K. Tanaka

Recap

Introduction

Low sets

Polynomial-time reducibility Logic and Computation II Part 6. Recursion-theoretic hierarchies

Kazuyuki Tanaka

BIMSA

May 5, 2023

・ロト ・回ト ・ヨト ・ヨト

≡ ೨۹৫ 1 / 19

K. Tanaka

Recap

ntroduction

Low sets

Polynomial-time reducibility

Logic and Computation II -

- Part 4. Formal arithmetic and Gödel's incompleteness theorems
- Part 5. Automata on infinite objects
- Part 6. Recursion-theoretic hierarchies
- Part 7. Admissible ordinals and second order arithmetic

✓ Part 4. Schedule

- Apr.25, (1) Oracle computation and relativization
- Apr.27, (2) m-reducibility and simple sets
- May 4, (3) T-reducibility and Post's problem
- May 9, (4) Arithmetical hierarchy and polynomial-time hierarchy
- May 11, (5) Analytical hierarchy and descriptive set theory I
- May 16, (6) Analytical hierarchy and descriptive set theory II

K. Tanaka

Recap

Introductio

Low sets

Polynomial-time reducibility

1 Recap

2 Introduction

3 Low sets

4 Polynomial-time reducibility

Today's topics

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の Q () 3 / 19

K. Tanaka

Recap

- Introduction
- Low sets
- Polynomial-time reducibility

• $A \leq_{\mathrm{m}} B$, if there exists a computable function f such that for any x,

$$x \in A \quad \Leftrightarrow \quad f(x) \in B.$$

- $A \leq_{\mathrm{T}} B$, if A is computable in oracle B (i.e., recursive in χ_B).
- A set A is said to be (T-)complete/m-complete (with respect to CE) if A is CE and B ≤_T A / B ≤_m A for any CE set B.

Theorem (Post's theorem, 1944)

There exists a CE set that is neither computable nor m-complete.

- Post's problem: Is there a CE set that is neither computable nor (T-)complete.
- To challenge this problem, various notions of CE sets (such as immune sets, simple sets, and productive sets) were introduced. A simple set satisfies Post's theorem.

Recap

K. Tanaka

Recap

Introduction

- Low sets
- Polynomial-time reducibility

Introduction

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Post's problem was independently solved by Friedberg (1957) and Muchnik (1956). Their proof technique is now called the **finite injury priority argument**.
- Although this proof method is already common in the study of computability, it is still difficult for a novice to grasp the argument. So, it may be a good idea to start with a quick look at its outline, and then gradually deepen your understanding by reading the proof repeatedly.
- Now, if $A \leq_T B$ but not $B \leq_T A$, we write $A <_T B$. Then, Post's problem can be expressed as follows.

Theorem (Friedberg, Mucinik)

There exists a set A such that $\varnothing <_{\rm T} A <_{\rm T} {\rm K}$.

K. Tanaka

Recap

- Introductior
- Low sets
- Polynomial-time reducibility

- In the last lecture, we proved Post's theorem by showing the existence of a simple set, which is incomputable CE set that is not m-complete.
- Today we introduce the notion of **low sets** to extend from "non-m-complete" to "non-T-complete".
- Fix a set $A \subset \mathbb{N}$, and let $\{\varphi_e^A\}$ be a Gödel numbering of partial recursive functions $\varphi_0, \varphi_1, \ldots$ in A. Suppose W_x^A and K^A are also defined naturally as follows:

$$\begin{split} W^A_x &:= \{ z \mid \varphi^A_x(z) \downarrow \}, \\ \mathbf{K}^A &:= \{ x \mid \varphi^A_x(x) \downarrow \} = \{ x \mid x \in W^A_x \}. \end{split}$$

- We can prove that K^A is not computable in A, etc., in the same way as $A = \emptyset$.
- K^A is also written as A' and called A-jump.

Definition

A set A such that $A' \leq_{\mathrm{T}} \mathrm{K}$ is called **low**.

Low sets

3

K. Tanaka

Recap

ntroduction

Low sets

Polynomial-time reducibility

Lemma

$A <_{\mathrm{T}} \mathrm{K}$ if A is a low set.

Proof If A is a low set, $A <_{T} A' \leq_{T} K$, and so $A <_{T} K$.

Thus, to solve Post's problem, it is sufficient to prove the following:

Lemma (main lemma for Post's problem)

There exists a simple low set.

- We introduce some notations related to oracle computations.
- By " $\varphi_{e,s}^A(x) = y$ ", we denote the computation of $\varphi_e^A(x) = y$ will be completed within s steps, and if it exceeds s steps, we denote it as $\varphi_{e,s}^A(x) \uparrow$.
- For a given s, it is decidable whether or not the computation terminates within s steps. Thus, " $\varphi_{e,s}^A(x) = y$ " is a function computable in A (in fact, primitive recursive in A). Also, \uparrow can be regarded as a finite value.
- It doesn't matter how you measure the number of steps. What we essentially need is $\varphi^A_e(x) = y \ (<\infty) \Leftrightarrow \exists \sigma \subset A \ \exists s \ \forall \tau \supseteq \sigma \ \forall t \ge s \ \varphi^\tau_{e,t}(x) = y.$

7 / 19

• Here $\sigma \subset A$ means σ is an initial segment of χ_A . Let $W_{e,s}^A := \operatorname{dom} \varphi_{e,s}^A$.

K. Tanaka

Recap

- Introduction
- Low sets
- Polynomial-time reducibility

Proof

- In the finite injury priority argument, a desired CE set A is constructed as the infinite sum U_s A_s of finite sets A_s, where A₀ = Ø and A_s is "the (finite) set of numbers that are verified to be members of A within s step". Once an element is determined to be a member of A, it is never removed. Thus A_s ⊂ A_{s+1} for each s.
- To ensure that A is low and simple, we construct A_s to satisfy several requirements.
- A **positive requirement** is satisfied by adding some elements to a desired set A and a **negative requirement** is by excluding some elements from A.
- Satisfying one requirement may **injure** another requirement that is already satisfied. So, **priorities** are set to all requirements, so that a requirement will be injured by only a finite number of requirements (with higher-priority).

- K. Tanaka
- Recap
- ntroduction
- Low sets
- Polynomial-time reducibility

- $\bullet~A$ is low and simple if all of the following are satisfied.
 - (i) A is CE,
 - (ii) A^c is infinite,
 - (iii) \boldsymbol{A} has a common element with each infinite CE set, and
 - (iv) $\mathbf{K}^A \leq_{\mathbf{T}} \mathbf{K}$.
- In the above, condition (i) naturally holds from the inductive construction of *A*. Condition (ii) is also easily satisfied.
- The essential ones are the positive condition (iii) and the negative condition (iv). Rewriting these into *requirements* for each *e*, we have

$$\begin{array}{rcl} P_e & : & |W_e| = \infty \Rightarrow A \cap W_e \neq \varnothing \\ N_e & : & \exists^{\infty} s \ \varphi^{A_s}_{e,s}(e) \downarrow \Rightarrow \varphi^{A}_e(e) \downarrow \,. \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Here, \exists^{∞} means "exists infinitely many".

K. Tanaka

Recap

Introduction

Low sets

Polynomial-time reducibility

- It is clear that (iii) holds if P_e holds for each e.
- Next, we show that (iv) holds if N_e holds for each e. First, assume that $s \mapsto A_s$ is computable.

If N_e holds, then

$$\begin{split} \exists^{\infty} s \ \varphi_{e,s}^{A_s}(e) \downarrow \Rightarrow \ \varphi_e^A(e) \downarrow \Rightarrow \ \exists t \forall s > t \ \varphi_{e,s}^{A_s}(e) \downarrow \\ \Rightarrow \ \forall t \exists s > t \ \varphi_{e,s}^{A_s}(e) \downarrow \equiv \ \exists^{\infty} s \ \varphi_{e,s}^{A_s}(e) \downarrow . \end{split}$$

(ロ) (同) (三) (三) (三) (0)

10 / 19

• Thus,
$$\mathbf{K}^A = \{e: \varphi^A_e(e) \downarrow\}$$
 is a Δ_2 set.

Corollary (Lecture 06-01)

 $A \text{ is } \Delta_2 \text{ if and only if } A \leq_T \mathbf{K}.$

• By the above fact, we have $K^A \leq_T K$.

K. Tanaka

- Recap
- ntroduction
- Low sets
- Polynomial-time reducibility

- Now we explain why N_e is a negative requirement.
- We define the following computable function r as a tool to control N_e :

$$r(e,s) = u(A_s, e, e, s).$$

Here, the right-hand side is called the **use function**, which is 1 + the maximum number used in the computation of $\varphi_{e,s}^{A_s}(e)$, and 0 if the computation never halts.

- If $s \mapsto A_s$ is assumed to be computable, then r is also computable, which is called the restraint function.
- That is, given A_s , if $\varphi_{e,s}^{A_s}(e) \downarrow$, then by excluding (not adding) elements x less than r(e,s) from A, we have $A \upharpoonright r = A_s \upharpoonright r$, so $\varphi_e^A(e) \downarrow$, and N_e works as a negative requirement.

11 / 19

K. Tanaka

- Recap
- ntroduction
- Low sets
- Polynomial-time reducibility

• Among all P_e and N_e , set the priority as

 $P_0 > N_0 > P_1 > N_1 > P_2 > N_2 > \dots$

- Note that for any requirement there are only a finitely many requirements with higher priorities. Numbers below r(e, s) are added to A only for P_i with i < e.
- Now, we show the construction of *A*.
 - Step s = 0: Set $A_0 = \emptyset$.

• Step s + 1: Assume that A_s is obtained. If there is an $i \leq s$ which satisfies (i) $W_{i,s} \cap A_s = \emptyset$, and (ii) $\exists x \in W_{i,s}(x > 2i \land \forall e \leq i \ r(e,s) < x)$, then choose the smallest x that satisfies (ii) and set $A_{s+1} = A_s \cup \{x\}$. Then the requirement P_i is satisfied, and after s + 1 it will never receive attention.

12 / 19

If there is no such $i \leq s$, put $A_{s+1} = A_s$.

K. Tanaka

Recap

ntroduction

Low sets

Polynomial-time reducibility

• When $A_{s+1}=A_s\cup\{x\},$ for e such that $x\leq r(e,s),$ N_e is injured by x at s+1. Then, we have

– Claim 1

For every $e{\rm ,}~N_e{\rm }$ is injured at most finitely many times.

(::) N_e can be injured only by P_i for i < e.

✓ Claim 2

For all $e\text{, }r(e)=\lim_{s}r(e,s)$ exists and hence N_{e} holds.

(::) Fix any e. From Claim 1, there exists a step s_e such that N_e is not injured after s_e . But if $\varphi_{e,s}^{A_s}(e) \downarrow$ for $s > s_e$, then for $t \ge s$, r(e,t) = r(e,s) and so $r(e) = \lim_s r(e,s)$ exists. Hence $A_s \upharpoonright r = A \upharpoonright r$ and $\varphi_e^A(e) \downarrow$, which implies N_e holds.

化白豆 化间面 化医原油 医原生素

K. Tanaka

Recap

ntroduction

Low sets

Polynomial-time reducibility

- Claim 3

 P_i holds for all i.

(::) Suppose that W_i is an infinite set. From Claim 2, we take such an s that

 $\forall t \ge s \ \forall e \le i \ r(e,t) = r(e).$

We may assume that no P_j with j < i receives attention after $s' (\geq s),$ In addition, take t > s' such that

$$\exists x \in W_{i,t} (x > 2i \land \forall e \le i \ r(e) < x).$$

Then we already have $W_{i,t} \cap A_t \neq \emptyset$ or P_i receives attention at t+1. In either case, $W_{i,t} \cap A_{t+1} \neq \emptyset$, and so P_i holds.

From the above, $A = \bigcup_{s \in \mathbb{N}} A_s$ is a simple low set. Also, A^c is infinite, since from condition (ii) that x > 2i, we have $|\{x \in A : x \le 2i\}| \le i$.

14 / 19

K. Tanaka

Recap

Introduction

Low sets

Polynomial-time reducibility Friedberg and Mucinik actually proved the following assertion.

Theorem (Friedberg, Muchnik)

There exist CE sets A, B such that $A \not\leq_{\mathrm{T}} B$ and $B \not\leq_{\mathrm{T}} A$.

It is clear that A, B in this theorem are neither computable nor complete. By the finite injury priority argument, these sets are constructed as $A = \bigcup_s A_s$ and $B = \bigcup_s B_s$ with the following requirements:

 $\begin{aligned} R_{2e} &: \quad A \neq W_e^B \\ R_{2e+1} &: \quad B \neq W_e^A \end{aligned}$

Among many generalizations of the above theorem, the following theorem is particularly important.

Theorem (G. E. Sacks*)

Let C be an incomplete CE set. (1) There is a simple set A such that $C \not\leq_{\mathrm{T}} A$. (2) There exists low CE sets A, B s.t. $A \not\leq_{\mathrm{T}} B$ and $B \not\leq_{\mathrm{T}} A$ with $C = A \cup B$ and $A \cap B = \emptyset$.

15 / 19

* For more detalis, refer to Soare (2016).

K. Tanaka

Recap

ntroduction

- Low sets
- Polynomial-time reducibility

Polynomial-time reducibility

- Finally, we discuss the polynomial-time versions of m-reduction and T-reduction.
- A is polynomial (time) reducible to B ($A \leq_{P} B$) if there exists a polynomial time computable function f and $x \in A \Leftrightarrow f(x) \in B$. This is a kind of m-reduciblity, which also written as $A \leq_{m}^{P} B$.
- On the other hand, A is polynomial-time Turing reducible to B $(A \leq_{\mathrm{T}}^{\mathrm{P}} B$ or $A \in \mathrm{P}^{B}$) if there exists a polynomial q and a deterministic Turing machine M^{B} with oracle B that can decide whether $x \in A$ within O(q(|x|)) time.
- We will not consider how to measure the time required for querying the oracle $(n \in B)$. We only treat it very naively as shown in the proof of the next theorem.
- Furthermore, making M^B nondeterministic, we also defines $A \in NP^B$.

K. Tanaka

Recap

ntroduction

Low sets

Polynomial-time reducibility

It is clear that if $A \leq_{\mathrm{m}}^{\mathrm{P}} B$ then $A \leq_{\mathrm{T}}^{\mathrm{P}} B$. The reverse does not hold over a large class such as EXP(TIME) (Ladner, Lynch, and Selman [1975]).

Theorem (Baker, Gill, Solovay (1975))

(1) There exists a computable oracle A such that $P^A = NP^A$. (2) There exists a computable oracle A such that $P^A \neq NP^A$.

Proof To show (1)

- Let A be a PSPACE complete problem such as TQBF (Lecture02-06). First, obviously $P^A \subset NP^A \subset PSPACE^A$.
- Since A is PSPACE, one can compute PSPACE^A in PSPACE without using A as an oracle. That is, PSPACE^A \subset PSPACE.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

17 / 19

- Finally, due to the PSPACE completeness of A, PSPACE $\subset P^A$.
- Therefore, $P^A = NP^A = PSPACE^A$.

K. Tanaka

- Recap
- ntroductio
- Low sets
- Polynomial-time reducibility

- To show (2)
 - For any $A \subset \{0,1\}^*$, $B = \{0^{|x|} : x \in A\}$ is in NP^A.
 - So, we only need to construct a computable $A = \bigcup_s A_s$ such that $B \notin \mathsf{P}^A$.
 - Let M_e enumerate deterministic machines (or sets accepted by such machines) running in polynomial p_e time.
 - We want to prove $R_e: M_e^A \neq B$ for all e. That is, for each e, we guarantee the existence of n such that

 $M_e^A(0^n) \neq B(0^n).$

- Assume that A_s is constructed at step s = e. Then, take n greater than any number used in the previous constructions and $2^n > p_e(n)$.
- When $M_e^{A_s}(0^n) = 1$, set $A_{s+1} = A_s$. Since a word with length n will never be added to A, we have $B(0^n) = 0$.
- Next assume $M_e^{A_s}(0^n) = 0$. Since this computation queries the oracle A_s at most $p_e(n)$ times, by the assumption $2^n > p_e(n)$ there is a word x of length n that is irrelevant to the oracle query. So if we set $A_{s+1} = A_s \cup \{x\}$, $M_e^{A_{s+1}}(0^n) = 0$, but $B(0^n) = 1$.

18/19

K. Tanaka

Recap

Introduction

Low sets

Polynomial-time reducibility

- Further Reading
 - Kozen, D. C. (2006). Theory of computation (Vol. 170). Heidelberg: Springer.

イロト イヨト イヨト

• Soare, R. I. (2016). *Turing computability. Theory and Applications of Computability.* Springer.

Thank you for your attention!