Logic and
Computation

K. Tanaka

Logic and Computation |l

Part 6. Recursion-theoretic hierarchies

Kazuyuki Tanaka
BIMSA
May 5, 2023

Sy LrmES
N (4 MATHEMATICAL SCIENCES AND APPLICATIONS

1/19

et Logic and Computation Il

K. Tanaka

¢ Part 4. Formal arithmetic and Godel’s incompleteness theorems
¢ Part 5. Automata on infinite objects
® Part 6. Recursion-theoretic hierarchies

® Part 7. Admissible ordinals and second order arithmetic

-~ Part 4. Schedule

® Apr.25, (1) Oracle computation and relativization
® Apr.27, (2) m-reducibility and simple sets
* May 4, (3)
e May 9, (4) Arithmetical hierarchy and polynomial-time hierarchy
® May 11, (5) Analytical hierarchy and descriptive set theory |

May 16, (6) Analytical hierarchy and descriptive set theory I

T-reducibility and Post’s problem

2/19

Logic and
Computation

K. Tanaka TOday,S tOpiCS

Recap
Introduction
Low sets

Polynomial-time

il @ Recap

@® Introduction
© Low sets

O Polynomial-time reducibility

3/19

Logic and
Computation

K. Tanaka Reca p

Recap

o A <, B, if there exists a computable function f such that for any z,
reA & f(z)eB.

e A <t B, if Ais computable in oracle B (i.e., recursive in xp).

® A set A is said to be (T-)complete/m-complete (with respect to CE) if A is CE and
B <t A/ B <, A for any CE set B.

Theorem (Post’s theorem, 1944)

There exists a CE set that is neither computable nor m-complete.

® Post’s problem: Is there a CE set that is neither computable nor (T-)complete.

® To challenge this problem, various notions of CE sets (such as immune sets, simple
sets, and productive sets) were introduced. A simple set satisfies Post's theorem.

4/19

Logic and
Computation

% et Introduction

fnireduction ® Post’s problem was independently solved by Friedberg (1957) and Muchnik (1956).
Their proof technique is now called the finite injury priority argument.

e Although this proof method is already common in the study of computability, it is still
difficult for a novice to grasp the argument. So, it may be a good idea to start with a
quick look at its outline, and then gradually deepen your understanding by reading the
proof repeatedly.

® Now, if A <t B but not B <1 A, we write A <1 B. Then, Post’s problem can be
expressed as follows.

Theorem (Friedberg, Mucinik)

There exists a set A such that @ <1t A <1 K.

5/19

Logic and
Computation

K. Tanaka LOW Sets

® |n the last lecture, we proved Post’s theorem by showing the existence of a simple set,
which is incomputable CE set that is not m-complete.

Low sets

® Today we introduce the notion of low sets to extend from “non-m-complete” to
“non-T-complete”.
® Fixaset ACN, and let {2} be a Godel numbering of partial recursive functions

©0,01,-..in A. Suppose W and K4 are also defined naturally as follows:
Wati={z] 3 (2) 4},
KA = {olef@)) = folveWAl
® We can prove that K4 is not computable in A, etc., in the same way as A = &.
e K4 is also written as A’ and called A-jump.
Definition
A set A such that A’ <1 K is called low.

6/19

Logic and
Computation

K. Tanaka

Low sets

Lemma
A<t Kif Ais a low set.

Proof If Aisalowset, A<t A’ <t K, and so 4 <1 K. O

Thus, to solve Post’s problem, it is sufficient to prove the following:

Lemma (main lemma for Post's problem)

There exists a simple low set.

We introduce some notations related to oracle computations.

By “p2,(z) =", we denote the computation of ¢/ (z) = y will be completed within
s steps, and if it exceeds s steps, we denote it as @és(m) 0

For a given s, it is decidable whether or not the computation terminates within s
steps. Thus, “pZ',(z) =y" is a function computable in A (in fact, primitive recursive
in A). Also, 1 can be regarded as a finite value.

It doesn’'t matter how you measure the number of steps. What we essentially need is
pMx) =y (<o0) & o CAIs VT D0 Vt>s ¢f (x) = y.

Here o C A means o is an initial segment of x 4. Let W2, := domep!,. 7/19

Logic and
Computation

K. Tanaka

Proof

® |n the finite injury priority argument, a desired CE set A is constructed as the infinite
ey st sum (J, A of finite sets A, where Ay = @ and A, is “the (finite) set of numbers
that are verified to be members of A within s step”. Once an element is determined
to be a member of A, it is never removed. Thus Ay C A,y for each s.

® To ensure that A is low and simple, we construct Ay to satisfy several requirements.

® A positive requirement is satisfied by adding some elements to a desired set A and a
negative requirement is by excluding some elements from A.

® Satisfying one requirement may injure another requirement that is already satisfied.
So, priorities are set to all requirements, so that a requirement will be injured by only
a finite number of requirements (with higher-priority).

8/19

Logic and
Computation

K- Tanaka ® A is low and simple if all of the following are satisfied.

(i) Ais CE,

(i) A° is infinite,
(iii) A has a common element with each infinite CE set, and
(iv) KA <1 K.

Low sets

® In the above, condition (i) naturally holds from the inductive construction of A.
Condition (ii) is also easily satisfied.

® The essential ones are the positive condition (iii) and the negative condition (iv).
Rewriting these into requirements for each e, we have

P, : [Wel=00=ANW, #g>
Ne @ F%sgls(e) I= pil(e) L.

Here, 3°° means “exists infinitely many”.

9/19

Logic and
Computation

SR ® |t is clear that (iii) holds if P. holds for each e.

® Next, we show that (iv) holds if N, holds for each e. First, assume that s — A is

N i computable.
If N, holds, then

3% pesle) L= pl(e) L= 3tvs>t pli(e) |
= Vids>t plli(e) L = I%s pli(e) |
® Thus, KA = {e:pd(e) |} isa Ay set.
Corollary (Lecture 06-01)

Ais Ay if and only if A <7 K.

® By the above fact, we have K4 <t K.

10/ 19

Logic and
Computation

K. Tanaka
® Now we explain why N, is a negative requirement.

® \We define the following computable function r as a tool to control N,:

Low sets

r(e,s) = u(As, e, e, s).

Here, the right-hand side is called the use function, which is 1 + the maximum
number used in the computation of 2<(e), and 0 if the computation never halts.

® |f s+— Ay is assumed to be computable, then r is also computable, which is called the
restraint function.

® That is, given A, if Lpég(e) 1, then by excluding (not adding) elements x less than
r(e,s) from A, we have A[r = A, [r, so p2(e) |, and N, works as a negative
requirement.

11/19

Logic and
Computation

K. Tanaka ® Among all P, and N, set the priority as

Py>Ng>P; >N; >PFP, >Ny > ...
Low sets

® Note that for any requirement there are only a finitely many requirements with higher
priorities. Numbers below (e, s) are added to A only for P; with ¢ < e.

® Now, we show the construction of A.
® Step s =0: Set Ag = 2.

® Step s+ 1: Assume that Ag is obtained.
If there is an ¢ < s which satisfies (i) W; s N A, = &, and
(i) Jz € Wi s(x > 2i AVe <ir(e,s) <x),
then choose the smallest « that satisfies (ii) and set As11 = As U {x}.
Then the requirement P; is satisfied, and after s+ 1 it will never receive attention.

If there is no such i <'s, put A;41 = As.

12/19

Logic and
Computation

K. Tanaka
® When Ag41 = A; U {x}, for e such that = < r(e,s), N, is injured by x at s + 1.
Then, we have

Low sets Claim 1
[For every e, N, is injured at most finitely many times.]
(") N can be injured only by P; for i < e.
Claim 2
[For all e, r(e) = lim, r(e, s) exists and hence N, holds. j

(") Fix any e. From Claim 1, there exists a step s. such that N, is not injured after s..
But if @é;(e) 4 for s > s, then for t > s, r(e,t) = r(e,s) and so r(e) = lims (e, s)
exists. Hence A, [r = A[r and p2(e) |, which implies N, holds.

13 /19

Logic and
Computation

K. Tanaka

Claim 3
[Pi holds for all 7.]

(") Suppose that W; is an infinite set. From Claim 2, we take such an s that

Low sets

YVt > s Ve <ir(et)=r(e).

We may assume that no P; with j < i receives attention after s'(> s), In addition, take
t > s’ such that

dx € Wi(x > 2i AVe <ir(e) <x).

Then we already have W, ; N A; # @ or P; receives attention at £ + 1. In either case,
Wit N A1 # @,and so P; holds.

From the above, A = UseN A, is a simple low set. Also, A€ is infinite, since from condition
(i) that & > 2, we have | {z € A: 2 < 2i} |<i. O

14 /19

Logic and
Computation

K. Tanaka

Low sets

Friedberg and Mucinik actually proved the following assertion.

Theorem (Friedberg, Muchnik)
There exist CE sets A, B such that A L1t B and B £ A.

It is clear that A, B in this theorem are neither computable nor complete. By the finite
injury priority argument, these sets are constructed as A = |J, As and B = J, B; with the
following requirements:

Roe : A# WP
R25+1 . B 75 WeA

Among many generalizations of the above theorem, the following theorem is particularly
important.

Theorem (G. E. Sacks*)

Let C be an incomplete CE set.

(1) There is a simple set A such that C £ A.

(2) There exists low CE sets A, B s.t. A €1 B and B £1 A with C = AU B and
ANB=2.

1519

>"For more detalis, refer to Soare (2016).

Logic and
Computation

K Tans Polynomial-time reducibility

Finally, we discuss the polynomial-time versions of m-reduction and T-reduction.

Polynomial-time

TRy e A is polynomial (time) reducible to B (A <p B) if there exists a polynomial time
computable function f and x € A < f(z) € B. This is a kind of m-reduciblity, which
also written as A <P B.

On the other hand, A is polynomial-time Turing reducible to B (A <} B or
A € PB) if there exists a polynomial ¢ and a deterministic Turing machine M with
oracle B that can decide whether z € A within O(g(|z])) time.

We will not consider how to measure the time required for querying the oracle
(n € B). We only treat it very naively as shown in the proof of the next theorem.

Furthermore, making M?® nondeterministic, we also defines A € NPE.

16 /19

Logic and
Computation

It is clear that if A gﬁl B then A g% B. The reverse does not hold over a large class such
as EXP(TIME) (Ladner, Lynch, and Selman [1975]).

Theorem (Baker, Gill, Solovay (1975))

roneartime (1) There exists a computable oracle A such that P4 = NP,
(2) There exists a computable oracle A such that PA # NP4,

K. Tanaka

Proof To show (1)

® Let A be a PSPACE complete problem such as TQBF (Lecture02-06). First, obviously
P4 c NP C PSPACE™.

® Since A is PSPACE, one can compute PSPACE” in PSPACE without using A as an
oracle. That is, PSPACE" C PSPACE.

® Finally, due to the PSPACE completeness of A, PSPACE C pPA.
* Therefore, P4 = NP* = PSPACE".

17 /19

Logic and

@it To show (2)
K. Tanaka ® Forany AC {071}*v B = {()|I| x € A} is in NP,
® So, we only need to construct a computable A = (J, A, such that B ¢ P4.

® |et M, enumerate deterministic machines (or sets accepted by such machines)
R e running in polynomial p. time.

reducibility

® We want to prove R, : M # B for all e. That is, for each e, we guarantee the

existence of n such that
MA0") # B(0™).

® Assume that A is constructed at step s = e. Then, take n greater than any number
used in the previous constructions and 2™ > p.(n).

® When MA:(0") =1, set A, = A,. Since a word with length n will never be added
to A, we have B(0™) = 0.

® Next assume MA:(0") = 0. Since this computation queries the oracle A, at most
pe(n) times, by the assumption 2™ > p.(n) there is a word z of length n that is
irrelevant to the oracle query. So if we set A,y = A, U {z}, MeAs“(O") =0, but
B(0") =1. O

1819

Logic and
Computation

K. Tanaka

Polynomial-time
reducibility

Further Reading

® Kozen, D. C. (2006). Theory of computation (Vol. 170). Heidelberg: Springer.

® Soare, R. I. (2016). Turing computability. Theory and Applications of
Computability. Springer.

Thank you for your attention!

19/19

	Recap
	Introduction
	Low sets
	Polynomial-time reducibility

