Linear orders and well-orders

Kleene's C

Logic and Computation II Part 6. Recursion-theoretic hierarchies

Kazuyuki Tanaka

BIMSA

May 18, 2023

ヘロト 人間 トイヨト イヨト

K. Tanaka

Recap

Linear orders and well-orders

Kleene's \mathcal{O}

Logic and Computation II -

- Part 4. Formal arithmetic and Gödel's incompleteness theorems
- Part 5. Automata on infinite objects
- Part 6. Recursion-theoretic hierarchies
- Part 7. Admissible ordinals and second order arithmetic

✓ Part 4. Schedule

- Apr.25, (1) Oracle computation and relativization
- Apr.27, (2) m-reducibility and simple sets
- May 4, (3) T-reducibility and Post's problem
- May 9, (4) Arithmetical hierarchy and polynomial-time hierarchy
- May 11, (5) Analytical hierarchy and descriptive set theory I
- May 16, (6) Analytical hierarchy and descriptive set theory II

K. Tanaka

Recap

- Linear orders and well-orders
- Kleene's \mathcal{O}

Recap

・ロト・日本・モト・モー・ショー シック

- We identify a natural number n with the set $\{0, 1, \ldots, n-1\}$, and denote the set of natural numbers by $\omega = \{0, 1, \ldots\}$. By X, Y, \ldots , we will usually denote subsets of ω .
- Let ${}^{X}Y$ denote the set of functions from X to Y, read as "Y-pre-X".
- Moreover, we define

$${}^{\underline{\omega}}X := X^{<\omega} = \bigcup_{n \in \omega} {}^n X.$$

- For ξ ∈ ^ωX or ξ ∈ ⁿX(n ≥ m), a sequence (ξ(0), ξ(1), ..., ξ(m − 1)), denoted ξ ↾ m or ξ[m], is called an initial segment of ξ (with length m).
- For $s \in {}^{\underline{\omega}}\omega$, let $[s] = \{\xi \in {}^{\omega}\omega : s \subset \xi\}$. $\{[s] : s \in {}^{\underline{\omega}}\omega\}$ is an open base of the Baire space ${}^{\omega}\omega$.
- A set $G \subset {}^{\omega}\omega$ is **open** if there exists some $A \subset {}^{\omega}\omega$ such that $G = \bigcup_{s \in A} [s]$.
- The complement of an open set is called **closed**.

K. Tanaka

Recap

Linear orders and well-orders

Kleene's \mathcal{O}

- We say that a set $G \subset {}^{\omega}\omega$ is $\Sigma_1^0(\xi)$ if there exists a ξ -CE set A s.t. $G = \bigcup_{s \in A} [s]$, or equivalently there exists a Σ_1^0 formula φ s.t. $G = \{\eta \in {}^{\omega}\omega : \varphi(\eta, \xi)\}.$
- The class \mathcal{G} of open sets coincides with $\bigcup_{\xi} \Sigma_1^0(\xi)$, which is denoted as Σ_1^0 or Σ_1^0 .
- A set $F \subset {}^{\omega}\omega$ is $\Pi^0_1(\xi)$ if its complement is $\Sigma^0_1(\xi)$. The class of closed sets $\mathcal{F} = \bigcup_{\xi} \Pi^0_1(\xi)$ is denoted as Π^0_1 or Π^0_1 .
- Also, the class of countable unions of closed sets $\mathcal{F}_{\sigma} = \bigcup_{\xi} \Sigma_2^0(\xi)$ is Σ_2^0 or Σ_2^0 .
- An **analytic set** is obtained as a projection of a a closed set, the class of such sets $\mathcal{A} = \bigcup_{\xi} \Sigma_1^1(\xi)$ is denoted as Σ_1^1 or Σ_1^1 .
- The class of **co-analytic set** $CA = \bigcup_{\xi} \Pi_1^1(\xi)$ is denoted as Π_1^1 or Π_1^1 .
- The class of projections of co-analytic set is $\mathcal{PCA} = \bigcup_{\xi} \Sigma_2^1(\xi)$ is written as Σ_2^1 or Σ_2^1 .
- The finite hierarchy of such **projective sets** corresponds with the analytical hierarchy (with arbitrary oracles).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

K. Tanaka

Recap

Linear orders and well-orders

Kleene's C

1 Recap

2 Linear orders and well-orders

Today's topics

K. Tanaka

Recap

Linear orders and well-orders

Kleene's \mathcal{O}

A pair (m, n) is identified with its code ^{(m+n)(m+n+1)}/₂ + m. We say that ξ(∈ ^ωω) is a linear order (abbreviated as LO) if

 $\{(m,n):\xi(m,n)\geq 1\}$ is a linear ordering on $\mathbb N.$

We denote $\xi(m,n) \ge 1$ by $m \le_{\xi} n$ or simply $m \le n$.

• A linear order with no infinite descending sequence is called a **well-order** (abbreviated as WO). By using \leq , we rewrite it as

 $WO(\leq) \Leftrightarrow LO(\leq) \land \forall \eta \exists n(\eta(n) \leq \eta(n+1)).$

Note that this expression is Π_1^1 .

• A finite sequence $s = (s_0, s_1, \ldots, s_{n-1}) \in \omega \omega$ can also be identified with a code. Then, the concatenation of two sequences s * t is a binary operation of natural numbers. A relation $t \subset s$, defined by $\exists u(t * u = s)$, represents "t is an initial segment of s".

K. Tanaka

Recap

Linear orders and well-orders

Kleene's $\mathcal O$

• $T \subset {}^{\underline{\omega}}\omega$ is said to be a **tree** if it is closed under initial segment, i.e.

 $\forall s \in T \ \forall t (t \subset s \to t \in T)$

- A path P through T is a subtree with no branching, i.e., $\forall s, t \in P(t \subset s \lor s \subset t)$.
- We consider a partial order ≤ on ^ωω, defined by t ≤ s ⇔ s ⊆ t. Then, in a tree, an infinite path Ø = s₀ ⊂ s₁ ⊂ s₂ ⊂ ··· is an infinite descending sequence. So, a tree with no infinite paths is said to be well-founded.
- The well-foundedness of a tree T can be expressed by the following Π^1_1 formula,

 $\mathrm{WF}(T) \Leftrightarrow \neg \exists f \forall n (f(n) \in T \land f(n) \subset f(n+1))$

- In a tree T, a node $s^{\wedge}k = s*(k) \in T$ is called a **child** of s.
- A tree T is said to be **finitely branching** if every $s \in T$ has only finitely many children.
- For $s \in T$, the subtree rooted at s is written as $T_s = \{t : s * t \in T\}$.

Theorem (König's lemma)

Any finitely branching infinite tree ${\cal T}$ has an infinite path.

K. Tanaka

Recap

Linear orders and well-orders

Kleene's \mathcal{O}

Recap: Ordinals and well-founded trees

• Ordinals can be considered as an extension of the natural numbers to enumarate infinite sets. The natural numbers (the finite ordinals) are defined as:

 $0 := \emptyset, \ 1 := \{0\}, \ 2 := \{0, 1\}, \dots, \text{ in general, } n+1 := n \cup \{n\}.$

- Any ordinal σ is the set of ordinals less than σ . So, < on the ordinals is expressed as \in .
- An ordinal σ + 1 (the successor of σ) is defined as {0, 1, ..., σ}. An ordinal which is not a successor is called a limit ordinal.
- The first limit ordinal (except for 0) is the set of finite ordinals, denoted ω or ω₀. The second limit ordinal is the limit of ω + n, denoted ω + ω = ω · 2. After that, come ω · 3, ..., ω · ω = ω², ω³, ..., ω^ω, etc.

Theorem

A tree T is well-founded \iff there exists an ordinal number σ and a function $f: T \to \sigma + 1$ such that f is order-preserving $(s \subsetneq t \Leftrightarrow t < s \Leftrightarrow f(t) < f(s))$.

Such an order-preserving function f is denoted as $f:T \xrightarrow{\text{o.p.}} \sigma + 1$ or $T \xrightarrow{f} \sigma + 1$.

K. Tanaka

Recap

Linear orders and well-orders

Kleene's *O*

Definition

- The **height** of T is the smallest ordinal number σ such that there exists $f: T \xrightarrow{\text{o.p.}} \sigma + 1$, represented by ||T||.
- If T is a recursive well-founded tree, ||T|| is said to be **computable**.
- In addition, set ||T|| = -1 when T is empty, and set $||T|| = \infty$ when T is not well-founded.

Example

Right-hand-ride is a typical well-founded tree T. Each vertex has an order-preserving ordinal, and its height ||T|| is shown on the right side.

K. Tanaka

Recap

Linear orders and well-orders

Kleene's \mathcal{O}

If f is an order-preserving function of a tree T, then $f_s(t) = f(s * t)$ is an order-preserving function of subtree $T_s = \{t : s * t \in T\}$, and $f(s) = f_s(\varepsilon) \ge ||T_s||$.

Theorem

For any T, $||T|| = \sup_{s \neq \varepsilon} (||T_s|| + 1)$.

Proof.

- If T is not well-founded, then both sides are $+\infty$. Therefore, we assume T is well-founded, and suppose $\sigma = ||T||$ and $f : T \xrightarrow{\text{o.p.}} \sigma + 1$.
- If $s \neq \varepsilon$, then $||T_s|| \leq f(s) < f(\varepsilon) = ||T||$. So, $\sup(||T_s|| + 1) \leq ||T||$.
- Suppose $\sigma = \sup(||T_s|| + 1) < ||T||.$
- We define a function $h:T\to\sigma+1$ as

$$h(s) = \begin{cases} ||T_s|| & \text{if } s \neq \varepsilon \\ \sigma & \text{if } s = \varepsilon \end{cases}$$

- Then h is order-preserving, and so $||T|| \leq \sigma$, which is a contradiction.
- Hence, $||T|| = \sigma$.

K. Tanaka

Recap

Linear orders and well-orders

Kleene's \mathcal{O}

Theorem

Let S, T be trees. $||S|| \leq ||T|| \Leftrightarrow$ there exists an order-preserving function f from S to T.

Proof.

(\Leftarrow) It is clear when $||T|| = \infty$. When $||T|| < \infty$, there exists h such that $T \xrightarrow{h} ||T|| + 1$. Moreover, by $S \xrightarrow{f} T$, we have $h \circ f : S \xrightarrow{\text{o.p.}} ||T|| + 1$, which implies $||S|| \le ||T||$.

 (\Rightarrow) First, consider the case $||T|| = \infty$. Then, let $s_0 \subset s_1 \subset \cdots = \xi$ be an infinite path through T. We enumerate the elements of $\stackrel{\omega}{=} 2$ as $\{b_i\}$ such that the length of $b_i \leq$ the length of b_j if i < j. Then, define a function $h : \stackrel{\omega}{=} 2 \rightarrow \{s_i\}$ by $h(b_i) = s_i$ for all i. Obviously, $h : \stackrel{\omega}{=} 2 \rightarrow \{s_i\}$ is an order-preserving from $\stackrel{\omega}{=} 2$ to T. We also define an order-preserving injection $g : \stackrel{\omega}{=} \omega \rightarrow \stackrel{\omega}{=} 2$ as, for instance,

11 / 19

Then, $h \circ g : \stackrel{\omega}{\longrightarrow} \omega \xrightarrow{g} \omega 2 \xrightarrow{h} T$ is also order-preserving, and so $f = h \circ g$ is an order-preserving function f from S to T.

K. Tanaka

Recap

Linear orders and well-orders

Kleene's \mathcal{O}

- Next suppose $||T|| < \infty$. We will prove by induction on ||S||.
 - When $||S||=0,\,S$ is a singleton set, and then any function from S to T is order-preserving.
 - Assume ||S|| > 0. Then, for each $(n) \in S$, $||S_n|| < ||S|| \le ||T|| = \sup_{t \neq \varepsilon} (||T_t|| + 1)$.
 - Then, for each $(n) \in S$, take t_n such that $||S_n|| \le ||T_{t_n}||$.
 - By the induction hypothesis, there exists a $f_n: S_n \to T_{t_n}$.
 - Then, we define a function f as follows

$$f(s) = \begin{cases} \varepsilon & \text{if } s = \varepsilon \\ t_n * f_n(t) & \text{if } s = n^{\wedge} t \in S \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

12 / 19

• Thus f is an order-preserving function from S to T.

K. Tanaka

Recap

Linear orders and well-orders

Kleene's \mathcal{O}

Corollary " $||S|| \le ||T||$ " is Σ_1^1 .

Proof. We can easily see that

Note that variables s, t are treated as number variables, and f as a function variable.

Corollary

If T is a well-founded tree, then $\{S:||S||\leq ||T||\}$ is $\Delta^1_1.$

Proof. Assume T is a well-founded tree. Then

$$||S|| \not\leq ||T|| \Leftrightarrow ||T|| < ||S|| \Leftrightarrow \underbrace{\exists n \ ||T|| \leq ||S_n||}_{\Sigma_1^1}$$

So " $||S|| \leq ||T||$ " is Δ_1^1 . Note that if we allow $||T|| = \infty$, the rightmost formula does not imply the middle formula.

K. Tanaka

Recap

Linear orders and well-orders

Kleene's \mathcal{C}

- A tree T ⊂ ∞(²ω) consisting of a finite sequence of ordered pairs of natural numbers is called a tree of pairs.
- It can also be viewed as a set of pairs of sequences s, t of the same length.
- Define the set of paths in a tree T of pairs

 $[T]:=\{(\xi,\eta)\in{}^2({}^\omega\omega): \forall m(\xi\!\upharpoonright\! m,\eta\!\upharpoonright\! m)\in T\}.$

Theorem (Recall: Normal form theorem for analytical formulas, Lecture04-06)

For each $i \ge 1$, for any Σ_i^1 formula (or Π_i^1 formula), there exists an equivalent $\operatorname{fnc} \Sigma_i^1$ formula (or $\operatorname{fnc} - \Pi_i^1$ formula) whose arithmetical part is Σ_1^0 or Π_1^0 .

• So, let $\varphi(\xi)$ be any Σ_1^1 formula of the normal form $\exists \eta \forall k R(e, \xi \restriction k, \eta \restriction k)$ (*R* is primitive recursive). We put

$$T_e = \{(s,t) : \operatorname{leng}(s) = \operatorname{leng}(t) \land R(e,s,t)\}$$

where leng(x) denotes the length of x, and T_e can be viewed as the e-th tree of pairs.

• Finally, $\varphi(\xi)$ can be expressed as

 $\varphi(\xi) \leftrightarrow \exists \eta \ (\xi,\eta) \in [T_e].$

K. Tanaka

Recap

Linear orders and well-orders

Kleene's \mathcal{C}

Corollary (1)

For any Σ_1^1 formula $\varphi(\xi)$ there exists a primitive recursive pair tree T_e such that $\varphi(\xi) \Leftrightarrow T_e^{\xi} \notin WF.$

where $T_{\epsilon}^{\xi} := \{t \in \overset{\omega}{\omega} \omega : (\xi \upharpoonright \operatorname{leng}(t), t) \in T_{e}\}.$

Corollary (2) WF is Π_{1}^{1} , but not Σ_{1}^{1} .

Proof. The first half is clear from Corollary (1). To show the second half, assume for the contrary that WF be \sum_{1}^{1} . Then there exists a \sum_{1}^{1} formula $\varphi(\xi, \eta)$ and an oracle γ such that $\varphi(\xi, e^{\wedge}\gamma) \Leftrightarrow T_{e}^{\xi} \in WF$ for all e and ξ . Again by Corollary (1), there exists some d such that $\varphi(\xi, \xi) \Leftrightarrow T_{d}^{\xi} \notin WF$. Since $T_{d}^{\xi} \notin WF \Leftrightarrow \neg \varphi(\xi, d^{\wedge}\gamma)$, letting $\xi = d^{\wedge}\gamma$, we reaches a contradiction.

K. Tanaka

Recap

Linear orders and well-orders

Kleene's C

For an ordinal σ , let $WF_{\sigma} \equiv \{T : ||T|| \leq \sigma\}.$

Theorem (Σ_1^1 boundedness theorem)

If A is a Σ_1^1 subset of WF, then there exists a $\sigma(<\omega_1^{CK})$ such that $A \subset WF_{\sigma}$.

The ordinal ω_1^{CK} (read as "omega-1 Church Kleene") is the upper bound of recursive ordinal numbers, i.e., the smallest non-recursive (countable) ordinals.

Proof. Let A be a Σ_1^1 subset of WF. By way of contradiction, assume $\forall \sigma < \omega_1^{CK} \exists S \in A(||S|| \ge \sigma)$. Then,

 $T \in \mathrm{WF} \Leftrightarrow \exists S[S \in A \land ||S|| \ge ||T||].$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

16 / 19

So WF is Σ_1^1 , which contradicts Corollary (2).

K. Tanaka

Recap

Linear orders and well-orders

Kleene's \mathcal{O}

Kleene's \mathcal{O}

- So far, we have treated countable ordinals (< $\omega_1^{\rm CK}$) in terms of recursive well-founded trees. There is another way to express them as natural numbers. Here, we will introduce Kleene's notation system O.
- Kleene's system consists of set \mathcal{O} of natural numbers and a binary relation $<_{\mathcal{O}}$ on it. Then, $(\mathcal{O}, <_{\mathcal{O}})$ is the minimal transitive set satisfying
 - (1) $1 \in \mathcal{O}$
 - (2) If $y \in \mathcal{O}$, then $y <_{\mathcal{O}} 2^y$
 - (3) If a recursive function $\{y\}(n)$ is monotonically increasing with respect to $<_{\mathcal{O}}$, then for all n, $\{y\}(n) <_{\mathcal{O}} 3 \cdot 5^{y}$.
- Then ${\mathcal O}$ and $<_{{\mathcal O}}$ are m-complete Π^1_1 sets.
- The ordinal number |a| represented by $a \in \mathcal{O}$ is determined inductively as follows:

$$|1| = 0, |2^y| = |y| + 1, |3 \cdot 5^y| = \lim_n |\{y\}(n)|.$$

• Then, for a recursive well-founded tree T, there exists $y\in \mathcal{O}$ such that ||T||=|y|.

7 / 19

K. Tanaka

Recap

Linear orders and well-orders

Kleene's \mathcal{O}

• Kleene used the notation system \mathcal{O} to extend the arithmetic hierarchy on the set of natural numbers to the transfinite hierarchy. For each $y \in \mathcal{O}$, we define the set H_y of natural numbers as follows:

$$H_1 := \varnothing, \ H_{2^y} := H'_y \ (\mathsf{jump}), \ H_{3 \cdot 5^y} := \{(x, n) : x \in H_{\{y\}(n)}\}.$$

- A set of natural numbers that can be computed with H_y (y ∈ O) as an oracle is called hyperarithmetic.
- Then it can be shown that Hyp, the class of hyperarithmetic sets, coinsides with the class of Δ_1^1 sets (reference [Rog]).
- The hyperarithmetic hierarchy Σ_{α} in the Baire space ${}^{\omega}\omega$ is defined by relativizing the hierarchy $\{H_y\}$ as follows: $R(\subset {}^{\omega}\omega)$ is $\Sigma_{|y|}$ if there exists some $e \in \omega$ such that

$$\xi \in R \Leftrightarrow e \in H_y^{\xi}$$

18 / 19

• Even in the Baire space, the class of hyperarithmetic sets coincides with the class of Δ^1_1 sets (see **Souslin-Kleene theorem**, [Rog], page 454).

K. Tanaka

Recap

Linear orders and well-orders

 $\mathsf{Kleene's}\ \mathcal{O}$

Thank you for your attention!