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Logic and Computation II� �
• Part 4. Formal arithmetic and Gödel’s incompleteness theorems

• Part 5. Automata on infinite objects

• Part 6. Recursion-theoretic hierarchies

• Part 7. Admissible ordinals and second order arithmetic� �
Part 4. Schedule� �
• Apr.25, (1) Oracle computation and relativization

• Apr.27, (2) m-reducibility and simple sets

• May 4, (3) T-reducibility and Post’s problem

• May 9, (4) Arithmetical hierarchy and polynomial-time hierarchy

• May 11, (5) Analytical hierarchy and descriptive set theory I

• May 16, (6) Analytical hierarchy and descriptive set theory II� �
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Recap

• We identify a natural number n with the set {0, 1, . . . , n− 1}, and denote the set of
natural numbers by ω = {0, 1, . . . }. By X,Y, . . . , we will usually denote subsets of ω.

• Let XY denote the set of functions from X to Y , read as “Y -pre-X”.

• Moreover, we define
ω
⌣X := X<ω =

⋃

n∈ω

nX.

• For ξ ∈ ωX or ξ ∈ nX(n ≥ m), a sequence (ξ(0), ξ(1), . . . , ξ(m− 1)), denoted ξ ↾m
or ξ[m], is called an initial segment of ξ (with length m).

• For s ∈ ω⌣ω, let [s] = {ξ ∈ ωω : s ⊂ ξ}. {[s] : s ∈ ω⌣ω} is an open base of the Baire
space ωω.

• A set G ⊂ ωω is open if there exists some A ⊂ ω
⌣ω such that G =

⋃
s∈A[s].

• The complement of an open set is called closed.
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• We say that a set G ⊂ ωω is Σ0
1(ξ) if there exists a ξ-CE set A s.t. G =

⋃
s∈A[s], or

equivalently there exists a Σ0
1 formula φ s.t. G = {η ∈ ωω : φ(η, ξ)}.

• The class G of open sets coincides with
⋃

ξ Σ
0
1(ξ), which is denoted as Σ0

1 or Σ∼
0
1.

• A set F ⊂ ωω is Π0
1(ξ) if its complement is Σ0

1(ξ). The class of closed sets
F =

⋃
ξ Π

0
1(ξ) is denoted as Π0

1 or Π∼
0
1.

• Also, the class of countable unions of closed sets Fσ =
⋃

ξ Σ
0
2(ξ) is Σ

0
2 or Σ∼

0
2.

• An analytic set is obtained as a projection of a a closed set, the class of such sets
A =

⋃
ξ Σ

1
1(ξ) is denoted as Σ1

1 or Σ∼
1
1.

• The class of co-analytic set CA =
⋃

ξ Π
1
1(ξ) is denoted as Π1

1 or Π∼
1
1.

• The class of projections of co-analytic set is PCA =
⋃

ξ Σ
1
2(ξ) is written as Σ1

2 or Σ∼
1
2.

• The finite hierarchy of such projective sets corresponds with the analytical hierarchy
(with arbitrary oracles).
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Today’s topics

1 Recap

2 Linear orders and well-orders

3 Kleene’s O
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• A pair (m,n) is identified with its code (m+n)(m+n+1)
2 +m. We say that ξ(∈ ωω) is a

linear order (abbreviated as LO) if

{(m,n) : ξ(m,n) ≥ 1} is a linear ordering on N.

We denote ξ(m,n) ≥ 1 by m ≤ξ n or simply m ≤ n.

• A linear order with no infinite descending sequence is called a well-order (abbreviated
as WO). By using ≤, we rewrite it as

WO(≤) ⇔ LO(≤) ∧ ∀η∃n(η(n) ≤ η(n+ 1)).

Note that this expression is Π1
1.

• A finite sequence s = (s0, s1, . . . , sn−1) ∈ ω⌣ω can also be identified with a code.
Then, the concatenation of two sequences s ∗ t is a binary operation of natural
numbers. A relation t ⊂ s, defined by ∃u(t ∗ u = s), represents “t is an initial segment
of s”.

6 / 19



Logic and
Computation

K. Tanaka

Recap

Linear orders and
well-orders

Kleene’s O

• T ⊂ ω⌣ω is said to be a tree if it is closed under initial segment, i.e.

∀s ∈ T ∀t(t ⊂ s → t ∈ T )

• A path P through T is a subtree with no branching, i.e., ∀s, t ∈ P (t ⊂ s ∨ s ⊂ t).

• We consider a partial order ≤ on ω⌣ω, defined by t ≤ s ⇔ s ⊆ t. Then, in a tree, an
infinite path ∅ = s0 ⊂ s1 ⊂ s2 ⊂ · · · is an infinite descending sequence. So, a tree
with no infinite paths is said to be well-founded.

• The well-foundedness of a tree T can be expressed by the following Π1
1 formula,

WF(T ) ⇔ ¬∃f∀n(f(n) ∈ T ∧ f(n) ⊂ f(n+ 1))

• In a tree T , a node s∧k = s ∗ (k) ∈ T is called a child of s.

• A tree T is said to be finitely branching if every s ∈ T has only finitely many children.

• For s ∈ T , the subtree rooted at s is written as Ts = {t : s ∗ t ∈ T}.

Theorem (König’s lemma)

Any finitely branching infinite tree T has an infinite path.
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Recap: Ordinals and well-founded trees
• Ordinals can be considered as an extension of the natural numbers to enumarate
infinite sets. The natural numbers (the finite ordinals) are defined as:

0 := ∅, 1 := {0}, 2 := {0, 1}, . . . , in general, n+ 1 := n ∪ {n}.

• Any ordinal σ is the set of ordinals less than σ. So, < on the ordinals is expressed as ∈.
• An ordinal σ + 1 (the successor of σ) is defined as {0, 1, . . . , σ}. An ordinal which is
not a successor is called a limit ordinal.

• The first limit ordinal (except for 0) is the set of finite ordinals, denoted ω or ω0. The
second limit ordinal is the limit of ω + n, denoted ω + ω = ω · 2. After that, come
ω · 3, . . . , ω · ω = ω2, ω3, . . . , ωω, etc.

Theorem

A tree T is well-founded ⇐⇒ there exists an ordinal number σ and a function
f : T → σ + 1 such that f is order-preserving (s ⊊ t ⇔ t < s ⇔ f(t) < f(s)).

Such an order-preserving function f is denoted as f : T
o.p.−−→ σ + 1 or T

f−→ σ + 1.
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Definition
• The height of T is the smallest ordinal number σ

such that there exists f : T
o.p.−−→ σ + 1,

represented by ||T ||.
• If T is a recursive well-founded tree, ||T || is said
to be computable.

• In addition, set ||T || = −1 when T is empty, and
set ||T || = ∞ when T is not well-founded.

Example� �
Right-hand-ride is a typical well-founded tree T .
Each vertex has an order-preserving ordinal, and
its height ||T || is shown on the right side.� �

計算理論と数理論理学
xft0267-05.ps : 0028 : 2022/5/13(12:24:07)

222 第 5章 階層理論と許容集合

次の定理によって，整礎木に順序数を対応させる．ここで，順序数は整列順
序の代表くらいに考えればよい．ただし，順序数の <を ∈で表す集合論的慣
習から，σの後続数 σ+ 1は {0, 1, . . . , σ}と表され，ここでは {0, 1, . . . , σ}の
略記として σ + 1を使っている．順序数の厳密な定義は次節で与える．

定理 5.34 木 T が整礎である⇔順序数 σと関数 f : T → σ + 1が存在し，
f は順序を保存する (s � t⇔ t < s⇔ f(t) < f(s))．

このような f を順序保存関数 (order preserving function)といい，f : T
o.p.−−→

σ + 1あるいは T
f−→ σ + 1などと書く．

証明 (⇐)背理法により，木 T が整礎でないとする．あるパス ξが存在し，

∅ = ξ(0) > ξ(1) > ξ(2) > ξ(3) > · · ·

であるから，順序保存関数 f に対して

σ ≥ f(ξ(0)) > f(ξ(1)) > f(ξ(2)) > f(ξ(3)) > · · ·

となる．よって，σは整列ではなくなり，順序数の定義に反する．
(⇒)結論を否定して，T がパス∅ = s0 ⊂ s1 ⊂ · · · をもつことを帰納的
に示す．仮定から，T∅ は順序保存関数をもたない．そして，Ts が順序保存関
数をもたないとき，ある kについて，Tsˆk も順序保存関数をもたないことが
次のようにいえる．もしすべての kに対して，fk : Tsˆk

o.p.−−→ σk であれば，
σ := supk(σk + 1)とおいて，さらに

f(t) :=

⎧
⎨
⎩
σ （∅ ∈ Ts のとき），
fk(t′) （t = k^t′のとき）

と定めれば，f : Ts
o.p.−−→ σとなって仮定に反する． □

定義 5.35 整礎な木 T に対して，f : T
o.p.−−→ σ + 1が存在するような最小

の順序数 σを T の高さ (height)といい，‖T‖で表す．T が再帰的な整礎木の
とき，‖T‖は計算可能 (computable)であるという．さらに，T が空のときは
‖T‖ = −1，T が整礎でないときは ‖T‖ = ∞とおく．

計算理論と数理論理学
xft0267-05.ps : 0029 : 2022/5/13(12:24:07)

5.5 解析的階層と記述集合論 223

例 2 代表的な整礎木 T をあげる．各頂点には順序保存となる順序数を付し，
その高さ ‖T‖を右側に記す．

補題 5.36 任意の可算順序数 σに対して，‖T‖ = σとなる木 T がある．

証明 可算順序数 σに対して，

Tree height
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If f is an order-preserving function of a tree T , then fs(t) = f(s ∗ t) is an order-preserving
function of subtree Ts = {t : s ∗ t ∈ T}, and f(s) = fs(ε) ≥ ||Ts||.

Theorem

For any T , ||T || = sups̸=ε(||Ts||+ 1).

Proof.
• If T is not well-founded, then both sides are +∞. Therefore, we assume T is
well-founded, and suppose σ = ||T || and f : T

o.p.−−→ σ + 1.

• If s ̸= ε, then ||Ts|| ≤ f(s) < f(ε) = ||T ||. So, sup(||Ts||+ 1) ≤ ||T ||.
• Suppose σ = sup(||Ts||+ 1) < ||T ||.
• We define a function h : T → σ + 1 as

h(s) =

{
||Ts|| if s ̸= ε
σ if s = ε.

• Then h is order-preserving, and so ||T || ≤ σ, which is a contradiction.

• Hence, ||T || = σ. □
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Theorem

Let S, T be trees. ||S|| ≤ ||T || ⇔ there exists an order-preserving function f from S to T .

Proof.
(⇐) It is clear when ||T || = ∞. When ||T || < ∞, there exists h such that T

h−→ ||T ||+ 1.

Moreover, by S
f−→ T , we have h ◦ f : S

o.p.−−→ ||T ||+ 1, which implies ||S|| ≤ ||T ||.

(⇒) First, consider the case ||T || = ∞. Then, let s0 ⊂ s1 ⊂ · · · = ξ be an infinite path
through T . We enumerate the elements of ω⌣2 as {bi} such that the length of bi ≤ the
length of bj if i < j. Then, define a function h : ω⌣2 → {si} by h(bi) = si for all i.
Obviously, h : ω⌣2 → {si} is an order-preserving from ω

⌣2 to T . We also define an
order-preserving injection g : ω⌣ω → ω

⌣2 as, for instance,

(l,m, n) 7→ (

l︷ ︸︸ ︷
1, 1, . . . , 1, 0,

m︷ ︸︸ ︷
1, 1, . . . , 1, 0,

n︷ ︸︸ ︷
1, 1, . . . , 1).

Then, h ◦ g : ω⌣ω
g−→ ω⌣2

h−→ T is also order-preserving, and so f = h ◦ g is an
order-preserving function f from S to T ..
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Next suppose ||T || < ∞. We will prove by induction on ||S||.
• When ||S|| = 0, S is a singleton set, and then any function from S to T is
order-preserving.

• Assume ||S|| > 0. Then, for each (n) ∈ S, ||Sn|| < ||S|| ≤ ||T || = supt̸=ε(||Tt||+ 1).
• Then, for each (n) ∈ S, take tn such that ||Sn|| ≤ ||Ttn ||.

• By the induction hypothesis, there exists a fn : Sn → Ttn .

• Then, we define a function f as follows

f(s) =

{
ε if s = ε
tn ∗ fn(t) if s = n∧t ∈ S.

• Thus f is an order-preserving function from S to T . □
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Corollary

“||S|| ≤ ||T ||” is Σ1
1.

Proof. We can easily see that
A = {(ξ, η) : ξ, η are codes of S, T respectively, and ||S|| ≤ ||T ||} is Σ1

1, since

(ξ, η) ∈ A ⇔ ∃f∀s, t(ξ(s) · ξ(t) ≥ 1 ∧ s ⊂ t

→ η(f(s)) · η(f(t)) ≥ 1 ∧ f(s) ⊂ f(t)).

Note that variables s, t are treated as number variables, and f as a function variable. □

Corollary

If T is a well-founded tree, then {S : ||S|| ≤ ||T ||} is ∆1
1.

Proof. Assume T is a well-founded tree. Then

||S|| ̸≤ ||T || ⇔ ||T || < ||S|| ⇔ ∃n ||T || ≤ ||Sn||︸ ︷︷ ︸
Σ1

1

So “||S|| ≤ ||T ||” is ∆1
1. Note that if we allow ||T || = ∞, the rightmost formula does not

imply the middle formula. □
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• A tree T ⊂ ω⌣(2ω) consisting of a finite sequence of ordered pairs of natural numbers is
called a tree of pairs.

• It can also be viewed as a set of pairs of sequences s, t of the same length.

• Define the set of paths in a tree T of pairs

[T ] := {(ξ, η) ∈ 2(ωω) : ∀m(ξ ↾m, η ↾m) ∈ T}.

Theorem (Recall: Normal form theorem for analytical formulas, Lecture04-06)

For each i ≥ 1, for any Σ1
i formula (or Π1

i formula), there exists an equivalent fnc-Σ1
i

formula (or fnc-Π1
i formula) whose arithmetical part is Σ0

1 or Π0
1.

• So, let φ(ξ) be any Σ1
1 formula of the normal form ∃η∀kR(e, ξ ↾k, η ↾k) (R is

primitive recursive). We put

Te = {(s, t) : leng(s) = leng(t) ∧R(e, s, t)}

where leng(x) denotes the length of x, and Te can be viewed as the e-th tree of pairs.

• Finally, φ(ξ) can be expressed as

φ(ξ) ↔ ∃η (ξ, η) ∈ [Te].
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Corollary (1)

For any Σ1
1 formula φ(ξ) there exists a primitive recursive pair tree Te such that

φ(ξ) ⇔ T ξ
e ̸∈ WF,

where T ξ
e := {t ∈ ω

⌣ω : (ξ ↾ leng(t), t) ∈ Te}.

Corollary (2)

WF is Π1
1, but not Σ∼

1
1.

Proof. The first half is clear from Corollary (1). To show the second half, assume for the
contrary that WF be Σ∼

1
1. Then there exists a Σ1

1 formula φ(ξ, η) and an oracle γ such that

φ(ξ, e∧γ) ⇔ T ξ
e ∈ WF for all e and ξ.

Again by Corollary (1), there exists some d such that φ(ξ, ξ) ⇔ T ξ
d ̸∈ WF. Since

T ξ
d ̸∈ WF ⇔ ¬φ(ξ, d∧γ), letting ξ = d∧γ, we reaches a contradiction. □
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For an ordinal σ, let WFσ ≡ {T : ||T || ≤ σ}.

Theorem (Σ1
1 boundedness theorem)

If A is a Σ1
1 subset of WF, then there exists a σ(< ωCK

1 ) such that A ⊂ WFσ.

The ordinal ωCK
1 (read as “omega-1 Church Kleene”) is the upper bound of recursive

ordinal numbers, i.e., the smallest non-recursive (countable) ordinals.

Proof. Let A be a Σ1
1 subset of WF. By way of contradiction, assume

∀σ < ωCK
1 ∃S ∈ A(||S|| ≥ σ). Then,

T ∈ WF ⇔ ∃S[S ∈ A ∧ ||S|| ≥ ||T ||].

So WF is Σ1
1, which contradicts Corollary (2).

□
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Kleene’s O
• So far, we have treated countable ordinals (< ωCK

1 ) in terms of recursive well-founded
trees. There is another way to express them as natural numbers. Here, we will
introduce Kleene’s notation system O.

• Kleene’s system consists of set O of natural numbers and a binary relation <O on it.
Then, (O, <O) is the minimal transitive set satisfying

(1) 1 ∈ O
(2) If y ∈ O, then y <O 2y

(3) If a recursive function {y}(n) is monotonically increasing with respect to <O,
then for all n, {y}(n) <O 3 · 5y.

• Then O and <O are m-complete Π1
1 sets.

• The ordinal number |a| represented by a ∈ O is determined inductively as follows:

|1| = 0, |2y| = |y|+ 1, |3 · 5y| = lim
n

|{y}(n)|.

• Then, for a recursive well-founded tree T , there exists y ∈ O such that ||T || = |y|.
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• Kleene used the notation system O to extend the arithmetic hierarchy on the set of
natural numbers to the transfinite hierarchy. For each y ∈ O, we define the set Hy of
natural numbers as follows:

H1 := ∅, H2y := H ′
y (jump), H3·5y := {(x, n) : x ∈ H{y}(n)}.

• A set of natural numbers that can be computed with Hy (y ∈ O) as an oracle is called
hyperarithmetic.

• Then it can be shown that Hyp, the class of hyperarithmetic sets, coinsides with the
class of ∆1

1 sets (reference [Rog]).

• The hyperarithmetic hierarchy Σα in the Baire space ωω is defined by relativizing the
hierarchy {Hy} as follows: R(⊂ ωω) is Σ|y| if there exists some e ∈ ω such that

ξ ∈ R ⇔ e ∈ Hξ
y

• Even in the Baire space, the class of hyperarithmetic sets coincides with the class of
∆1

1 sets (see Souslin-Kleene theorem, [Rog], page 454). .
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Thank you for your attention!
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