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¢ Part 4. Formal arithmetic and Godel’s incompleteness theorems
¢ Part 5. Automata on infinite objects
® Part 6. Recursion-theoretic hierarchies

® Part 7. Admissible ordinals and second order arithmetic

-~ Part 4. Schedule

® Apr.25, (1) Oracle computation and relativization
® Apr.27, (2) m-reducibility and simple sets
* May 4, (3)
e May 9, (4) Arithmetical hierarchy and polynomial-time hierarchy
® May 11, (5) Analytical hierarchy and descriptive set theory |

May 16, (6) Analytical hierarchy and descriptive set theory I

T-reducibility and Post’s problem
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Recap

® The relativized arithmetical hierarchy (with oracle ¢ € NV) for subsets of N is

defined as follows.

)
) =
) =
) =
)

{¢-CE sets},

{&-computable sets},

{A] Ais CE insome B € £,(§)},

{A | A is computable in some B € X,,(§)},
{the complement of sets in X, (£)}

When ¢ is computable, we omit to mention (£) or £, and they are the usual classes in

the arithmetical hierarchy.

® We write A <,, B if there exists a computable function f : N — N such that for any

zeN zeAs f(x) € B.

® | et C be a class of subsets of N .
A set B is said to be C-hard if for every A € C, A <,, B.
A set B is said to be C-complete if B is C-hard and B € C.
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Recap 33 | COF I3

—~
—

={e:ec W,}is Xj-complete.

As

MEM = {(e,z) : x € W.} is X1-complete.

.
TOTAL | II2

i) K
ii)

(iii) EMPTY = {e : W, = @} is II;-complete.
iv) FIN = {e: W, is finite} is Xo-complete.
)

TOTAL = {e: {e} is a total function } is
IIs-complete.

(vi) COF = {e: the complement of W, is finite} is =]’ EMPTY
Y.3-complete.

(vii) REC = {e : W, is recursive} is ¥3-complete.
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Introduction

® The field that approaches difficult problems in set theory by
descriptive methods of sets is called descriptive set theory. For
instance, the continuum hypothesis is independent from the usual
axiomatic set theory, but it is true on classes of well-described sets
such as the Borel sets.

® S. C. Kleene and J. Addison made a breakthrough in this field by S C. Kleene
adopting logical methods such as analytic hierarchy as a means of
description.

® We will explain Addison’s proof of Kondo's classical theorem, which
was a starting point of modern descriptive set theory. 3
J. Addison
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Notation

The notation here is slightly different from the previous lectures. From now on, we will
adopt the standard notation of set theory.

We identify a natural number n with the set {0,1,...,n — 1}, and denote the set of
natural numbers by w = {0,1,...}. By X,Y,..., we will usually denote subsets of w.

Let XY denote the set of functions from X to Y, read as "Y-pre-X".

Then an element f of X is a function from {0,1,...,n — 1} to X, which can be
regarded as an n-tuple of elements of X, that is, (f(0), f(1),..., f(n —1)).

Moreover, we define
eX =X = J"X.
new

Here, £ X is read as “X-pre-omega-cup”.

For£ €“X or £ € "X (n > m), a sequence (£(0),£(1),...,&(m — 1)), denoted & [m
or £[m], is called an initial segment of £ (with length m). By s C £, we mean that s
is an initial segment of &.
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C =%2 and N = “w are called the Cantor space and the Baire space, respectively.
They have a natural correspondence with the set of real numbers.

Between C and [0, 1], there is the following correspondence (continuous surjection) via
binary decimal notation:

ge“2m Y €&(n)-270" e 0,1,

new

However, this correspondence is not one-to-one. For example, both (1,0,0,0,---) and
(0,1,1,1,---) correspond to %

On the other hand, A has a one-to-one correspondence with the irrationals in [0, 1] by
using the notation of continued fractions as follows.

1

T .
1+ 5(0) + 1+5(1)+W

EeN—

Example. the continued fraction £ with £(2n) = 0,£(2n+ 1) = 2n + 1 expresses e — 2.
8/23
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Topological
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In the following, we introduce topological notions of the Baire space, but most of
them are directly applicable to the Cantor space.

® Forsc¥uw, let [s] ={{ €“w:sC &} {[s]:s€%w}isan open base of the Baire

space.
® Aset G C “w is open if there exists some A C “w such that G = J,c 4[s].
® The complement of an open set is called closed.
® Note that [s] is also a closed set. Because [s]¢ = |J{[t] : s £ t,t Z s}.
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We say that a set G C “w is X{(€) if there exists a ¢&-CE set A (or equivalently,
§-computable set A) such that G = J, 4[s]-

Note that we here define X0 (¢) for subsets of “w, while in the previous lectures, ¥{(&)
(in the relativized arithmetical hierarchy) for subsets of w. There is a good reason to
use the same notation. The former can be expressed as G = {n € “w : p(n, &)} with a
%9 formula ¢, and the latter as {n € w : ¢(n, &)} with a ¢ formula ¢.

The class G of open sets coincides with | 29(€), which is denoted as 39 or X

Aset F C “wis T19(&) if its complement is $9(&). The class of closed sets
F=U I19(€) is denoted as II? or I19.

Also, the class of countable unions of closed sets F, = | J, ¥9(€) is X9 or X9.

Thus, the finite levels of Borel set, G, F, F,,... have been defined in parallel to the
arithmetical hierarchy.
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Analytical hierarchy

An analytic set is obtained as a projection of a Borel set (or equivalently, just a
closed set), the class of such sets A = J, $1(€) is denoted as X} or X1.

The class of co-analytic set CA = |J, IT}(€) is denoted as IIj or IT;.

The class of projections of co-analytic set is PCA = |J. ¥5(€) is written as 35 or ¥5.

The finite hierarchy of such projective sets corresponds with the analytical hierarchy
(with arbitrary oracles).

Then, the assertions on rZ\]ﬂll sets can be regarded as relativization of the assertions on
! sets.

By this method of relativization, Kondo’s theorem on the uniformization of the
co-analytic sets is obtained as a corollary to Addison’s theorem on the uniformization
of the I1} sets.
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quantifiers and function quantifiers. In the following, we mainly deal with function
quantifier hierarchies.

Topological

hivearely ® The following two theorems can be proved almost in the same way as the relativized
arithmetical hierarchy in Lecture 06-01.

Theorem (Analytical enumeration theorem)

Let m,n >0 and k > 0. There exists a X} subset U of N1 x (NN)™ such that for any
Y1 subset R of N x (NN)™ there exists an e such that

R(xh'" axnagla"' 7£m)<:>U(eaxlv"’ ,$n7£1,"' agm)'

Theorem (Analytical hierarchy theorem)

Forany n >0, X} UIL}, C AL ,.
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~ Proof for the case n =0, i.e., LU ¢ Al ~

Let A, be a X set and but not I19.

If we put B :=J,{n} x A,, then B is no longer arithmetical.
Thatis, B ¢ ¥} UTI].

On the other hand, since every A, is Z%, by the analytical enumeration theorem,
there exist a X1 formula U such that for each n there exists e,, such that = € A4,
iff U(en, z). Now considering n +— e, as a computable function, we have

(n,z) € B < U(eyn, x), which means B is X].

Also, B¢ =, {n} x AS, where {n} x AS is II? and so ©1. Thus, B¢ is also 1.

Therefore, B is a Al set.

J
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Now, we will define some concepts of ordered sets and trees in second-order arithmetic.

By identifying a pair (m,n) with its code %’gﬁnﬂ) + m, we can represent a

function with two or more variables by a function with a single variable. Thus, £ € “w
can also represent a binary relation {(m,n) € w? : {(m,n) > 1}.

We say that £(€ “w) is a linear order (abbreviated as LO) if
{(m,n) : £(m,n) > 1} is a linear ordering on N.
Formally, it is expressed as the following H(lJ formula.

LO(&) < VYm,n(&(m,n)+E&(n,m)>1)
AYm,n(§(m,n) - &(n,m) > 1 —m=mn)
AYm,n, k(E(m,n) - &(n, k) > 1 = &(m, k) > 1).

We denote &(m,n) > 1 by m <¢ norsimply m <n. Then, < and £ are often used
indiscriminately.
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A linear order with no infinite descending sequence is called a well-order (abbreviated
as WO). Considering that every infinite sequence in WO has an ascending part, we can
also express it as follows.

WO(§) < LO(E) AVnang(n(n),n(n+1)) > 1.
By using <, we rewrite it as

WO(<)  LO(<) A ViZn(n(n) < n(n +1)).

Note that these expressions are I13.

A finite sequence s = (s, $1,. -, 8n—1) € Yw can also be identified with a code.
Then, for two sequences s = (g, 81, - ,Sm—1) and t = (to,t1, -+ ,tn—1), the
concatenation s xt = (8o, 81, , Sm—1,%0,t1, - ,tn—1) is a binary operation.

A relation t C s, defined by Ju(t *x u = ), represents “t is an initial segment of s".

Any subset S of ®w can be uniquely represented by £ € “w s.t. s € S & £(s) > 1.
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Definition

T C “w is said to be a tree if it is closed under initial segment, i.e.

VseTVittcs—teT)

Trees

A subset of a tree T is called a subtree of 7" if it is a tree. A subtree P is called a
path through T if there is no branching, i.e., Vs,t € P(t C sV s Ct).

® The set of infinite paths of 7' is represented by [T](C “w).
® A tree with no infinite paths is said to be well-founded.

® We consider a partial order < on “w, defined by t < s < s Ct. Then, in a tree,
nodes closer to root & are larger, and and an infinite path @ =59 C sy C sy C -+ is
an infinite descending sequence.

® We also regard an infinite path as a function f : n +— s,. Therefore, the
well-foundedness of a tree T can be expressed by the following II} formula,

WE(T) < -3#¥n(f(n) € T A f(n) C f(n+1)) 16 /23



Logic nd ® Now, for k € w, let s"k = sx* (k) and ks = (k) * s.
omputation
K. Tanaka ® Inatree T, a node sk € T is called a child of s.

[ ]

A tree T is said to be finitely branching if every s € T" has only a finite number of
children.

® For s € T, the subtree rooted at s is written as Ty, = {t : s*t € T'}.

The following lemma is the most important fact for infinite trees.

Trees

Theorem (Konig's lemma)
Any finitely branching infinite tree 7" has an infinite path.

Proof.
® Suppose an infinite tree T is finitely branching. We inductively construct an infinite
path @ =s9 C 51 C s C --- through T'. Assume it is constructed up to s; and T, is
infinite.
® Ty, = Uy k" Tsny. Since Ty, is finitely branching, Tsny is infinite for some k.

® For such a k, let s;,+1 = s/'k. Repeating this operation infinitely many times, an
infinite path can be constructed.
17 /23
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The ordinal number can be seen just as a representative of well-order.
From the set-theoretic convention, < on the ordinals is represented by €. So, ordinal o + 1
(the successor of o) is defined as {0,1,...,0}. We also use o + 1 to denote {0,1,...,0}.
Theorem

_ A tree T is well-founded <> there exists an ordinal number o and a function
welfounded f:T — o+ 1 such that f is order-preserving (s Ct &t < s < f(t) < f(s)).

trees

Such an order-preserving function f is denoted as f : T 2P o4+1lorT ERgS + 1.

Proof.
(<) By contradiction, suppose that a tree T is not well-founded. Then a path £ exists and

2 =£(0) >¢£(1) >£(2) > £(3) > -+
So, for an order-preserving function f,
o > f(£(0)) > f(£(1)) > f(£(2)) > f(£(3)) > -~

Hence, o is no longer well-ordered, which violates the definition of ordinals.

1823
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=)

By way of contradiction. We assume that 7" has no order-preserving functions, and
show inductively that T has a path @ =sg C sy C ---.

By assumption, Ty has no order-preserving function.

We will show that if T has no order-preserving function, for some k, T~y also has no
order-preserving function.

By contradiction, assume fi : Tsng oby oy, for all k. Then let o := sup,(ox + 1) and
define

o ift=9
()= { ot ift =k

Thus, f: T 225 o, contrary to the assumption. O

1923
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Definition
® The height of T is the smallest ordinal number o

such that there exists f : T 25 5 41,
represented by ||T||.

e If T is a recursive well-founded tree, ||T'|| is said
to be computable.

® |n addition, set ||T'|| = —1 when T is empty, and
set ||T'|| = oo when T is not well-founded.
Example

Right-hand-ride is a typical well-founded tree T
Each vertex has an order-preserving ordinal, and
its height ||T'|| is shown on the right side.

Tree

height
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Lemma

For any countable ordinal o, there is a tree T such that ||T|| = o.
Proof. For countable ordinals o,
Ty :={(00,01, "+ ,0,) 10 > 09 >01 > >0k, k <w}.

Since o is countable, identifying it with w, T, can be regarded as a subset of ®w. Finally, it
is easy to show ||T|| = o by transfinite induction. O
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If f is an order-preserving function of a tree T', then f,(t) = f(s*t) is an order-preserving
function of subtree Ty = {t: sxt € T}, and f(s) = fs(e) > ||Ts]|-

Theorem

For any T', ||T'|| = sup,_..(||Ts|| + 1).

Proof.
e |f T is not well-founded, then both sides are +oco. Therefore, we assume T is
well-founded, and suppose o = ||T|| and f: T >2% o + 1.

If s # e, then [|Ts|| < f(s) < f(e) = ||T]|. So, sup(||Ts|| + 1) < [|T[|.
® Suppose o = sup(||Ts|| + 1) < [|T]].

We define a function h: T — o+ 1 as

h(s)_{ TS| ifs#e

o if s=e¢.

Then h is order-preserving, and so ||T'|| < o, which is a contradiction.
Hence, ||T|| = o. O
22/23
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Further Reading

® Kozen, D. C. (2006). Theory of computation (Vol. 170). Heidelberg: Springer.

® Soare, R. I. (2016). Turing computability. Theory and Applications of
Computability. Springer.

Thank you for your attention!
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