K. Tanaka

Recap

Introduction

Topological hierarchy

Linear orders an well-orders

Tree

Ordinals and well-founded trees

Logic and Computation II Part 6. Recursion-theoretic hierarchies

Kazuyuki Tanaka

BIMSA

May 14, 2023

イロト 不得下 不同下 不同下

⁼ ∽° 1 / 23

K. Tanaka

Recap

ntroduction

Topological hierarchy

Linear orders and well-orders

Trees

Ordinals and well-founded trees Logic and Computation II -

- Part 4. Formal arithmetic and Gödel's incompleteness theorems
- Part 5. Automata on infinite objects
- Part 6. Recursion-theoretic hierarchies
- Part 7. Admissible ordinals and second order arithmetic

- Part 4. Schedule

- Apr.25, (1) Oracle computation and relativization
- Apr.27, (2) m-reducibility and simple sets
- May 4, (3) T-reducibility and Post's problem
- May 9, (4) Arithmetical hierarchy and polynomial-time hierarchy
- May 11, (5) Analytical hierarchy and descriptive set theory I
- May 16, (6) Analytical hierarchy and descriptive set theory II

K. Tanaka

1 Recap

3 Topological hierarchy

4 Linear orders and well-orders

5 Trees

Today's topics

K. Tanaka

Recap

Introduction

Topological hierarchy

Linear orders and well-orders

Trees

Ordinals and well-founded trees The relativized arithmetical hierarchy (with oracle ξ ∈ N^N) for subsets of N is defined as follows.

 $\begin{array}{llll} \Sigma_1(\xi) &:= & \{\xi\text{-CE sets}\}, \\ \Delta_1(\xi) &:= & \{\xi\text{-computable sets}\}, \\ \Sigma_{n+1}(\xi) &:= & \{A \mid A \text{ is CE in some } B \in \Sigma_n(\xi)\}, \\ \Delta_{n+1}(\xi) &:= & \{A \mid A \text{ is computable in some } B \in \Sigma_n(\xi)\}, \\ \Pi_n(\xi) &:= & \{\text{the complement of sets in } \Sigma_n(\xi)\} \end{array}$

When ξ is computable, we omit to mention (ξ) or ξ , and they are the usual classes in the arithmetical hierarchy.

- We write $A \leq_{\mathrm{m}} B$ if there exists a computable function $f : \mathbb{N} \to \mathbb{N}$ such that for any $x \in \mathbb{N}, x \in A \Leftrightarrow f(x) \in B$.
- Let C be a class of subsets of N.
 A set B is said to be C-hard if for every A ∈ C, A ≤_m B.
 A set B is said to be C-complete if B is C-hard and B ∈ C.

Recap

K. Tanaka

Recap

ntroduction

Topological hierarchy

Linear orders and well-orders

Trees

Ordinals and well-founded trees

- Now, the following are typical $\leq_m\mbox{-complete sets}.$
- (i) $\mathsf{K} = \{e : e \in W_e\}$ is Σ_1 -complete.
- (ii) $\mathsf{MEM} = \{(e, x) : x \in W_e\}$ is Σ_1 -complete.
- (iii) $\mathsf{EMPTY} = \{e : W_e = \emptyset\}$ is Π_1 -complete.
- (iv) $FIN = \{e : W_e \text{ is finite}\}\$ is Σ_2 -complete.
- (v) TOTAL = $\{e : \{e\}$ is a total function $\}$ is Π_2 -complete.
- (vi) $COF = \{e : \text{the complement of } W_e \text{ is finite}\}\$ is Σ_3 -complete.

(vii)
$$\mathsf{REC} = \{e : W_e \text{ is recursive}\}\$$
 is Σ_3 -complete.

23

Introduction

K. Tanaka

Recap

Introduction

- Topological hierarchy
- Linear orders and well-orders

Trees

Ordinals and well-founded trees

- The field that approaches difficult problems in set theory by descriptive methods of sets is called **descriptive set theory**. For instance, the continuum hypothesis is independent from the usual axiomatic set theory, but it is true on classes of well-described sets such as the Borel sets.
- S. C. Kleene and J. Addison made a breakthrough in this field by adopting logical methods such as analytic hierarchy as a means of description.
- We will explain Addison's proof of Kondo's classical theorem, which was a starting point of modern descriptive set theory.

J. Addison

K. Tanaka

- Recap
- ntroduction
- Topological hierarchy
- Linear orders and well-orders
- Trees
- Ordinals and well-founded trees

• The notation here is slightly different from the previous lectures. From now on, we will adopt the standard notation of set theory.

Notation

- We identify a natural number n with the set $\{0, 1, \ldots, n-1\}$, and denote the set of natural numbers by $\omega = \{0, 1, \ldots\}$. By X, Y, \ldots , we will usually denote subsets of ω .
- Let ${}^{X}Y$ denote the set of functions from X to Y, read as "Y-pre-X".
- Then an element f of ${}^{n}X$ is a function from $\{0, 1, \ldots, n-1\}$ to X, which can be regarded as an n-tuple of elements of X, that is, $(f(0), f(1), \ldots, f(n-1))$.
- Moreover, we define

$${}^{\underline{\omega}}X := X^{<\omega} = \bigcup_{n \in \omega} {}^n X.$$

Here, ${}^{\underline{\omega}}X$ is read as "X-pre-omega-cup".

• For $\xi \in {}^{\omega}X$ or $\xi \in {}^{n}X(n \ge m)$, a sequence $(\xi(0), \xi(1), \dots, \xi(m-1))$, denoted $\xi \upharpoonright m$ or $\xi[m]$, is called an **initial segment** of ξ (with length m). By $s \subset \xi$, we mean that s is an initial segment of ξ .

K. Tanaka

- Recap
- Introduction
- Topological hierarchy
- Linear orders and well-orders
- Trees
- Ordinals and well-founded trees

- $C = {}^{\omega}2$ and $\mathcal{N} = {}^{\omega}\omega$ are called the **Cantor space** and the **Baire space**, respectively. They have a natural correspondence with the set of real numbers.
- Between C and [0,1], there is the following correspondence (continuous surjection) via binary decimal notation:

$$\xi \in {}^{\omega}2 \mapsto \sum_{n \in \omega} \xi(n) \cdot 2^{-(n+1)} \in [0,1].$$

- However, this correspondence is not one-to-one. For example, both $(1,0,0,0,\cdots)$ and $(0,1,1,1,\cdots)$ correspond to $\frac{1}{2}$.
- On the other hand, ${\cal N}$ has a one-to-one correspondence with the irrationals in [0,1] by using the notation of continued fractions as follows.

$$\xi \in \mathcal{N} \mapsto \frac{1}{1 + \xi(0) + \frac{1}{1 + \xi(1) + \frac{1}{1 + \xi(2) + \cdots}}}$$

• Example. the continued fraction ξ with $\xi(2n) = 0, \xi(2n+1) = 2n+1$ expresses e-2.

Topology

・ロト・日本・モト・モー・ショー ショー

Logic and Computation

K. Tanaka

Recap

Introduction

Topological hierarchy

Linear orders and well-orders

Trees

Ordinals and well-founded trees

- In the following, we introduce topological notions of the Baire space, but most of them are directly applicable to the Cantor space.
- For s ∈ ^ωω, let [s] = {ξ ∈ ^ωω : s ⊂ ξ}. {[s] : s ∈ ^ωω} is an open base of the Baire space.
- A set $G \subset {}^{\omega}\omega$ is **open** if there exists some $A \subset {}^{\omega}\omega$ such that $G = \bigcup_{s \in A} [s]$.
- The complement of an open set is called **closed**.
- Note that [s] is also a closed set. Because $[s]^c = \bigcup \{ [t] : s \not\subset t, t \not\subset s \}.$

K. Tanaka

Recap

ntroduction

Topological hierarchy

Linear orders and well-orders

Trees

Ordinals and well-founded trees

- We say that a set $G \subset {}^{\omega}\omega$ is $\Sigma_1^0(\xi)$ if there exists a ξ -CE set A (or equivalently, ξ -computable set A) such that $G = \bigcup_{s \in A} [s]$.
- Note that we here define $\Sigma_1^0(\xi)$ for subsets of ${}^{\omega}\omega$, while in the previous lectures, $\Sigma_1^0(\xi)$ (in the relativized arithmetical hierarchy) for subsets of ω . There is a good reason to use the same notation. The former can be expressed as $G = \{\eta \in {}^{\omega}\omega : \varphi(\eta,\xi)\}$ with a Σ_1^0 formula φ , and the latter as $\{n \in \omega : \varphi(n,\xi)\}$ with a Σ_1^0 formula φ .
- The class \mathcal{G} of open sets coincides with $\bigcup_{\xi} \Sigma_1^0(\xi)$, which is denoted as Σ_1^0 or Σ_1^0 .
- A set $F \subset {}^{\omega}\omega$ is $\Pi^0_1(\xi)$ if its complement is $\Sigma^0_1(\xi)$. The class of closed sets $\mathcal{F} = \bigcup_{\xi} \Pi^0_1(\xi)$ is denoted as Π^0_1 or Π^0_1 .
- Also, the class of countable unions of closed sets $\mathcal{F}_{\sigma} = \bigcup_{\xi} \Sigma_2^0(\xi)$ is Σ_2^0 or Σ_2^0 .
- Thus, the finite levels of **Borel set**, $\mathcal{G}, \mathcal{F}, \mathcal{F}_{\sigma}, \ldots$ have been defined in parallel to the arithmetical hierarchy.

10 / 23

K. Tanaka

Recap

Introduction

Topological hierarchy

Linear orders and well-orders

Trees

Ordinals and well-founded trees

Analytical hierarchy

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

11/23

- An analytic set is obtained as a projection of a Borel set (or equivalently, just a closed set), the class of such sets $\mathcal{A} = \bigcup_{\xi} \Sigma_1^1(\xi)$ is denoted as Σ_1^1 or Σ_1^1 .
- The class of co-analytic set $C\mathcal{A} = \bigcup_{\xi} \Pi_1^1(\xi)$ is denoted as Π_1^1 or Π_1^1 .
- The class of projections of co-analytic set is $\mathcal{PCA} = \bigcup_{\xi} \Sigma_2^1(\xi)$ is written as Σ_2^1 or Σ_2^1 .
- The finite hierarchy of such **projective sets** corresponds with the analytical hierarchy (with arbitrary oracles).
- Then, the assertions on \sum_n^1 sets can be regarded as relativization of the assertions on Σ_n^1 sets.
- By this method of relativization, Kondo's theorem on the uniformization of the co-analytic sets is obtained as a corollary to Addison's theorem on the uniformization of the Π^1_1 sets.

K. Tanaka

Recap

ntroduction

Topological hierarchy

Linear orders an well-orders

Trees

Ordinals and well-founded trees

- As seen in Lecture05-02, there are two types of analytical hierarchies with set quantifiers and function quantifiers. In the following, we mainly deal with function quantifier hierarchies.
- The following two theorems can be proved almost in the same way as the relativized arithmetical hierarchy in Lecture 06-01.

Theorem (Analytical enumeration theorem)

Let $m, n \geq 0$ and k > 0. There exists a Σ_k^1 subset U of $\mathbb{N}^{n+1} \times (\mathbb{N}^{\mathbb{N}})^m$ such that for any Σ_k^1 subset R of $\mathbb{N}^n \times (\mathbb{N}^{\mathbb{N}})^m$ there exists an e such that

$$R(x_1, \cdots, x_n, \xi_1, \cdots, \xi_m) \Leftrightarrow U(e, x_1, \cdots, x_n, \xi_1, \cdots, \xi_m).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

12 / 23

Theorem (Analytical hierarchy theorem)

For any $n \geq 0$, $\Sigma_n^1 \cup \Pi_n^1 \subsetneq \Delta_{n+1}^1$.

K. Tanaka

Recap

ntroduction

Topological hierarchy

Linear orders and well-orders

Trees

Ordinals and well-founded trees

– Proof for the case n=0, i.e., $\Sigma_0^1\cup\Pi_0^1\subsetneq\Delta_1^1$

- Let A_n be a Σ_n^0 set and but not Π_n^0 .
- If we put $B:=\bigcup_n \{n\} \times A_n$, then B is no longer arithmetical. That is, $B \notin \Sigma_0^1 \cup \Pi_0^1$.
- On the other hand, since every A_n is Σ_1^1 , by the analytical enumeration theorem, there exist a Σ_1^1 formula U such that for each n there exists e_n such that $x \in A_n$ iff $U(e_n, x)$. Now considering $n \mapsto e_n$ as a computable function, we have $(n, x) \in B \Leftrightarrow U(e_n, x)$, which means B is Σ_1^1 .
- Also, $B^c = \bigcup_n \{n\} \times A_n^c$, where $\{n\} \times A_n^c$ is Π_n^0 and so Σ_1^1 . Thus, B^c is also Σ_1^1 .

イロン 人間 とくほと くほど

13

• Therefore, B is a Δ_1^1 set.

K. Tanaka

Recap

ntroduction

Topological hierarchy

Linear orders and well-orders

Trees

Ordinals and well-founded trees

- Now, we will define some concepts of ordered sets and trees in second-order arithmetic.
- By identifying a pair (m, n) with its code $\frac{(m+n)(m+n+1)}{2} + m$, we can represent a function with two or more variables by a function with a single variable. Thus, $\xi \in {}^{\omega}\omega$ can also represent a binary relation $\{(m, n) \in \omega^2 : \xi(m, n) \ge 1\}$.
- We say that $\xi (\in {}^{\omega}\omega)$ is a **linear order** (abbreviated as LO) if

 $\{(m,n):\xi(m,n)\geq 1\}$ is a linear ordering on \mathbb{N} .

• Formally, it is expressed as the following Π^0_1 formula.

$$\begin{split} \mathrm{LO}(\xi) & \Leftrightarrow & \forall m, n(\xi(m,n) + \xi(n,m) \geq 1) \\ & \wedge \forall m, n(\xi(m,n) \cdot \xi(n,m) \geq 1 \rightarrow m = n) \\ & \wedge \forall m, n, k(\xi(m,n) \cdot \xi(n,k) \geq 1 \rightarrow \xi(m,k) \geq 1). \end{split}$$

(ロ) (同) (三) (三) (三) (0)

14/23

• We denote $\xi(m,n) \ge 1$ by $m \le_{\xi} n$ or simply $m \le n$. Then, \le and ξ are often used indiscriminately.

K. Tanaka

- Recap
- Introduction

Topological hierarchy

Linear orders and well-orders

Trees

Ordinals and well-founded trees • A linear order with no infinite descending sequence is called a **well-order** (abbreviated as WO). Considering that every infinite sequence in WO has an ascending part, we can also express it as follows.

 $\mathrm{WO}(\xi) \Leftrightarrow \mathrm{LO}(\xi) \wedge \forall \eta \exists n \xi (\eta(n), \eta(n+1)) \geq 1.$

• By using \leq , we rewrite it as

 $\mathrm{WO}(\leq) \Leftrightarrow \mathrm{LO}(\leq) \wedge \forall \eta \exists n (\eta(n) \leq \eta(n+1)).$

- Note that these expressions are Π¹₁.
- A finite sequence $s = (s_0, s_1, \dots, s_{n-1}) \in {}^{\underline{\omega}}\omega$ can also be identified with a code.
- Then, for two sequences $s = (s_0, s_1, \cdots, s_{m-1})$ and $t = (t_0, t_1, \cdots, t_{n-1})$, the concatenation $s * t = (s_0, s_1, \cdots, s_{m-1}, t_0, t_1, \cdots, t_{n-1})$ is a binary operation.
- A relation t ⊂ s, defined by ∃u(t * u = s), represents "t is an initial segment of s". Any subset S of ^ωω can be uniquely represented by ξ ∈ ^ωω s.t. s ∈ S ⇔ ξ(s) ≥ 1.

15/23

K. Tanaka

Recap

ntroduction

Topological hierarchy

Linear orders and well-orders

Trees

Ordinals and well-founded trees

Definition

 $T\subset {}^{\underline{\omega}}\omega$ is said to be a ${\bf tree}$ if it is closed under initial segment, i.e.

$$\forall s \in T \ \forall t (t \subset s \to t \in T)$$

Trees

- A subset of a tree T is called a subtree of T if it is a tree. A subtree P is called a path through T if there is no branching, i.e., ∀s, t ∈ P(t ⊂ s ∨ s ⊂ t).
- The set of infinite paths of T is represented by $[T](\subset {}^{\omega}\omega)$.
- A tree with no infinite paths is said to be **well-founded**.
- We consider a partial order \leq on $\[mu]{\omega} \omega$, defined by $t \leq s \Leftrightarrow s \subseteq t$. Then, in a tree, nodes closer to **root** \varnothing are larger, and and an infinite path $\varnothing = s_0 \subset s_1 \subset s_2 \subset \cdots$ is an infinite descending sequence.
- We also regard an infinite path as a function f : n → s_n. Therefore, the well-foundedness of a tree T can be expressed by the following Π¹₁ formula,

$$WF(T) \Leftrightarrow \neg \exists f \forall n (f(n) \in T \land f(n) \subset f(n+1))$$

- Logic and Computation
- K. Tanaka
- Recap
- Introduction
- Topological hierarchy
- Linear orders and well-orders
- Trees
- Ordinals and well-founded trees

- Now, for $k \in \omega$, let $s^{\wedge}k = s * (k)$ and $k^{\wedge}s = (k) * s$.
- In a tree T, a node $s^{\wedge}k \in T$ is called a **child** of s.
- A tree T is said to be **finitely branching** if every $s \in T$ has only a finite number of children.
- For $s \in T$, the subtree rooted at s is written as $T_s = \{t : s * t \in T\}$.
- The following lemma is the most important fact for infinite trees.

Theorem (König's lemma)

Any finitely branching infinite tree T has an infinite path.

Proof.

- Suppose an infinite tree T is finitely branching. We inductively construct an infinite path $\emptyset = s_0 \subset s_1 \subset s_2 \subset \cdots$ through T. Assume it is constructed up to s_i and T_{s_i} is infinite.
- $T_{s_i} = \bigcup_k k^{\wedge} T_{s_i^{\wedge} k}$. Since T_{s_i} is finitely branching, $T_{s_i^{\wedge} k}$ is infinite for some k.
- For such a k, let $s_{i+1} = s_i^{\wedge} k$. Repeating this operation infinitely many times, an infinite path can be constructed.

K. Tanaka

Recap

ntroduction

Topological hierarchy

Linear orders and well-orders

Trees

Ordinals and well-founded trees

Ordinals and well-founded trees

The ordinal number can be seen just as a representative of well-order. From the set-theoretic convention, < on the ordinals is represented by \in . So, ordinal $\sigma + 1$ (the successor of σ) is defined as $\{0, 1, \ldots, \sigma\}$. We also use $\sigma + 1$ to denote $\{0, 1, \ldots, \sigma\}$.

Theorem

A tree T is well-founded \iff there exists an ordinal number σ and a function $f: T \to \sigma + 1$ such that f is order-preserving $(s \subsetneq t \Leftrightarrow t < s \Leftrightarrow f(t) < f(s))$.

Such an order-preserving function f is denoted as $f: T \xrightarrow{\text{o.p.}} \sigma + 1$ or $T \xrightarrow{f} \sigma + 1$.

Proof.

(\Leftarrow) By contradiction, suppose that a tree T is not well-founded. Then a path ξ exists and

$$\emptyset = \xi(0) > \xi(1) > \xi(2) > \xi(3) > \cdots$$

So, for an order-preserving function f,

 $\sigma \ge f(\xi(0)) > f(\xi(1)) > f(\xi(2)) > f(\xi(3)) > \cdots$

Hence, σ is no longer well-ordered, which violates the definition of ordinals.

000

-

K. Tanaka

 (\Rightarrow)

- Recap
- ntroduction
- Topological hierarchy
- Linear orders and well-orders
- Trees
- Ordinals and well-founded trees

- By way of contradiction. We assume that T has no order-preserving functions, and show inductively that T has a path $\emptyset = s_0 \subset s_1 \subset \cdots$.
- By assumption, T_{\varnothing} has no order-preserving function.
- We will show that if T_s has no order-preserving function, for some k, $T_{s^{\wedge}k}$ also has no order-preserving function.
- By contradiction, assume $f_k : T_{s \wedge k} \xrightarrow{\text{o.p.}} \sigma_k$ for all k. Then let $\sigma := \sup_k (\sigma_k + 1)$ and define

$$f(t) := \begin{cases} \sigma & \text{if } t = \emptyset \\ f_k(t') & \text{if } t = k^{\wedge}t' \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

19 / 23

• Thus, $f:T_s \xrightarrow{\text{o.p.}} \sigma$, contrary to the assumption.

K. Tanaka

- Recap
- ntroduction
- Topological hierarchy
- Linear orders and well-orders
- Trees
- Ordinals and well-founded trees

Definition

- The **height** of T is the smallest ordinal number σ such that there exists $f: T \xrightarrow{\text{o.p.}} \sigma + 1$, represented by ||T||.
- If T is a recursive well-founded tree, ||T|| is said to be **computable**.
- In addition, set ||T|| = -1 when T is empty, and set $||T|| = \infty$ when T is not well-founded.

– Example

Right-hand-ride is a typical well-founded tree T. Each vertex has an order-preserving ordinal, and its height ||T|| is shown on the right side.

K. Tanaka

Recap

ntroduction

Topological hierarchy

Linear orders and well-orders

Trees

Ordinals and well-founded trees

Lemma

For any countable ordinal σ , there is a tree T such that $||T|| = \sigma$.

Proof. For countable ordinals σ ,

$$T_{\sigma} := \{ (\sigma_0, \sigma_1, \cdots, \sigma_k) : \sigma \ge \sigma_0 > \sigma_1 > \cdots > \sigma_k, k < \omega \}.$$

Since σ is countable, identifying it with ω , T_{σ} can be regarded as a subset of ${}^{\underline{\omega}}\omega$. Finally, it is easy to show $||T_{\sigma}|| = \sigma$ by transfinite induction.

(ロ) (同) (三) (三) (三) (0)

21

23

K. Tanaka

Recap

ntroduction

Topological hierarchy

Linear orders and well-orders

Trees

Ordinals and well-founded trees

If f is an order-preserving function of a tree T, then $f_s(t) = f(s * t)$ is an order-preserving function of subtree $T_s = \{t : s * t \in T\}$, and $f(s) = f_s(\varepsilon) \ge ||T_s||$.

Theorem

For any T, $||T|| = \sup_{s \neq \varepsilon} (||T_s|| + 1)$.

Proof.

- If T is not well-founded, then both sides are $+\infty$. Therefore, we assume T is well-founded, and suppose $\sigma = ||T||$ and $f: T \xrightarrow{\text{o.p.}} \sigma + 1$.
- If $s \neq \varepsilon$, then $||T_s|| \leq f(s) < f(\varepsilon) = ||T||$. So, $\sup(||T_s|| + 1) \leq ||T||$.
- Suppose $\sigma = \sup(||T_s|| + 1) < ||T||.$
- We define a function $h:T\to\sigma+1$ as

$$h(s) = \begin{cases} ||T_s|| & \text{if } s \neq \varepsilon \\ \sigma & \text{if } s = \varepsilon \end{cases}$$

22 / 23

- Then h is order-preserving, and so $||T|| \leq \sigma$, which is a contradiction.
- Hence, $||T|| = \sigma$.

K. Tanaka

Recap

ntroduction

Topological hierarchy

Linear orders and well-orders

Trees

Ordinals and well-founded trees

Further Reading

- Kozen, D. C. (2006). Theory of computation (Vol. 170). Heidelberg: Springer.
- Soare, R. I. (2016). *Turing computability. Theory and Applications of Computability.* Springer.

Thank you for your attention!