K. Tanaka

Recar

Relativized arithmetical hierarchy

Complete problems in the arithmetic hierarchy

Polynomial time hierarchy

Logic and Computation II

Part 6. Recursion-theoretic hierarchies

Kazuyuki Tanaka

BIMSA

May 9, 2023

Relativized arithmetical hierarchy

Complete problems in the arithmetic hierarchy

Polynomial time hierarchy

Logic and Computation II —

- Part 4. Formal arithmetic and Gödel's incompleteness theorems
- Part 5. Automata on infinite objects
- Part 6. Recursion-theoretic hierarchies
- Part 7. Admissible ordinals and second order arithmetic

Part 4. Schedule

- Apr.25, (1) Oracle computation and relativization
- Apr.27, (2) m-reducibility and simple sets
- May 4, (3) T-reducibility and Post's problem
- May 9, (4) Arithmetical hierarchy and polynomial-time hierarchy
- May 11, (5) Analytical hierarchy and descriptive set theory I
- May 16, (6) Analytical hierarchy and descriptive set theory II

Recap

Recap

- $A \leq_m B$, if there exists a computable function f s.t. $x \in A \Leftrightarrow f(x) \in B$ for any x.
 - $A \leq_{\mathbf{T}} B$, if A is computable in oracle B (i.e., recursive in χ_B).
- A CE set A is **(T-)complete** / m-complete if $B \leq_{\mathbf{T}} A / B \leq_{\mathbf{m}} A$ for any CE set B.

Theorem (Post's theorem, 1944)

There exists a CE set that is neither computable nor m-complete.

• A CE set A is a simple set if A^c is infinite and A has a common element with each infinite CE set. A simple set satisfies Post's theorem.

Theorem (Post's problem, finite injury priority argument due to Friedberg, Muchnik)

There exists a CE set that is neither computable nor T-complete.

• A set A is a low set if $A' := K^A \leq_T K$. A simple low set is a solution to Post's problem. 4 D > 4 D > 4 E > 4 E > E 990

Recap

Relativized arithmetical

Complete problems in th arithmetic hierarchy

Polynomial time hierarchy

Theorem (Baker, Gill, Solovay (1975))

- (1) There exists a computable oracle A such that $P^A = NP^A$.
- (2) There exists a computable oracle A such that $P^A \neq NP^A$.

Proof To show (1)

- Let A be a PSPACE complete problem such as TQBF (Lecture02-06). First, obviously $\mathsf{P}^A \subset \mathsf{NP}^A \subset \mathsf{PSPACE}^A$.
- Since A is PSPACE, one can compute PSPACE A in PSPACE without using A as an oracle. That is, PSPACE $^A \subset \mathsf{PSPACE}$.
- Finally, due to the PSPACE completeness of A, PSPACE $\subset P^A$.
- Therefore, $P^A = NP^A = PSPACE^A$.

Recap

Relativized arithmetical hierarchy

Complete problems in the arithmetic hierarchy

hierarchy

To show (2) [This is not a priority argument. We may set s=e.]

- For any $A \subset \{0,1\}^*$, $B = \{0^{|x|} : x \in A\}$ is in \mathbb{NP}^A .
- So, we only need to construct a computable $A = \bigcup_s A_s$ such that $B \notin \mathsf{P}^A$.
- Let M_e enumerate deterministic machines (or sets accepted by such machines) running in polynomial p_e time.
- We want to show $R_e: M_e^A \neq B$ for all e. That is, for each e, we guarantee the existence of n such that

$$M_e^A(0^n) \neq B(0^n).$$

- Assume that A_s 's are constructed up to step s=e. Then, take a n greater than any number used in the previous constructions and $2^n>p_e(n)$. Consider whether or not a word with length n should be put into A_{s+1} .
- When $M_e^{A_s}(0^n) = 1$, set $A_{s+1} = A_s$. Since a word with length n will never be added to A, we have $B(0^n) = 0$.
- Next assume $M_e^{A_s}(0^n)=0$. Since this computation queries the oracle A_s at most $p_e(n)$ times, by $2^n>p_e(n)$ there is a word x of length n that is irrelevant to the oracle query. So setting $A_{s+1}=A_s\cup\{x\}$, we have $M_e^{A_{s+1}}(0^n)=0$, but $B(0^n)=1$.

Today's topics

Relativized

arithmetica hierarchy

problems in t arithmetic hierarchy

omial tim

Recap

2 Relativized arithmetical hierarchy

3 Complete problems in the arithmetic hierarchy

4 Polynomial time hierarchy

 Today, we consider examples of sets belonging to various classes in arithmetic hierarchies and their relativizations.

Recap Relativized

arithmetical

hierarchy

Recall:

• $A=W_e^{\xi}$ is called ξ -CE if it is the domain of a partial recurisive function $\{e\}^{\xi}$ with oracle ξ . In particular when $\xi=\chi_B$, we say A is CE in B.

• A set A is computable in B if A is recursive in χ_B , written as $A \leq_T B$ (A is Turing reducible to B).

• Then a **relativized arithmetical hierarchy** for subsets of \mathbb{N}^k is defined as follows.

 $\begin{array}{rcl} \Sigma_1(\xi) &:=& \{\xi\text{-CE sets}\}, \\ \Delta_1(\xi) &:=& \{\xi\text{-computable sets}\}, \\ \Sigma_{n+1}(\xi) &:=& \{A\mid A \text{ is CE in some } B\in\Sigma_n(\xi)\}, \\ \Delta_{n+1}(\xi) &:=& \{A\mid A \text{ is computable in some } B\in\Sigma_n(\xi)\}, \\ &:=& \{A\mid A\leq_T B \text{ for some } B\in\Sigma_n(\xi)\}, \\ \Pi_n(\xi) &:=& \{\text{the complement of sets in } \Sigma_n(\xi)\} \end{array}$ When ξ is a computable function, we omit to mention (ξ) or ξ , and classes

 Σ_n,Π_n,Δ_n are usual **arithmetical hierarchy** .

K. Tanaka

Reca

Relativized arithmetical hierarchy

Complete problems in the arithmetic hierarchy

Polynomial tim hierarchy

- Since there is a computable bijection between \mathbb{N}^k and \mathbb{N} , we will mainly discuss sets and functions on \mathbb{N} below.
- We write $A \leq_{\mathrm{m}} B$ if there exists a computable function $f : \mathbb{N} \to \mathbb{N}$ such that for any $x \in \mathbb{N}, \ x \in A \Leftrightarrow f(x) \in B$.
- A set B is called **m-hard** if for every CE set A, $A \leq_{\mathrm{m}} B$; moreover, if B itself is also CE , then B is called **m-complete**.
- In the following, such sets will be generalized to Σ_n etc.
- Since we only treat with m-reducibility, by C-hardness (completeness) we mean m-hardness (completeness) with respect to the sets in C.
- More strictly, let C be a class of sets.
 A set B is said to be C-hard if for every A ∈ C, A ≤_m B.
 A set B is said to be C-complete if B is C-hard and B ∈ C.
- Clearly, if $A \leq_{\mathrm{m}} B$ and $B \in \Sigma_n$ (Π_n, Δ_n) , then so is A.
- A Σ_n -complete set is not Π_n , since arithmetical hierarchy is strict.

Now, the following are typical m-complete sets.

- (i) $K = \{e : e \in W_e\}$ is Σ_1 -complete.
- (ii) $\mathsf{MEM} = \{(e, x) : x \in W_e\}$ is Σ_1 -complete.
- (iii) EMPTY = $\{e: W_e = \varnothing\}$ is Π_1 -complete.
- (iv) $\mathsf{FIN} = \{e : W_e \text{ is finite}\}\ \text{is } \Sigma_2\text{-complete}.$
- (v) TOTAL = $\{e : \{e\} \text{ is a total function } \}$ is Π_2 -complete.
- (vii) REC = $\{e: W_e \text{ is recursive}\}\$ is Σ_3 -complete.

Complete problems in the arithmetic hierarchy

Polynomial time hierarchy

(i)
$$K = \{e : e \in W_e\}$$
 is Σ_1 -complete.

(:) $A ext{ is CE} \Leftrightarrow A \leq_m K ext{ (Lecture01-06), and K is } \Sigma_1.$

(ii)
$$\mathsf{MEM} = \{(e,x) : x \in W_e\}$$
 is Σ_1 -complete.

(:.) $K \leq_m MEM$, and MEM is Σ_1 .

Complete problems in the arithmetic hierarchy

- (:) It is sufficient to show NONEMP= $\{e: \exists x \ x \in W_e\}$, the complement of EMPTY, is
- Σ_1 -complete.
 - It is clear that NONEMP is Σ_1 . Any CE set A can be written as $x \in A \leftrightarrow \exists y T(x,y)$ for some primitive recursive relation T(x, y).
 - Then by the parameter theorem, there exists a computable function f such that $T(x,y) \leftrightarrow y \in W_{f(x)}$.
 - So $x \in A \leftrightarrow f(x) \in NONEMP$.

(iii) EMPTY = $\{e: W_e = \emptyset\}$ is Π_1 -complete.

Recall: Parameter theorem

(Lecture01-05)

There exists a primitive recursive function $S_n^m: \mathbb{N}^{m+1} \to \mathbb{N}$ s.t.

 $\{e\}^{m+n}(x_1,\dots,x_n,y_1,\dots,y_m) \sim \{S_n^m(e,y_1,\dots,y_m)\}^n(x_1,\dots,x_n).$

Complete problems in the arithmetic hierarchy

(:) " W_e is finite" can be expressed as $\exists y \forall x > y \ x \notin W_e$, which is Σ_2 .

Any Σ_2 set A can be expressed as $\exists y \forall z R(x,y,z)$ with a primitive recursive relation R. Then by using its complement A^c , we define partial computable function ψ as follows:

$$\psi(x,w) = \begin{cases} 0 & \text{if } \forall y \le w \exists z \neg R(x,y,z) \\ \uparrow & \text{otherwise} \end{cases}$$
m. there exists a computable function f s

By the parameter theorem, there exists a computable function f s.t. $\{f(x)\}(w) \sim \psi(x,w)$. Then.

 $x \in A \Rightarrow W_{f(x)}$ is finite $\Rightarrow f(x) \in FIN(\subset TOTAL^c)$ $x \in A^c \Rightarrow \forall w \{f(x)\}(w) \downarrow \Rightarrow f(x) \in TOTAL \subset FIN^c$ That is, $A \leq_m FIN$. So FIN is Σ_2 -complete.

(v) TOTAL = $\{e : \{e\} \text{ is a total function } \}$ is Π_2 -complete.

From the discussion above, $B \leq_{\mathrm{m}} \mathsf{TOTAL}$ for any Π_2 set B.

(iv) $FIN = \{e : W_e \text{ is finite}\}\$ is Σ_2 -complete.

" $\{e\}$ is a total function" itself can be expressed by Π_2 from $\forall x \exists y \{e\}(x) = y$.

Polynomial tim hierarchy Relativization is useful when discussing levels above Σ_3 or Π_3 . For example, the finiteness problem relative to oracle A is

$$FIN^A = \{e \mid W_e^{\chi_A} \text{ is finite}\}.$$

Lemma

 $\mathrm{FIN}^{\mathrm{K}}$ is Σ_3 -complete. More generally, if A is Σ_n -complete, then FIN^A is Σ_{n+2} -complete.

Proof.

Let A be a Σ_n -complete set. The finiteness of $W_e^{\chi_A}$ can be expressed as

$$\exists y \forall x > y \ x \notin W_e^{\chi_A}$$

where χ_A is Δ_{n+1} and $x \notin W_e^{\chi_A}$ is Π_{n+1} . So FIN^A is Σ_{n+2} . To prove the completeness of Σ_{n+2} , since A is Σ_n -complete, the set Σ_{n+2} can be

expressed as $\Sigma_2(A)$. All that remains is to relativize the proof that FIN is Σ_2 -complete with oracle A

K. Tanaka

Reca

Relativized arithmetical hierarchy

Complete problems in the arithmetic hierarchy

Polynomial time hierarchy (vi) $\mathsf{COF} = \{e : \mathsf{the} \ \mathsf{complement} \ \mathsf{of} \ W_e \ \mathsf{is} \ \mathsf{finite}\} \ \mathsf{is} \ \Sigma_3\mathsf{-complete}.$

(:) "The complement of W_e is finite" can be expressed as $\exists y \forall x > y \ x \in W_e$, which is $\mathrm{FIN}^{\mathrm{MEM}}$. By the above lemma, COF is Σ_3 -complete.

(vi) REC = $\{e: W_e \text{ is recursive (decidable)}\}$ is Σ_3 -complete.

Proof.

- W_e is recursive iff its complement can be also expressed as W_d for some d, and thus REC is Σ_3 .
- To show Σ_3 -completeness, let A be any Σ_3 set. Then there exists a Π_2 set P that it can be expressed as

$$x \in A \Leftrightarrow \exists y P(x, y).$$

By the complement of FIN, there is a computable function g such that

 $P(x,y) \Leftrightarrow "W_{q(x,y)}$ is an infinite set".

K. Tanaka

Reca

Relativized arithmetical

Complete problems in the arithmetic hierarchy

Polynomial tim hierarchy

- Let K^s and $W^s_{g(x,y)}$ denote recursive approximation sequences of CE sets K and $W_{g(x,y)}$, respectively. Then finite sets V^s_x and numbers $a^s_{x,y}$ are inductively defined as follows.
- First, set $V_x^0 = \varnothing$ and $a_{xy}^0 = y$ for all y.
- ullet Now, assume V^s_x and $a^s_{x,y}$ have been constructed up to s, and the following holds

$$\mathbb{N} - V_x^s = \{ a_{x,0}^s < a_{x,1}^s < \dots < a_{x,y}^s < \dots \}.$$

Next, let Q(x,y,s) be the following recursive relation

$$W_{g(x,y)}^{s+1} \neq W_{g(x,y)}^{s} \lor y \in K^{s+1} - K^{s}.$$

Then put $V_x^{s+1} = V_x^s \cup \{a_{x,y}^s : y \leq s \land Q(x,y,s)\}.$

- ullet Finally, list the elements of $\mathbb{N}-V_x^{s+1}$ from smallest to largest, and let $a_{x,y}^{s+1}$ be the y-th element.
- Since this construction is computable, $V_x = \cup_s V_x^s$ is a CE set, and moreover there is a computable function f such that $W_{f(x)} = V_x$.

Complete problems in the arithmetic hierarchy

- Suppose $x \in A$.
 - Then we can take a y such that P(x,y). Since $W_{q(x,y)}$ is an infinite set, there are infinitely many s such that $W_{q(x,y)}^{s+1} \neq W_{q(x,y)}^{s}$.
 - Thus, there are infinite many s > y such that Q(x, y, s) holds, and for such s, the y-th element a_{xy}^s of $\mathbb{N} - V_x^s$ is removed from $\mathbb{N} - V_x^s$. So at most y elements remain in $\mathbb{N} - V_x$. Therefore, $W_{f(x)}^c = \mathbb{N} - V_x$ is finite and $f(x) \in \mathsf{COF} \subset \mathsf{REC}$.
- Next, suppose $x \notin A$.
 - We will prove $K \leq_{\mathbf{T}} W_{f(x)}$.
 - Take y arbitrarily. By $x \notin A$, $W_{q(x,y)}$ is a finite set.
 - Therefore, for sufficiently large $s \geq y$, Q(x, y, s) holds only if $y \in K^{s+1} K^s$. Since there is at most one such s, Q(x, y, s) holds finitely many times. Therefore, for sufficiently large s, $a_{x,y}^s$ is constant and we denote it by $a_{x,y}$.
 - $W_{f(x)} = V_x = \{a_{x,0} < a_{x,1} < \dots < a_{x,y} < \dots\}.$
 - $s(y) := \mu s[a_{x,y}^s = a_{x,y}]$ is computable in $W_{f(x)}$.
 - For every $s \geq s(y)$, since $a_{x,y}^s = a_{x,y}$, $y \in K^{s+1} K^s$ does not hold. So

$$u \in K \Leftrightarrow u \in K^{s(y)}$$
.

- Since the right hand side is computable in $W_{f(x)}$, so is K. Therefore, $f(x) \notin REC$.
- Therefore, $x \in A \Leftrightarrow f(x) \in \mathsf{REC}$.

Polynomial time hierarchy

Finally, we discuss the polynomial-time version of arithmetical hierarchy. We defined P^A and NP^A for the set $A \subset \Omega^*$. For a class C of sets,

$$P(C) = \bigcup_{A \in C} P^A, \quad NP(C) = \bigcup_{A \in C} NP^A.$$

Definition (Polynomial time hierarchy)

The polynomial-time hierarchy (PH) is defined inductively defined as follows

- $\Sigma_0^P = \Pi_0^P = P$,
- $\Sigma_{n+1}^{\mathrm{P}} = \mathsf{NP}(\Sigma_n^{\mathrm{P}})$,
- $\Pi_{n+1}^{P} = \text{co-}\Sigma_{n+1}^{P}$,
- $\Delta_{n+1}^{\mathrm{P}} = \mathsf{P}(\Sigma_n^{\mathrm{P}})$
- PH = $\bigcup_n \Sigma_n^P$

Homework

(1) $\Sigma_1^{P} = \{B : B \leq_m^P A\}.$ (2) $\Delta_2^{P} = \{B : B \leq_T^P A\}.$ (3) $\Sigma_{n+1}^{P} = \Sigma_n^P(A).$

Given A as an NP-complete set, show the following.

Complete problems in th arithmetic hierarchy

Polynomial time hierarchy

Further Reading

- Kozen, D. C. (2006). Theory of computation (Vol. 170). Heidelberg: Springer.
- Soare, R. I. (2016). *Turing computability. Theory and Applications of Computability.* Springer.

Thank you for your attention!