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Logic and Computation II� �
• Part 4. Formal arithmetic and Gödel’s incompleteness theorems

• Part 5. Automata on infinite objects

• Part 6. Recursion-theoretic hierarchies

• Part 7. Admissible ordinals and second order arithmetic� �
Part 4. Schedule� �
• Apr.25, (1) Oracle computation and relativization

• Apr.27, (2) m-reducibility and simple sets

• May 4, (3) T-reducibility and Post’s problem

• May 9, (4) Arithmetical hierarchy and polynomial-time hierarchy

• May 11, (5) Analytical hierarchy and descriptive set theory I

• May 16, (6) Analytical hierarchy and descriptive set theory II� �
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3 Topological hierarchy
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Recap
• The relativized arithmetical hierarchy (with oracle ξ ∈ NN) for subsets of N is
defined as follows.

Σ1(ξ) := {ξ-CE sets},
∆1(ξ) := {ξ-computable sets},

Σn+1(ξ) := {A | A is CE in some B ∈ Σn(ξ)},
∆n+1(ξ) := {A | A is computable in some B ∈ Σn(ξ)},

Πn(ξ) := {the complement of sets in Σn(ξ)}

When ξ is computable, we omit to mention (ξ) or ξ, and they are the usual classes in
the arithmetical hierarchy.

• We write A ≤m B if there exists a computable function f : N → N such that for any
x ∈ N, x ∈ A ⇔ f(x) ∈ B.

• Let C be a class of subsets of N .
A set B is said to be C-hard if for every A ∈ C, A ≤m B.
A set B is said to be C-complete if B is C-hard and B ∈ C.
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Now, the following are typical ≤m-complete sets.

(i) K = {e : e ∈ We} is Σ1-complete.

(ii) MEM = {(e, x) : x ∈ We} is Σ1-complete.

(iii) EMPTY = {e : We = ∅} is Π1-complete.

(iv) FIN = {e : We is finite} is Σ2-complete.

(v) TOTAL = {e : {e} is a total function } is
Π2-complete.

(vi) COF = {e : the complement of We is finite} is
Σ3-complete.

(vii) REC = {e : We is recursive} is Σ3-complete.

計算理論と数理論理学
xft0267-05.ps : 0020 : 2022/5/13(12:24:07)

214 第 5章 階層理論と許容集合

つ B ∈ Δn ならば A ∈ Δn である．算術的階層が真に階層を成すことがわか
っているので，Σn 完全集合は Πn ではない（特にΔn や Σn−1 でない）．
さて，以下のような集合が代表的な ≤m 完全集合である．
(i) K = {e : e ∈We}は Σ1 完全である．
(ii) MEM = {(e, x) : x ∈We}は Σ1 完全である．
(iii) EMPTY = {e : We = ∅}は Π1 完全である．
(iv) FIN = {e : We は有限 }は Σ2 完全である．
(v) TOTAL = {e : {e}は全域関数 }は Π2 完全である．
(vi) COF = {e : Weは補有限 }は Σ3 完全である．
これらについて，簡単に説明する（図 5.1参照）．(i)はすでに 1.6節で証明
した．(ii)は，K ≤m MEM，およびMEMが Σ1 であることからいえる．(iii)

は，EMPTYの補集合 NONEMPが Σ1 完全であることをいえばよい．
NONEMPが Σ1 であるのは明らか．任意の CE集合 Aは，ある原始再帰的関
係 T (x, y)に対して x ∈ A ↔ ∃yT (x, y)と書けて，さらにパラメタ定理か
ら，ある計算可能関数 f が存在して T (x, y) ↔ y ∈ Wf(x) と書けるから，
x ∈ A↔ f(x) ∈ NONEMPである．

(iv) We が有限であることは，∃y∀x > y x /∈We と表せるから，Σ2 である．
任意の Σ2 集合 Aは，原始再帰的関係 Rを用いて，∃y∀zR(x, y, z)と表せる．
いま，その補集合 Ac をもとに，次のような計算可能部分関数 ψを定義する．

ψ(x,w) =

⎧
⎨
⎩

0 （∀y ≤ w∃z¬R(x, y, z) のとき），
↑ （それ以外のとき）．

パラメタ定理から，計算可能関数 f が存在して {f(x)}(w) ∼ ψ(x,w)．する
と，

x ∈ A⇒Wf(x) は有限⇒ f(x) ∈ FIN (⊂ TOTALc),

x ∈ Ac ⇒ ∀w{f(x)}(w)↓ ⇒ f(x) ∈ TOTAL ⊂ FINc.

すなわち，A ≤m FINである．よって，FINは Σ2 完全である．(v)について
も，上の議論から，任意の Π2 集合 B に対して B ≤m TOTALである．また，
{e}が全域関数であることは，∀x∃y{e}(x) = yより Π2 で表される．

計算理論と数理論理学
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図 5.1 算術的階層

Σ3 や Π3 以上の階層の議論には，相対化が有用である．例えばオラクル集
合 Aで相対化した有限性問題は
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Introduction

• The field that approaches difficult problems in set theory by
descriptive methods of sets is called descriptive set theory. For
instance, the continuum hypothesis is independent from the usual
axiomatic set theory, but it is true on classes of well-described sets
such as the Borel sets.

• S. C. Kleene and J. Addison made a breakthrough in this field by
adopting logical methods such as analytic hierarchy as a means of
description.

• We will explain Addison’s proof of Kondo’s classical theorem, which
was a starting point of modern descriptive set theory.

S. C. Kleene

J. Addison
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Notation
• The notation here is slightly different from the previous lectures. From now on, we will
adopt the standard notation of set theory.

• We identify a natural number n with the set {0, 1, . . . , n− 1}, and denote the set of
natural numbers by ω = {0, 1, . . . }. By X,Y, . . . , we will usually denote subsets of ω.

• Let XY denote the set of functions from X to Y , read as “Y -pre-X”.

• Then an element f of nX is a function from {0, 1, . . . , n− 1} to X, which can be
regarded as an n-tuple of elements of X, that is, (f(0), f(1), . . . , f(n− 1)).

• Moreover, we define
ω
⌣X := X<ω =

⋃

n∈ω

nX.

Here, ω
⌣X is read as “X-pre-omega-cup”.

• For ξ ∈ ωX or ξ ∈ nX(n ≥ m), a sequence (ξ(0), ξ(1), . . . , ξ(m− 1)), denoted ξ ↾m
or ξ[m], is called an initial segment of ξ (with length m). By s ⊂ ξ, we mean that s
is an initial segment of ξ.
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• C = ω2 and N = ωω are called the Cantor space and the Baire space, respectively.
They have a natural correspondence with the set of real numbers.

• Between C and [0, 1], there is the following correspondence (continuous surjection) via
binary decimal notation:

ξ ∈ ω2 7→
∑

n∈ω

ξ(n) · 2−(n+1) ∈ [0, 1].

• However, this correspondence is not one-to-one. For example, both (1, 0, 0, 0, · · · ) and
(0, 1, 1, 1, · · · ) correspond to 1

2 .

• On the other hand, N has a one-to-one correspondence with the irrationals in [0, 1] by
using the notation of continued fractions as follows.

ξ ∈ N 7→ 1

1 + ξ(0) + 1
1+ξ(1)+ 1

1+ξ(2)+···

.

• Example. the continued fraction ξ with ξ(2n) = 0, ξ(2n+1) = 2n+1 expresses e− 2.
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Topology

• In the following, we introduce topological notions of the Baire space, but most of
them are directly applicable to the Cantor space.

• For s ∈ ω⌣ω, let [s] = {ξ ∈ ωω : s ⊂ ξ}. {[s] : s ∈ ω⌣ω} is an open base of the Baire
space.

• A set G ⊂ ωω is open if there exists some A ⊂ ω
⌣ω such that G =

⋃
s∈A[s].

• The complement of an open set is called closed.

• Note that [s] is also a closed set. Because [s]c =
⋃
{[t] : s ̸⊂ t, t ̸⊂ s}.
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• We say that a set G ⊂ ωω is Σ0
1(ξ) if there exists a ξ-CE set A (or equivalently,

ξ-computable set A) such that G =
⋃

s∈A[s].

• Note that we here define Σ0
1(ξ) for subsets of

ωω, while in the previous lectures, Σ0
1(ξ)

(in the relativized arithmetical hierarchy) for subsets of ω. There is a good reason to
use the same notation. The former can be expressed as G = {η ∈ ωω : φ(η, ξ)} with a
Σ0

1 formula φ, and the latter as {n ∈ ω : φ(n, ξ)} with a Σ0
1 formula φ.

• The class G of open sets coincides with
⋃

ξ Σ
0
1(ξ), which is denoted as Σ0

1 or Σ∼
0
1.

• A set F ⊂ ωω is Π0
1(ξ) if its complement is Σ0

1(ξ). The class of closed sets
F =

⋃
ξ Π

0
1(ξ) is denoted as Π0

1 or Π∼
0
1.

• Also, the class of countable unions of closed sets Fσ =
⋃

ξ Σ
0
2(ξ) is Σ

0
2 or Σ∼

0
2.

• Thus, the finite levels of Borel set, G,F ,Fσ, . . . have been defined in parallel to the
arithmetical hierarchy.
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Analytical hierarchy

• An analytic set is obtained as a projection of a Borel set (or equivalently, just a
closed set), the class of such sets A =

⋃
ξ Σ

1
1(ξ) is denoted as Σ1

1 or Σ∼
1
1.

• The class of co-analytic set CA =
⋃

ξ Π
1
1(ξ) is denoted as Π1

1 or Π∼
1
1.

• The class of projections of co-analytic set is PCA =
⋃

ξ Σ
1
2(ξ) is written as Σ1

2 or Σ∼
1
2.

• The finite hierarchy of such projective sets corresponds with the analytical hierarchy
(with arbitrary oracles).

• Then, the assertions on Σ∼
1
n sets can be regarded as relativization of the assertions on

Σ1
n sets.

• By this method of relativization, Kondo’s theorem on the uniformization of the
co-analytic sets is obtained as a corollary to Addison’s theorem on the uniformization
of the Π1

1 sets.
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• As seen in Lecture05-02, there are two types of analytical hierarchies with set
quantifiers and function quantifiers. In the following, we mainly deal with function
quantifier hierarchies.

• The following two theorems can be proved almost in the same way as the relativized
arithmetical hierarchy in Lecture 06-01.

Theorem (Analytical enumeration theorem)

Let m,n ≥ 0 and k > 0. There exists a Σ1
k subset U of Nn+1 × (NN)m such that for any

Σ1
k subset R of Nn × (NN)m there exists an e such that

R(x1, · · · , xn, ξ1, · · · , ξm) ⇔ U(e, x1, · · · , xn, ξ1, · · · , ξm).

Theorem (Analytical hierarchy theorem)

For any n ≥ 0, Σ1
n ∪Π1

n ⊊ ∆1
n+1.
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Proof for the case n = 0, i.e., Σ1
0 ∪Π1

0 ⊊ ∆1
1

� �
• Let An be a Σ0

n set and but not Π0
n.

• If we put B :=
⋃

n{n} ×An, then B is no longer arithmetical.
That is, B /∈ Σ1

0 ∪Π1
0.

• On the other hand, since every An is Σ1
1, by the analytical enumeration theorem,

there exist a Σ1
1 formula U such that for each n there exists en such that x ∈ An

iff U(en, x). Now considering n 7→ en as a computable function, we have
(n, x) ∈ B ⇔ U(en, x), which means B is Σ1

1.

• Also, Bc =
⋃

n{n} ×Ac
n, where {n} ×Ac

n is Π0
n and so Σ1

1. Thus, B
c is also Σ1

1.

• Therefore, B is a ∆1
1 set.� �
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• Now, we will define some concepts of ordered sets and trees in second-order arithmetic.

• By identifying a pair (m,n) with its code (m+n)(m+n+1)
2 +m, we can represent a

function with two or more variables by a function with a single variable. Thus, ξ ∈ ωω
can also represent a binary relation {(m,n) ∈ ω2 : ξ(m,n) ≥ 1}.

• We say that ξ(∈ ωω) is a linear order (abbreviated as LO) if

{(m,n) : ξ(m,n) ≥ 1} is a linear ordering on N.

• Formally, it is expressed as the following Π0
1 formula.

LO(ξ) ⇔ ∀m,n(ξ(m,n) + ξ(n,m) ≥ 1)

∧∀m,n(ξ(m,n) · ξ(n,m) ≥ 1 → m = n)

∧∀m,n, k(ξ(m,n) · ξ(n, k) ≥ 1 → ξ(m, k) ≥ 1).

• We denote ξ(m,n) ≥ 1 by m ≤ξ n or simply m ≤ n. Then, ≤ and ξ are often used
indiscriminately.
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• A linear order with no infinite descending sequence is called a well-order (abbreviated
as WO). Considering that every infinite sequence in WO has an ascending part, we can
also express it as follows.

WO(ξ) ⇔ LO(ξ) ∧ ∀η∃nξ(η(n), η(n+ 1)) ≥ 1.

• By using ≤, we rewrite it as

WO(≤) ⇔ LO(≤) ∧ ∀η∃n(η(n) ≤ η(n+ 1)).

• Note that these expressions are Π1
1.

• A finite sequence s = (s0, s1, . . . , sn−1) ∈ ω
⌣ω can also be identified with a code.

• Then, for two sequences s = (s0, s1, · · · , sm−1) and t = (t0, t1, · · · , tn−1), the
concatenation s ∗ t = (s0, s1, · · · , sm−1, t0, t1, · · · , tn−1) is a binary operation.

• A relation t ⊂ s, defined by ∃u(t ∗ u = s), represents “t is an initial segment of s”.
Any subset S of ω

⌣ω can be uniquely represented by ξ ∈ ωω s.t. s ∈ S ⇔ ξ(s) ≥ 1.
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Trees

Definition

T ⊂ ω
⌣ω is said to be a tree if it is closed under initial segment, i.e.

∀s ∈ T ∀t(t ⊂ s → t ∈ T )

• A subset of a tree T is called a subtree of T if it is a tree. A subtree P is called a
path through T if there is no branching, i.e., ∀s, t ∈ P (t ⊂ s ∨ s ⊂ t).

• The set of infinite paths of T is represented by [T ](⊂ ωω).

• A tree with no infinite paths is said to be well-founded.

• We consider a partial order ≤ on ω
⌣ω, defined by t ≤ s ⇔ s ⊆ t. Then, in a tree,

nodes closer to root ∅ are larger, and and an infinite path ∅ = s0 ⊂ s1 ⊂ s2 ⊂ · · · is
an infinite descending sequence.

• We also regard an infinite path as a function f : n 7→ sn. Therefore, the
well-foundedness of a tree T can be expressed by the following Π1

1 formula,

WF(T ) ⇔ ¬∃f∀n(f(n) ∈ T ∧ f(n) ⊂ f(n+ 1)) 16 / 23
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• Now, for k ∈ ω, let s∧k = s ∗ (k) and k∧s = (k) ∗ s.
• In a tree T , a node s∧k ∈ T is called a child of s.

• A tree T is said to be finitely branching if every s ∈ T has only a finite number of
children.

• For s ∈ T , the subtree rooted at s is written as Ts = {t : s ∗ t ∈ T}.
• The following lemma is the most important fact for infinite trees.

Theorem (König’s lemma)

Any finitely branching infinite tree T has an infinite path.

Proof.
• Suppose an infinite tree T is finitely branching. We inductively construct an infinite
path ∅ = s0 ⊂ s1 ⊂ s2 ⊂ · · · through T . Assume it is constructed up to si and Tsi is
infinite.

• Tsi =
⋃

k k
∧Ts∧i k. Since Tsi is finitely branching, Ts∧i k is infinite for some k.

• For such a k, let si+1 = s∧i k. Repeating this operation infinitely many times, an
infinite path can be constructed.

□17 / 23
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Ordinals and well-founded trees
The ordinal number can be seen just as a representative of well-order.
From the set-theoretic convention, < on the ordinals is represented by ∈. So, ordinal σ + 1
(the successor of σ) is defined as {0, 1, . . . , σ}. We also use σ + 1 to denote {0, 1, . . . , σ}.

Theorem

A tree T is well-founded ⇐⇒ there exists an ordinal number σ and a function
f : T → σ + 1 such that f is order-preserving (s ⊊ t ⇔ t < s ⇔ f(t) < f(s)).

Such an order-preserving function f is denoted as f : T
o.p.−−→ σ + 1 or T

f−→ σ + 1.

Proof.
(⇐) By contradiction, suppose that a tree T is not well-founded. Then a path ξ exists and

∅ = ξ(0) > ξ(1) > ξ(2) > ξ(3) > · · ·
So, for an order-preserving function f ,

σ ≥ f(ξ(0)) > f(ξ(1)) > f(ξ(2)) > f(ξ(3)) > · · · .
Hence, σ is no longer well-ordered, which violates the definition of ordinals.
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(⇒)

• By way of contradiction. We assume that T has no order-preserving functions, and
show inductively that T has a path ∅ = s0 ⊂ s1 ⊂ · · · .

• By assumption, T∅ has no order-preserving function.

• We will show that if Ts has no order-preserving function, for some k, Ts∧k also has no
order-preserving function.

• By contradiction, assume fk : Ts∧k
o.p.−−→ σk for all k. Then let σ := supk(σk + 1) and

define

f(t) :=

{
σ if t = ∅
fk(t

′) if t = k∧t′

• Thus, f : Ts
o.p.−−→ σ, contrary to the assumption. □

19 / 23
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Definition
• The height of T is the smallest ordinal number σ

such that there exists f : T
o.p.−−→ σ + 1,

represented by ||T ||.
• If T is a recursive well-founded tree, ||T || is said
to be computable.

• In addition, set ||T || = −1 when T is empty, and
set ||T || = ∞ when T is not well-founded.

Example� �
Right-hand-ride is a typical well-founded tree T .
Each vertex has an order-preserving ordinal, and
its height ||T || is shown on the right side.� �
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次の定理によって，整礎木に順序数を対応させる．ここで，順序数は整列順
序の代表くらいに考えればよい．ただし，順序数の <を ∈で表す集合論的慣
習から，σの後続数 σ+ 1は {0, 1, . . . , σ}と表され，ここでは {0, 1, . . . , σ}の
略記として σ + 1を使っている．順序数の厳密な定義は次節で与える．

定理 5.34 木 T が整礎である⇔順序数 σと関数 f : T → σ + 1が存在し，
f は順序を保存する (s � t⇔ t < s⇔ f(t) < f(s))．

このような f を順序保存関数 (order preserving function)といい，f : T
o.p.−−→

σ + 1あるいは T
f−→ σ + 1などと書く．

証明 (⇐)背理法により，木 T が整礎でないとする．あるパス ξが存在し，

∅ = ξ(0) > ξ(1) > ξ(2) > ξ(3) > · · ·

であるから，順序保存関数 f に対して

σ ≥ f(ξ(0)) > f(ξ(1)) > f(ξ(2)) > f(ξ(3)) > · · ·

となる．よって，σは整列ではなくなり，順序数の定義に反する．
(⇒)結論を否定して，T がパス∅ = s0 ⊂ s1 ⊂ · · · をもつことを帰納的
に示す．仮定から，T∅ は順序保存関数をもたない．そして，Ts が順序保存関
数をもたないとき，ある kについて，Tsˆk も順序保存関数をもたないことが
次のようにいえる．もしすべての kに対して，fk : Tsˆk

o.p.−−→ σk であれば，
σ := supk(σk + 1)とおいて，さらに

f(t) :=

⎧
⎨
⎩
σ （∅ ∈ Ts のとき），
fk(t′) （t = k^t′のとき）

と定めれば，f : Ts
o.p.−−→ σとなって仮定に反する． □

定義 5.35 整礎な木 T に対して，f : T
o.p.−−→ σ + 1が存在するような最小

の順序数 σを T の高さ (height)といい，‖T‖で表す．T が再帰的な整礎木の
とき，‖T‖は計算可能 (computable)であるという．さらに，T が空のときは
‖T‖ = −1，T が整礎でないときは ‖T‖ = ∞とおく．

計算理論と数理論理学
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例 2 代表的な整礎木 T をあげる．各頂点には順序保存となる順序数を付し，
その高さ ‖T‖を右側に記す．

補題 5.36 任意の可算順序数 σに対して，‖T‖ = σとなる木 T がある．

証明 可算順序数 σに対して，

Tree height
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Lemma

For any countable ordinal σ, there is a tree T such that ||T || = σ.

Proof. For countable ordinals σ,

Tσ := {(σ0, σ1, · · · , σk) : σ ≥ σ0 > σ1 > · · · > σk, k < ω}.

Since σ is countable, identifying it with ω, Tσ can be regarded as a subset of ω
⌣ω. Finally, it

is easy to show ||Tσ|| = σ by transfinite induction. □
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If f is an order-preserving function of a tree T , then fs(t) = f(s ∗ t) is an order-preserving
function of subtree Ts = {t : s ∗ t ∈ T}, and f(s) = fs(ε) ≥ ||Ts||.

Theorem

For any T , ||T || = sups̸=ε(||Ts||+ 1).

Proof.
• If T is not well-founded, then both sides are +∞. Therefore, we assume T is
well-founded, and suppose σ = ||T || and f : T

o.p.−−→ σ + 1.

• If s ̸= ε, then ||Ts|| ≤ f(s) < f(ε) = ||T ||. So, sup(||Ts||+ 1) ≤ ||T ||.
• Suppose σ = sup(||Ts||+ 1) < ||T ||.
• We define a function h : T → σ + 1 as

h(s) =

{
||Ts|| if s ̸= ε
σ if s = ε.

• Then h is order-preserving, and so ||T || ≤ σ, which is a contradiction.

• Hence, ||T || = σ. □
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Further Reading� �
• Kozen, D. C. (2006). Theory of computation (Vol. 170). Heidelberg: Springer.

• Soare, R. I. (2016). Turing computability. Theory and Applications of
Computability. Springer.� �

Thank you for your attention!
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