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Logic and Computation II� �
• Part 4. Formal arithmetic and Gödel’s incompleteness theorems

• Part 5. Automata on infinite objects

• Part 6. Recursion-theoretic hierarchies

• Part 7. Admissible ordinals and second order arithmetic� �
Part 4. Schedule� �
• Apr.25, (1) Oracle computation and relativization

• Apr.27, (2) m-reducibility and simple sets

• May 4, (3) T-reducibility and Post’s problem

• May 9, (4) Arithmetical hierarchy and polynomial-time hierarchy

• May 11, (5) Analytical hierarchy and descriptive set theory I

• May 16, (6) Analytical hierarchy and descriptive set theory II� �
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Recap

• Fix a function ξ : N → N. Then, a function f : Nn → N is said to be computable in
oracle ξ if there exists an algorithm that computes f using ξ as a database.

• The three classes of functions (primitive recursive / recursive / partial recursive) are
extended as primitive recursive in ξ / recursive in ξ / partial recursive in ξ, by adding
ξ to the initial functions in each definition.

• Almost all the theorems of recursion theory can be extended to statements with oracle
ξ, which are called relativizations of the original theorems.

• Relativized Kleene normal form theorem: A partial recursive function in ξ can be
expressed as U(µyT ξ(e, x1, · · · , xn, y)), also denoted {e}ξ(x1, · · · , xn).

• A partial recursive functional F : Nn × (NN)k → N is represented as

F (x1, · · · , xn, ξ1, · · · , ξk) = U(µyT (e, x1, · · · , xn, y, ξ1 ↾y, · · · , ξk ↾y)).
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Definition (Relativized arithmetical hierarchy)

Given a ξ : N → N and k ≥ 0, the following set A is said to be Σ2k+1(ξ) (with index e).

(x1, . . . , xn) ∈ A⇔ ∃y1∀y2 · · · ∃y2k−1∀y2k{e}ξ(x1, . . . , xn, y1, . . . , y2k) ↓ .

The following set A is a Σ2k+2(ξ) set (with index e).

(x1, . . . , xn) ∈ A⇔ ∃y1∀y2 · · · ∀y2k∃y2k+1{e}ξ(x1, . . . , xn, y1, . . . , y2k) ↑ .

Πk(ξ) is the complement of Σk(ξ). ∆k(ξ) is Σk(ξ) and Πk(ξ).

Theorem (Relativized arithmetical hierarchy theorem)

For every k ≥ 1 , Σk(ξ) ∪Πk(ξ) ⊊ ∆k+1(ξ).

Theorem (Post)

A is ∆k+1(ξ) if and only if there exists some Σk(ξ) set B such that A is computable in χB

(A ≤T B). In particular, A is ∆2 if and only if A ≤T K.
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introduction

• The early concern in recursion theory or computability theory was to understand the
structure of the m-degrees and T-degrees of CE sets.

• The m-degree of a set A is the equivalence class of A in the many-to-one reducibility
≤m. The T-degree of A is the equivalence class of A in the Turing reducibility ≤T.

• Obviously, there are at least two CE T-degrees. That is, the degree of the computable
sets (or the degree of ∅) and the degree of the complete CE sets (or the degree of the
halting problem).

• Since any m-degree is a subset of a T-degree, there are at least two CE m-degrees
(except for ∅ and N).
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• Furthermore, Post showed that there are more than two
m-degrees of CE sets, and raised the corresponding
question about T-degrees (1944).

• Post’s problem motivated the deep research on degree
structures, and was independently solved by Friedberga and
Muchnikb.

• The technique used in their proof is called the finite injury
priority method, and subsequently many improvements
and developments have been made, such as infinite injury
priority method and tree injury priority method.

aR. M. Friedberg, Two recursively enumerable sets of incomparable
degrees of unsolvability, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 236-238

bA. A. Muchnik, Negative answer to the problem of reducibility of the
theory of algorithms(Russian), Dokl. Akad. Nauk SSSR 108 (1956),
194-197.

Emil Post

Richard Friedberg is a theoretical physicist of exceptional talents and very humble nature.

The following quote by David Mermin perhaps sums it all up: “ Richard Friedberg is the smartest

person I have ever met (and I’ve met some very smart ones). He is also, an exceptionally decent

person...”.

Above statement resonates with almost everyone who know Friedberg. He is deeply loved,

admired and adored by his colleagues, friends and his students. However, unlike his peers, he is

relatively unknown outside a close circle of those who know him. He does not like promoting his

work and is happily lost in his own magical world of physics and mathematics.

1

R. M. Friedberg

A. A. Muchnik
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• First, let us review the basic concepts and results in part 1 of last semester.

Recall Lecture01-06� �
• A sequence (or set) of partial computable functions φ0, φ1, φ2, . . . (with

repetition) is called a CE numbering, if φ(e, x) := φe(x) is a partial computable
function.

• A sequence of CE sets A0, A1, A2, . . ., is called a CE numbering if
{⟨e, x⟩ : x ∈ Ae} is CE.

• The CE numbering of partial computable functions φ0, φ1, φ2, . . . is called a
Gödel numbering if for any CE numbering ψ0, ψ1, ψ2, . . ., there exists a
computable function σ such that for any e,

ψe(x) ∼ φσ(e)(x). (both undefined, or both defined and the same value)� �
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• A typical Gödel numbering is {{e} : e ∈ N}, where {e} is Kleene’s bracket notation.

• For a Gödel numbering φ0, φ1, . . ., let We = {x | φe(x) ↓}, where φe(x) ↓ means that
φe is defined at x. Then, W0,W1, . . . is a CE numbering.

• A typical incomputable CE set is the halting
problem K defined as follows.

K := {x | φx(x) ↓} = {x | x ∈Wx}.

• For A,B ⊂ N, if there exists a computable
function f , for any x,

x ∈ A ⇔ f(x) ∈ B

then we write A ≤m B.

• ∅ and N are minimal with respect to ≤m. K is
an m-complete CE set. Also, there is the degree
of computable sets (except for ∅ and N).

Theorem (Lecture01-06)

For any A ⊂ N, the following
statements are equivalent.
(1) A ≤m K.
(2) A ≤1 K.
(3) A is CE.

Definition (Lecture01-06)

We say that a set A is m-complete
(with respect to CE) if A is CE and
B ≤m A for any CE set B.
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• If A is computable in oracle B (or recursive in χB), we write A ≤T B.

• If A ≤m B then A ≤T B.

• Kc ≤T K is obvious, where Kc is the complement of K. But not Kc ≤m K.

• If A ≤m B and B ≤m A, we write A ≡m B. If A ≤T B and B ≤T A, then A ≡T B.

• The m-degree of A is {B : B ≡m A}. The T-degree of A is {B : B ≡T A}

Homework� �
Show that Kc ≤m K does not hold.� �
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• The minimum degree with respect to ≤m (except for ∅ and N) is the equivalence
class consisting of all computable sets.

• The maximum CE m-degree is the class of m-complete CE sets.

• Post showed that there exists a CE m-degree between these two.

Theorem (Post theorem, 1944)

There exists a CE set that is neither computable nor m-complete.

• Following the above theorem, Post also sought an intermediate T-degree, which is
known as Post’s problem. To challenge it, various notions of CE sets (such as immune
sets, simple sets, and productive sets) were introduced.

Definition

An infinite set B ⊂ N that does not contain an infinite CE subset is called an immune set.
A CE set A ⊂ N whose complement is an immune set is called a simple set.
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• A simple set is a CE set that has a nonempty intersection with any infinite CE set and
whose complement is an infinite set.

• Simple sets are not computable. This is because if it were computable, then its
complement would be an infinite CE set. As we will see later, this set is closely related
to the incompleteness theorem.

• First, we must show the existence of simple sets, which is easily derived from the
following lemma.

Lemma (Dekker)

Let f : N → N be a computable injection. Then

Range(f) ≡T {n : ∃m > n (f(m) < f(n))}.

The set on the right-hand side is called the deficiency set of f , denoted by Dfc(f).
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proof

• Let f : N → N be a computable injection and A = Range(f) and B = Dfc(f).

• To show B ≤T A.

• n ∈ B is equivalent to ∃k < f(n)(k ∈ A ∧ f−1(k) > n), the latter of which is
computable in A. Note that if k ∈ A is known, it is easy to compute the value
f−1(k) = µx(f(x) = k).

• To show A ≤T B.

• The complement Bc of B is always infinite. Because for any x, if we take yx such
that f(yx) = min{f(y) : y ≥ x}, then yx ∈ Bc ∧ yx ≥ x.

• Obviously n ∈ A is equivalent to ∃l ≤ k(f(l) = n)) for a sufficiently large k. So it is
also equivalent to a Σ1 formula ∃k > n(k ∈ Bc ∧ f(k) > n ∧ ∃l ≤ k(f(l) = n)).

• Also, if k ∈ Bc ∧ f(k) > n, then ∀l > k(f(l) > f(k) > n), and so n ∈ A is equivalent
to a Π1 formula ∀k > n(k ∈ Bc ∧ f(k) > n→ ∃l ≤ k(f(l) = n)).

• Therefore, A is computable in B. □
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In part 1, we prove that any nonempty CE set A is represented as the range of computable
injection f . Then, if A is not computable, then Dfc(f) is a simple set. For example,
setting A = K gives a simple set.

Lemma (1)

f : N → N is a computable injection, and if Range(f) is not computable, then Dfc(f) is a
simple set.

Proof
Since B = Dfc(f) is also not computable, it is clear that its complement is not finite.
By way of contradiction, we assume that there exists an infinite CE set C ⊂ Bc.
Then by the second half of the proof for the lemma in page 12, n ∈ Range(f) is equivalent
to

∃k > n(k ∈ C ∧ f(k) > n ∧ ∃l ≤ k(f(l) = n))

and
∀k > n(k ∈ C ∧ f(k) > n→ ∃l ≤ k(f(l) = n)),

which is computable and contradicts the assumption. □
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Incompleteness theorems and simple sets (1/2)� �
• For any CE set C, in a proper arithmetic system T , there exists Σ1 formula φ(x)

n ∈ C ⇔ T ⊢ φ(n).

Now suppose C is a simple set. Since {n : T ⊢ ¬φ(n)} is CE, if it is an infinite
set, it has non-empty intersection with C, which implies the inconsistency of T .

• Thus, if T is a consistent system, {n : T ⊢ ¬φ(n)} is finite.

• On the other hand, since Cc is an infinite set, there are infinitely many n such
that neither φ(n) nor ¬φ(n) can be proved in T .� �
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Incompleteness theorems and simple sets (2/2)� �
• Various concrete examples of C or φ(x) have been studied in relation to the

incompleteness theorem. One of them is the set of non-random numbers.

• For n ∈ N, µe({e}(0) = n) can be regareded as a minimal program that outputs
n, and such e is called the Kolmogorov complexity of n, represented by K(n).

• When K(n) ≥ n, n is called random.

• Then the set {n : K(n) < n} of non-random numbers is a simple set.

• It turns out that there are only finitely many numbers that can be proven to be
random in an appropriate system of arithmetic.� �

Homework� �
Show that {n : K(n) < n} is a simple set.� �
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Definition

A set A ⊂ N that satisfies the following condition is called productive:

• There exists a computable function f such that f(x) ∈ A−Wx for each Wx ⊂ A.

Such an f is called a productive function for A.

Productive sets are not CE sets.

Example� �
The complement Kc of K is a productive set whose productive function is the identity
map λx.x, where (x 7→ f(x) is represented as λx.f(x)).
To show this, supposeWx ⊂ Kc. By the definition of K, x ∈Wx ⇔ x ∈ K. Then either
x ∈ Wx ∧ x ∈ K or x /∈ Wx ∧ x /∈ K, where the former contradicts with Wx ⊂ Kc.
So, only the latter case holds, that is, x ∈ Kc −Wx.� �
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Lemma (2)

A productive set contains an infinite CE subset. Hence the complement of a simple set is
not a productive set.

Proof Let C be a productive set with a productive function f . We will construct an
infinite CE subset of C by applying f repeatedly from ∅.
First, let i0 be the index of the empty set. That is,

Wi0 = ∅ ⊂ C.

Suppose now that Win ⊂ C has been constructed. Then, since f(in) ∈ C −Win , by
putting

Win+1
:= Win ∪ {f(in)},

we have Win+1
⊂ C.

Here, since in+1 is computable in in, the set {f(i0), f(i1), f(i2), . . . } is an infinite
CE subset of C. The second half follows from the definition of simple sets. □
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A CE set A such that B ≤m A for any CE set B is called an m-complete CE set. In
particular, K is an m-complete CE set.

Lemma (3)

If A is an m-complete CE set, then Ac is a productive set.

Proof Let A be an m-complete CE set. Then there exists a computable function f such
that for any x

x ∈ K ⇔ f(x) ∈ A.

Thus Kc = f−1(Ac).
Now let τ(e) be the index of λx.φe(f(x)). That is,

Wτ(e) = {x | φe(f(x)) ↓}

Then, for We ⊂ Ac,

Wτ(e) = {x | f(x) ∈We} = f−1(We) ⊂ f−1(Ac) = Kc.

From the example in page 17, the identity map λx.x is a productive function on Kc, so

τ(e) ∈ Kc −Wτ(e) = f−1(Ac)− f−1(We) = f−1(Ac −We).

That is, f(τ(e)) ∈ Ac −We. Thus f ◦ τ is a productive function for Ac. □
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Now we are ready to show the post theorem.

Theorem (Post theorem, 1944)

There exists an incomputable CE set that is not m-complete.

Proof By Lemma (1) there exists a simple set A. By Lemma (2) Ac is not productive. By
Lemma (3) A is not m-complete. But from the definition of simple sets, A is CE . □

Homework� �
If A ≤m B and A is productive, show that B is also productive.� �
Further Reading� �
• Kozen, D. C. (2006). Theory of computation (Vol. 170). Heidelberg: Springer.

• Soare, R. I. (2016). Turing computability. Theory and Applications of
Computability. Springer.� �

Thank you for your attention!
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