
Logic and
Computation

K. Tanaka

Recap

Introduction

Low sets

Polynomial-time
reducibility

Logic and Computation II
Part 6. Recursion-theoretic hierarchies

Kazuyuki Tanaka

BIMSA

May 5, 2023

1 / 19

Logic and
Computation

K. Tanaka

Recap

Introduction

Low sets

Polynomial-time
reducibility

Logic and Computation II� �
• Part 4. Formal arithmetic and Gödel’s incompleteness theorems

• Part 5. Automata on infinite objects

• Part 6. Recursion-theoretic hierarchies

• Part 7. Admissible ordinals and second order arithmetic� �
Part 4. Schedule� �
• Apr.25, (1) Oracle computation and relativization

• Apr.27, (2) m-reducibility and simple sets

• May 4, (3) T-reducibility and Post’s problem

• May 9, (4) Arithmetical hierarchy and polynomial-time hierarchy

• May 11, (5) Analytical hierarchy and descriptive set theory I

• May 16, (6) Analytical hierarchy and descriptive set theory II� �
2 / 19

Logic and
Computation

K. Tanaka

Recap

Introduction

Low sets

Polynomial-time
reducibility

Today’s topics

1 Recap

2 Introduction

3 Low sets

4 Polynomial-time reducibility

3 / 19

Logic and
Computation

K. Tanaka

Recap

Introduction

Low sets

Polynomial-time
reducibility

Recap

• A ≤m B, if there exists a computable function f such that for any x,

x ∈ A ⇔ f(x) ∈ B.

• A ≤T B, if A is computable in oracle B (i.e., recursive in χB).

• A set A is said to be (T-)complete/m-complete (with respect to CE) if A is CE and
B ≤T A / B ≤m A for any CE set B.

Theorem (Post’s theorem, 1944)

There exists a CE set that is neither computable nor m-complete.

• Post’s problem: Is there a CE set that is neither computable nor (T-)complete.

• To challenge this problem, various notions of CE sets (such as immune sets, simple
sets, and productive sets) were introduced. A simple set satisfies Post’s theorem.

4 / 19

Logic and
Computation

K. Tanaka

Recap

Introduction

Low sets

Polynomial-time
reducibility

Introduction

• Post’s problem was independently solved by Friedberg (1957) and Muchnik (1956).
Their proof technique is now called the finite injury priority argument.

• Although this proof method is already common in the study of computability, it is still
difficult for a novice to grasp the argument. So, it may be a good idea to start with a
quick look at its outline, and then gradually deepen your understanding by reading the
proof repeatedly.

• Now, if A ≤T B but not B ≤T A, we write A <T B. Then, Post’s problem can be
expressed as follows.

Theorem (Friedberg, Mucinik)

There exists a set A such that ∅ <T A <T K.

5 / 19

Logic and
Computation

K. Tanaka

Recap

Introduction

Low sets

Polynomial-time
reducibility

Low sets
• In the last lecture, we proved Post’s theorem by showing the existence of a simple set,
which is incomputable CE set that is not m-complete.

• Today we introduce the notion of low sets to extend from “non-m-complete” to
“non-T-complete”.

• Fix a set A ⊂ N, and let {φA
e } be a Gödel numbering of partial recursive functions

φ0, φ1, . . . in A. Suppose WA
x and KA are also defined naturally as follows:

WA
x := {z | φA

x (z) ↓},

KA := {x | φA
x (x) ↓} = {x | x ∈ WA

x }.
• We can prove that KA is not computable in A, etc., in the same way as A = ∅.

• KA is also written as A′ and called A-jump.

Definition

A set A such that A′ ≤T K is called low.

6 / 19

Logic and
Computation

K. Tanaka

Recap

Introduction

Low sets

Polynomial-time
reducibility

Lemma

A <T K if A is a low set.

Proof If A is a low set, A <T A′ ≤T K, and so A <T K. □

Thus, to solve Post’s problem, it is sufficient to prove the following:

Lemma (main lemma for Post’s problem)

There exists a simple low set.

• We introduce some notations related to oracle computations.

• By “φA
e,s(x) = y”, we denote the computation of φA

e (x) = y will be completed within

s steps, and if it exceeds s steps, we denote it as φA
e,s(x) ↑.

• For a given s, it is decidable whether or not the computation terminates within s
steps. Thus, “φA

e,s(x) = y” is a function computable in A (in fact, primitive recursive
in A). Also, ↑ can be regarded as a finite value.

• It doesn’t matter how you measure the number of steps. What we essentially need is
φA
e (x) = y (<∞) ⇔ ∃σ⊂A ∃s ∀τ⊇σ ∀t≥s φτ

e,t(x) = y.

• Here σ⊂A means σ is an initial segment of χA. Let W
A
e,s := domφA

e,s. 7 / 19

Logic and
Computation

K. Tanaka

Recap

Introduction

Low sets

Polynomial-time
reducibility

Proof

• In the finite injury priority argument, a desired CE set A is constructed as the infinite
sum

⋃
s As of finite sets As, where A0 = ∅ and As is “the (finite) set of numbers

that are verified to be members of A within s step”. Once an element is determined
to be a member of A, it is never removed. Thus As ⊂ As+1 for each s.

• To ensure that A is low and simple, we construct As to satisfy several requirements.

• A positive requirement is satisfied by adding some elements to a desired set A and a
negative requirement is by excluding some elements from A.

• Satisfying one requirement may injure another requirement that is already satisfied.
So, priorities are set to all requirements, so that a requirement will be injured by only
a finite number of requirements (with higher-priority).

8 / 19

Logic and
Computation

K. Tanaka

Recap

Introduction

Low sets

Polynomial-time
reducibility

• A is low and simple if all of the following are satisfied.

(i) A is CE,
(ii) Ac is infinite,
(iii) A has a common element with each infinite CE set, and
(iv) KA ≤T K.

• In the above, condition (i) naturally holds from the inductive construction of A.
Condition (ii) is also easily satisfied.

• The essential ones are the positive condition (iii) and the negative condition (iv).
Rewriting these into requirements for each e, we have

Pe : |We| = ∞ ⇒ A ∩We ̸= ∅
Ne : ∃∞s φAs

e,s(e) ↓⇒ φA
e (e) ↓ .

Here, ∃∞ means “exists infinitely many”.

9 / 19

Logic and
Computation

K. Tanaka

Recap

Introduction

Low sets

Polynomial-time
reducibility

• It is clear that (iii) holds if Pe holds for each e.

• Next, we show that (iv) holds if Ne holds for each e. First, assume that s 7→ As is
computable.
If Ne holds, then

∃∞s φAs
e,s(e) ↓ ⇒ φA

e (e) ↓ ⇒ ∃t∀s>t φAs
e,s(e) ↓

⇒ ∀t∃s>t φAs
e,s(e) ↓ ≡ ∃∞s φAs

e,s(e) ↓ .

• Thus, KA = {e : φA
e (e) ↓} is a ∆2 set.

Corollary (Lecture 06-01)

A is ∆2 if and only if A ≤T K.

• By the above fact, we have KA ≤T K.

10 / 19

Logic and
Computation

K. Tanaka

Recap

Introduction

Low sets

Polynomial-time
reducibility

• Now we explain why Ne is a negative requirement.

• We define the following computable function r as a tool to control Ne:

r(e, s) = u(As, e, e, s).

Here, the right-hand side is called the use function, which is 1 + the maximum
number used in the computation of φAs

e,s(e), and 0 if the computation never halts.

• If s 7→ As is assumed to be computable, then r is also computable, which is called the
restraint function.

• That is, given As, if φ
As
e,s(e) ↓, then by excluding (not adding) elements x less than

r(e, s) from A, we have A↾r = As ↾r, so φA
e (e) ↓, and Ne works as a negative

requirement.

11 / 19

Logic and
Computation

K. Tanaka

Recap

Introduction

Low sets

Polynomial-time
reducibility

• Among all Pe and Ne, set the priority as

P0 > N0 > P1 > N1 > P2 > N2 > . . .

• Note that for any requirement there are only a finitely many requirements with higher
priorities. Numbers below r(e, s) are added to A only for Pi with i < e.

• Now, we show the construction of A.
• Step s = 0: Set A0 = ∅.

• Step s+ 1: Assume that As is obtained.
If there is an i ≤ s which satisfies (i) Wi,s ∩As = ∅, and
(ii) ∃x ∈ Wi,s(x > 2i ∧ ∀e ≤ i r(e, s) < x),
then choose the smallest x that satisfies (ii) and set As+1 = As ∪ {x}.
Then the requirement Pi is satisfied, and after s+1 it will never receive attention.

If there is no such i ≤ s, put As+1 = As.

12 / 19

Logic and
Computation

K. Tanaka

Recap

Introduction

Low sets

Polynomial-time
reducibility

• When As+1 = As ∪ {x}, for e such that x ≤ r(e, s), Ne is injured by x at s+ 1.
Then, we have

Claim 1� �
For every e, Ne is injured at most finitely many times.� �

(∵) Ne can be injured only by Pi for i < e.

Claim 2� �
For all e, r(e) = lims r(e, s) exists and hence Ne holds.� �

(∵) Fix any e. From Claim 1, there exists a step se such that Ne is not injured after se.
But if φAs

e,s(e) ↓ for s > se, then for t ≥ s, r(e, t) = r(e, s) and so r(e) = lims r(e, s)

exists. Hence As ↾r = A↾r and φA
e (e) ↓, which implies Ne holds.

13 / 19

Logic and
Computation

K. Tanaka

Recap

Introduction

Low sets

Polynomial-time
reducibility

Claim 3� �
Pi holds for all i.� �

(∵) Suppose that Wi is an infinite set. From Claim 2, we take such an s that

∀t ≥ s ∀e ≤ i r(e, t) = r(e).

We may assume that no Pj with j < i receives attention after s′(≥ s), In addition, take
t > s′ such that

∃x ∈ Wi,t(x > 2i ∧ ∀e ≤ i r(e) < x).

Then we already have Wi,t ∩At ̸= ∅ or Pi receives attention at t+ 1. In either case,
Wi,t ∩At+1 ̸= ∅,and so Pi holds.

From the above, A =
⋃

s∈N As is a simple low set. Also, Ac is infinite, since from condition
(ii) that x > 2i, we have | {x ∈ A : x ≤ 2i} |≤ i. □

14 / 19

Logic and
Computation

K. Tanaka

Recap

Introduction

Low sets

Polynomial-time
reducibility

Friedberg and Mucinik actually proved the following assertion.

Theorem (Friedberg, Muchnik)

There exist CE sets A,B such that A ̸≤T B and B ̸≤T A.

It is clear that A,B in this theorem are neither computable nor complete. By the finite
injury priority argument, these sets are constructed as A =

⋃
s As and B =

⋃
s Bs with the

following requirements:

R2e : A ̸= WB
e

R2e+1 : B ̸= WA
e

Among many generalizations of the above theorem, the following theorem is particularly
important.

Theorem (G. E. Sacks*)

Let C be an incomplete CE set.
(1) There is a simple set A such that C ̸≤T A.
(2) There exists low CE sets A,B s.t. A ̸≤T B and B ̸≤T A with C = A ∪B and
A ∩B = ∅.

*For more detalis, refer to Soare (2016).
15 / 19

Logic and
Computation

K. Tanaka

Recap

Introduction

Low sets

Polynomial-time
reducibility

Polynomial-time reducibility

• Finally, we discuss the polynomial-time versions of m-reduction and T-reduction.

• A is polynomial (time) reducible to B (A ≤P B) if there exists a polynomial time
computable function f and x ∈ A ⇔ f(x) ∈ B. This is a kind of m-reduciblity, which
also written as A ≤P

m B.

• On the other hand, A is polynomial-time Turing reducible to B (A ≤P
T B or

A ∈ PB) if there exists a polynomial q and a deterministic Turing machine MB with
oracle B that can decide whether x ∈ A within O(q(|x|)) time.

• We will not consider how to measure the time required for querying the oracle
(n ∈ B). We only treat it very naively as shown in the proof of the next theorem.

• Furthermore, making MB nondeterministic, we also defines A ∈ NPB .

16 / 19

Logic and
Computation

K. Tanaka

Recap

Introduction

Low sets

Polynomial-time
reducibility

It is clear that if A ≤P
m B then A ≤P

T B. The reverse does not hold over a large class such
as EXP(TIME) (Ladner, Lynch, and Selman [1975]).

Theorem (Baker, Gill, Solovay (1975))

(1) There exists a computable oracle A such that PA = NPA.
(2) There exists a computable oracle A such that PA ̸= NPA.

Proof To show (1)

• Let A be a PSPACE complete problem such as TQBF (Lecture02-06). First, obviously
PA ⊂ NPA ⊂ PSPACEA.

• Since A is PSPACE, one can compute PSPACEA in PSPACE without using A as an
oracle. That is, PSPACEA ⊂ PSPACE.

• Finally, due to the PSPACE completeness of A, PSPACE ⊂ PA.

• Therefore, PA = NPA = PSPACEA.

17 / 19

Logic and
Computation

K. Tanaka

Recap

Introduction

Low sets

Polynomial-time
reducibility

To show (2)

• For any A ⊂ {0, 1}∗, B = {0|x| : x ∈ A} is in NPA.

• So, we only need to construct a computable A =
⋃

s As such that B /∈ PA.

• Let Me enumerate deterministic machines (or sets accepted by such machines)
running in polynomial pe time.

• We want to prove Re : M
A
e ̸= B for all e. That is, for each e, we guarantee the

existence of n such that
MA

e (0n) ̸= B(0n).

• Assume that As is constructed at step s = e. Then, take n greater than any number
used in the previous constructions and 2n > pe(n).

• When MAs
e (0n) = 1, set As+1 = As. Since a word with length n will never be added

to A, we have B(0n) = 0.

• Next assume MAs
e (0n) = 0. Since this computation queries the oracle As at most

pe(n) times, by the assumption 2n > pe(n) there is a word x of length n that is

irrelevant to the oracle query. So if we set As+1 = As ∪ {x}, MAs+1
e (0n) = 0, but

B(0n) = 1. □

18 / 19

Logic and
Computation

K. Tanaka

Recap

Introduction

Low sets

Polynomial-time
reducibility

Further Reading� �
• Kozen, D. C. (2006). Theory of computation (Vol. 170). Heidelberg: Springer.

• Soare, R. I. (2016). Turing computability. Theory and Applications of
Computability. Springer.� �

Thank you for your attention!

19 / 19

	Recap
	Introduction
	Low sets
	Polynomial-time reducibility

