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¢ Part 4. Formal arithmetic and Godel’s incompleteness theorems
¢ Part 5. Automata on infinite objects
® Part 6. Recursion-theoretic hierarchies

® Part 7. Admissible ordinals and second order arithmetic

-~ Part 4. Schedule

® Apr.25, (1) Oracle computation and relativization
® Apr.27, (2) m-reducibility and simple sets
* May 4, (3)
e May 9, (4) Arithmetical hierarchy and polynomial-time hierarchy
® May 11, (5) Analytical hierarchy and descriptive set theory |

May 16, (6) Analytical hierarchy and descriptive set theory I

T-reducibility and Post’s problem
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Recap e A <,, B, if there exists a computable function fst. x € A & f(x) € B for any x.

e A <t B, if Ais computable in oracle B (i.e., recursive in xp).
® A CE set A is (T-)complete / m-complete if B <t A / B <,,, A for any CE set B.
Theorem (Post’s theorem, 1944)

There exists a CE set that is neither computable nor m-complete.

e A CE set A is a simple set if A€ is infinite and A has a common element with each
infinite CE set. A simple set satisfies Post's theorem.

Theorem (Post’s problem, finite injury priority argument due to Friedberg,
Muchnik)

There exists a CE set that is neither computable nor T-complete.

® Aset Aisa low set if A’ := KA <1 K. A simple low set is a solution to Post's
problem.
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Recap Theorem (Baker, Gill, Solovay (1975))

(1) There exists a computable oracle A such that P4 = NP*.
(2) There exists a computable oracle A such that PA # NP4,

Proof To show (1)

® Let A be a PSPACE complete problem such as TQBF (Lecture02-06). First, obviously
P4 c NP C PSPACE™.

® Since A is PSPACE, one can compute PSPACE” in PSPACE without using A as an
oracle. That is, PSPACE” c PSPACE.

® Finally, due to the PSPACE completeness of A, PSPACE C pPA.
* Therefore, P4 = NP* = PSPACE".
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To show (2)  [This is not a priority argument. We may set s = e.]

For any A c {0,1}*, B ={0/*l : 2 € A} is in NP*.
So, we only need to construct a computable A = |, A, such that B ¢ P4.
Let M, enumerate deterministic machines (or sets accepted by such machines)
running in polynomial p. time.
We want to show R, : Mé“ # B for all e. That is, for each e, we guarantee the
existence of n such that

MZ(0") # B(0").
Assume that A,'s are constructed up to step s = e. Then, take a n greater than any
number used in the previous constructions and 2™ > p.(n). Consider whether or not a
word with length n should be put into Ag41.
When MA:(0") = 1, set A,y = A,. Since a word with length n will never be added
to A, we have B(0™) = 0.
Next assume MAs(0™) = 0. Since this computation queries the oracle A, at most
pe(n) times, by 2™ > p.(n) there is a word z of length n that is irrelevant to the oracle
query. So setting As11 = A, U {x}, we have M (0™) =0, but B(0™) = 1. O
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Relativized
arithmetical
hierarchy

Complete
problems in the
arithmetic
hierarchy

Polynomial time
hierarchy

@ Recap

@® Relativized arithmetical hierarchy

© Complete problems in the arithmetic hierarchy

@ Polynomial time hierarchy

Today's topics
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Relativized
arithmetical
hierarchy

® Today, we consider examples of sets belonging to various classes in arithmetic
hierarchies and their relativizations.

® Recall:

® A= WE: is called ¢-CE if it is the domain of a partial recurisive function {e}*
with oracle £. In particular when £ = x g, we say A is CE in B.
® A set Ais computable in B if A is recursive in xp, written as A <r B (A is

Turing reducible to B).

® Then a relativized arithmetical hierarchy for subsets of N* is defined as follows.

Y16 =
A(§) =
) =
§) =

I

2n—ﬁ-l(
AnJrl(

I, (€)

{¢-CE sets},

{&-computable sets},

{A| Ais CE in some B € ¥,,(¢)},

{A ] Ais computable in some B € ¥,,(£)},
{A| A <p B for some B € ¥,,(¢€)},

{the complement of sets in 2,,(£)}

When ¢ is a computable function, we omit to mention (§) or &, and classes
Y, I, A, are usual arithmetical hierarchy .
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Since there is a computable bijection between N* and N, we will mainly discuss sets
and functions on N below.

We write A <, B if there exists a computable function f : N — N such that for any
zeN zeAs f(zx) € B.

A set B is called m-hard if for every CE set A, A <., B; moreover, if B itself is also
CE , then B is called m-complete.

In the following, such sets will be generalized to X, etc.

Since we only treat with m-reducibility, by C-hardness (completeness) we mean
m-hardness (completeness) with respect to the sets in C.

More strictly, let C be a class of sets.
A set B is said to be C-hard if for every A € C, A <,, B.
A set B is said to be C-complete if B is C-hard and B € C.

Clearly, if A <., B and B €%, (II,, A,), then so is A.

A X,,-complete set is not II,,, since arithmetical hierarchy is strict.
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Now, the following are typical m-complete sets.

K={e:eecW,}is Xi-complete.

Az

MEM = {(e,z) : ¢ € W.} is ¥1-complete.

Complete .
problems in the (11
arithmetic
hierarchy

.
TOTAL | II2

)
)

(iii) EMPTY = {e : W, = @} is II;-complete.
) FIN = {e: W, is finite} is Xo-complete.
)

TOTAL = {e: {e} is a total function } is
IIs-complete.

(vi) COF = {e: the complement of W, is finite} is =]’ EMPTY
Y.3-complete.

(vii) REC = {e : W, is recursive} is ¥3-complete.
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[(1) K={e:eeW,}is ¥i-complete.

(1) Ais CE & A <, K (Lecture01-06), and K is 3.

[(ii) MEM = {(e,z) : x € W.} is ¥1-complete.

() K <m MEM, and MEM is %;.
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(1) It is sufficient to show NONEMP= {e : 3z € W,}, the complement of EMPTY, is
Y1-complete.
Complte ® |t is clear that NONEMP is ;. Any CE set A can be written as z € A «» FyT'(z,vy)
plamn s for some primitive recursive relation T'(x,y).

arithmetic
hierarchy

® Then by the parameter theorem, there exists a computable function f such that
T(z,y) &y € Wf(z).

® Sox € A« f(x) € NONEMP.

Recall: Parameter theorem

(Lecture01-05)
There exists a primitive recursive function -: N7+l 5 Nsit.

{e}m-HL(.%'l,"' T, Y1y ’ym) ~ {S;"(e,yh--- ,ym)}"(xu"' 7-’1771)'
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() “We is finite" can be expressed as JyVx > y x ¢ W, which is Xs.
Any Yo set A can be expressed as JyVzR(z,y, z) with a primitive recursive relation R.
Then by using its complement A€, we define partial computable function ¥ as follows:

Complete
problems in the

arithmetic .
jerarchy 0 if Yy <w3z—-R(z,y,
hierarch (s w) = [ yfwz (z,9,2)
1 otherwise
By the parameter theorem, there exists a computable function f s.t. {f(z)}(w) ~ ¥(z, w).
Then,

r € A= Wy, is finite = f(x) € FIN(C TOTAL®)
x € A° = Vw{f(z)}(w)] = f(z) € TOTAL C FIN®
That is, A <,, FIN. So FIN is ¥5-complete.

[(v) TOTAL = {e: {e} is a total function } is IIs-complete. }

From the discussion above, B <, TOTAL for any II; set B.
“{e} is a total function” itself can be expressed by II; from Vaz3y{e}(z) = y.
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Relativization is useful when discussing levels above >3 or 1I3.
For example, the finiteness problem relative to oracle A is

FIN? = {e | WX4 is finite}.

Lemma
FIN¥ is $3-complete. More generally, if A is 3,,-complete, then FIN4 is Yn42-complete.

Proof.
Let A be a X,,-complete set. The finiteness of WX4 can be expressed as

IyYWWr >y x ¢ Wx4

where x4 is A, 41 and & ¢ WX4 is II,,1. So FIN? is ,,,5.

To prove the completeness of 3,12, since A is ¥,,-complete, the set ¥, 12 can be
expressed as Yo(A). All that remains is to relativize the proof that FIN is ¥5-complete
with oracle A. O
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[(vi) COF = {e : the complement of W, is finite} is ¥3-complete. ]

(.) “The complement of W, is finite" can be expressed as JyVx > y x € W, which is
FINMEM By the above lemma, COF is ¥5-complete.

[(Vi) REC = {e : W, is recursive (decidable)} is X3-complete. }

Proof.
® 1V, is recursive iff its complement can be also expressed as Wy for some d, and thus
REC is X3.
® To show X3-completeness, let A be any X3 set. Then there exists a II; set P that it

can be expressed as
x € A& JyP(x,y).

By the complement of FIN, there is a computable function g such that

P(z,y) & “Wy(z,y) is an infinite set”.
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® Let K° and W denote recursive approximation sequences of CE sets K and

Woz,y) respectlvely Then finite sets V7 and numbers a3 ,
follows.
® First, set V) = @ and a? , = y for all y.

are inductively defined as

® Now, assume V} and awfy have been constructed up to s, and the following holds

N-V7={a;p<az;<-<a;,<..

Next, let Q(z,y, s) be the following recursive relation

WS+1 ) # W;(z)y) \/y S KS+1 — I(G

g(z,y
Then put Vit = Ve U{as , :y <sAQ(x,y,s)}.

1.

e Finally, list the elements of N — V71 from smallest to largest, and let aSJrl be the

y-th element.

® Since this construction is computable, V,, = U,V,? is a CE set, and moreover there is a

computable function f such that Wy, = V.
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® Suppose x € A.
® Then we can take a y such that P(z,y). Since W, ) is an infinite set, there
are infinitely many s such that W‘S(J;ly) #Woin )
® Thus, there are infinite many s > y such that Q(x,y, s) holds, and for such s, the
y-th element a , of N — V? is removed from N — V7. So at most y elements
remain in N — V Therefore, W§ ) =N —V, is finite and f(x) € COF C REC.
® Next, suppose x ¢ A.
® We will prove K <1 Wy(y).
® Take y arbitrarily. By 2 ¢ A, Wy(, ) is a finite set.
® Therefore, for sufficiently large s > vy, Q(z,y, s) holds only if y € K5t — K.
Since there is at most one such s, Q(z,y, s) holds finitely many times. Therefore,
for suff|C|ent|y large s, a3, is constant and we denote it by a, .
i Wf(z) = {ax"() <Ogy < - <lgy <.. }
® s(y) := us[a;y = Gg.y| is computable in Wy (..
For every s > s(y), since aj , = a, 4, y € K*T!' — K* does not hold. So

ye K sye KW,

® Since the right hand side is computable in Wy, so is K. Therefore, f(x) ¢REC.
® Therefore, z € A < f(x) € REC. O]
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Finally, we discuss the polynomial-time version of arithmetical hierarchy. We defined P4
and NP* for the set A C Q*. For a class C of sets,

P(C)=JP* NP(C)=J NP

AeC AeC

Definition (Polynomial time hierarchy)

The polynomial-time hierarchy (PH) is defined inductively defined as follows
o ¥ =1If =P,

ZEH = NP(EE),

P _ P
® II,,, =co-X, q,

A£+1 = P(Eg)

PH=J, 3"
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Then it is easy to see that:

Lemma
PH c PSPACE

Proof. NP(PSPACE) C PSPACE(PSPACE) C PSPACE.

Lemma
If PH = PSPACE, then XF = XF | for some n.

Proof. If TQBF € ¥ then PSPACE C AP, |

-~ Homework

Given A as an NP-complete set, show the following.
(1) ¥ ={B:B <P A}.

(2) AY = {B: B <P A}.
(3) Thi1 = En(A).
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Further Reading

® Kozen, D. C. (2006). Theory of computation (Vol. 170). Heidelberg: Springer.

® Soare, R. I. (2016). Turing computability. Theory and Applications of
Computability. Springer.

Thank you for your attention!
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