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¢ Part 4. Formal arithmetic and Godel’s incompleteness theorems
¢ Part 5. Automata on infinite objects
® Part 6. Recursion-theoretic hierarchies

® Part 7. Admissible ordinals and second order arithmetic

-~ Part 6. Schedule

® Apr.25, (1) Oracle computation and relativization
® Apr.27, (2) m-reducibility and simple sets
* May 4, (3)
e May 9, (4) Arithmetical hierarchy and polynomial-time hierarchy
® May 11, (5) Analytical hierarchy and descriptive set theory |

May 16, (6) Analytical hierarchy and descriptive set theory I

T-reducibility and Post’s problem
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Introduction

Fix a function £ : N — N. Then, a function f : N — N is said to be computable in ¢
if there exists an algorithm that computes f using £ as a database.

® Consider a Turing machine as a computational model. Besides the usual input tape
and working tapes, it is equipped with an infinite tape storing £ as data, from which
necessary information (values of £(n)) can be retrieved.

® Such a machine is called an oracle Turing machine. A function that can be
computed by oracle ¢ is called £-computable or computable in &.

® The three classes of functions defined in part 1 in last semester (primitive recursive
functions, recursive functions, and partial recursive functions) are extended as
primitive recursive functions in £, recursive functions in &, and partial recursive
functions in £, by adding £ to the initial functions in each definition.
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Definition

Given a function ¢ : N — N, the functions primitive recursive in £ are defined as below.

Oracle
computation

1. Constant 0, successor function S(z) = x + 1, projection
Pl (21, 22,...,2,) = 2; (1 <i<n)and & are primitive recursive in &.

2. Composition.
If g; : N = N, h: N™ — N (1 <4 < m) are primitive recursive in &, so is
f="h(g1,---,9m) : N® = N defined as below:

flze, .. xn) = h(gi(x1, - Tn)y ooy g (T, - -0y X0)).

3. Primitive recursion.
If g:N* = N, h:N"t2 5 N are primitive recursive in &, so is f : N**!1 — N defined
as below:

f(xlv"'vwnvo) :g(xlv"wl’n)v

f(x17""xn7y+1) :h(gj17'"5znay7f(z17"'7$n7y))'
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Definition
The functions recursive in £ are defined as below.

1. Constant 0,
Successor function S(z) =z + 1,
Projection P} (1,22, -+ ,2,) = 2; (1 <4 <n) and & are recursive in &.

Oracle
computation

2. Composition. Analogous to primitive recursive in &.
3. Primitive recursion. Analogous to primitive recursive in &.

4. minimalization (minimization).
Let g : N*T! — N be recursive in £ satisfying that
Vaq -+ -Vap,Jy g(z1, -+ ,2n,y) = 0. Then, the function f : N® — N defined by
f(xlv"' ,(L’n) = uy(g(x1,~~ axnay) = 0)

is recursive in &, where uy(g(z1, -, Tn,y) = 0) denotes the smallest y such that

g(xla"' 7xn7y):0' 6/23
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e, Definition
The function partial recursive in £ are defined as follows.

1. Constant 0, Successor function S(z) = x + 1, Projection
P(x1, 2o, - ,xy) = x; (1 <i<n)and ¢ are partial recursive in &.

2. Composition. If g; : N — N, h: N™ — N(1 <4 < m) are partial recursive in £, the
composed function f = h(g1, -+, gm) : N — N defined by

f(xl7"' ,I‘n) ~ h(g]_<.'1/'17"' amn)7"' 7gm($17"' 71"77,))

is partial recursive in &, where h(gi (21, -+ ,Zn), -, gm(x1,- -+ ,T,)) = 2z means that
each g;(x1,--- ,x,) = y; is defined and h(y1, -+ ,ym) = 2.

Note: By f(x1, -+ ,xn) ~ g(x1, -+ ,2,), we mean that either both functions are
undefined or defined with the same value.
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Oracle
computation

Definition

3. Primitive recursion.
If g: N® = N, h:N""2 — N are partial recursive in &, the function f : N*t! - N
defined by

f(mh'" 7.27”,0) ~ g(xla"' 7-'177;,)
f(l'h'"axnvy—’_l) ~ h(ml,"'axnay7f(xla"'7xn,y))

is partial recursive in &.
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Partial recursive in £ (part 3/3)

Oracle
computation

Definition
4. Minimization.

® Let g : N**! — N be partial recursive in &.

o If “g(x1, -+ ,xn,c) =0, and for each z < ¢, g(x1,- -+ ,x,, 2) is defined with non-zero
values”, then we put py(g(z1,- - ,zn,y) =0) = ¢
if there is no such ¢, then py(g(z1,- -+ ,zn,y) = 0) is undefined.

® Then f: N"™ — N satisfying

f(xla"' 73371) N‘Ll,y(g(l’l, axnay) :0)

is partial recursive in &.
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Definition
Oracle An n-ary relation R C N™ is called (primitive) recursive in &, if its characteristic function
Xr : N" — {0,1} is (primitive) recursive in &;

( - 1 ifR(zy,...,zn)
XR\WTL -+ %) =9 o otherwise

® All the theorems of recursion theory mentioned in part 1 of the last semester can be
extended to statements with oracles, which are called relativizations of the original
theorems. We will show some examples of relativization in the following slides.

® The (partial) recursive functions in £ also match the (partial) computable functions in
&, and the domain of a partial recursive function in £ is called compututably
enumerable in & (¢-CE).
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There are a primitive recursive function U(y) and a primitive recursive relation in &

T¢(e, 1, ,on,y) such that if f(z1,---,x,) is partial recursive in £ , then there exists e
such that
Rl f(‘rh e 7x71) ~ U(/.LyTg(e, L1, 3 Tn, y))a
where puyT¢(e, 1, -+ ,T,,y) takes the smallest value y satisfying T (e, 1, -+ , T, Y);
if there is no such y, it is undefined.
Proof.
® We define a relation T¢(e, 21, -+ , &, y) as follows:
T¢(e, 1, ,Tn,y) < "y is the Godel number (code) of the whole computation

process v of TM of index e with input (z1,---,2,) and oracle £"

® The whole computation process 7y is a sequence of configurations cg >y >+ > ay,

with an initial ap and an accepting a,,, which can regarded as a word over
QU U{r}.

® In general, it is not decidable whether a whole computation process 7y exists or not.
But for a given 7, we can easily check that for each i < n, a; > a;41 is a valid
transition of a TM, as well as o and «,, are an initial and accepting configuraticin7.23
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Relativization

Some remarks on the proof

A primitive recursive function U(y) that extracts the output from the code of the
computational process does not depend on &.

We call U(uyT¢(e, 1, ,xn,y)) a partial recursive function in ¢ of index e,
denoted as {e}*(z1,- -+, x,).

If ¢ in {e}¢(xy1,---,7,) is regarded as an argument, it can be rewritten as

{6}(1‘1, T 7xna§)'

Notice that to evaluate {e}(z1, - ,z,, &), at most the initial segment & [y is used in
the calculation, where y is the code of the whole calculation process «. Furthermore,
if the finite sequence & [y is identified with its code, {e}(x1,- - ,z,, & [y) becomes an

ordinary partial recursive function.
O
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Definition
Let U(y) and T be primitive recursive functions defined in and after the relativized Kleene
normal form theorem. The following function F' : N* x (NY¥)¥ — N is called a partial

recursive functional with index e,

Relativization

F(mh o axnvfla T 751@) = U(MyT(€7£L'1, U axnvyagl {yv T vgk Fy))
® Here NV is the set of total functions from N to N. The domain D of a partial
recursive functional F : N* x (NM)k — N is
(xla"' 7xna€17"' agk) € D<:>HyT(eax1a"' 7$n7y7§1 fy, 75/@ ry)7

which is called a CEset (in a broad sense) or X9 set.

® Such general classes will be treated in the following lectures.
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Relativization

Theorem (Relativized enumeration theorem)

{e}(xq, - ,x,) is partial recursive in £ on e, 1, -+ ,x,, and it is also a partial recursive
functional on e, 1, -+ ,xp,&.

Theorem (Relativized parameter theorem)

For any m,n > 1, there exists a primitive recursive function -:Nm‘H — N such that

{6}5(5171,"' yTny Y1, 7ym) ~ {S:Ln(eayh’” ,ym)}g(wh axn)~

Theorem (Relativized recursion theorem)

Let f(z1, - ,Zn,y) be partial recursive in £. There exists e such that

{e}f(x1,~-~ ) ~ f(xy, 0z, €).
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Relativized arithmetical hierarchy

® Before dealing with the relativization of hierarchies, recall some basic definitions.

® We inductively define hierarchical classes of formulas ¥, and II,, in Lecture04-02. The
sets of natural numbers defined by the ¥; formulas coincides with the CE sets as
proved in Lecture04-03.

® When discussing the form of formulas, the same kind of quantifiers are joined together
as follows.

Jzy - Hl‘n@(.ﬁl, T 71‘71) A 3%@(0(1‘70), e 76('1:’ n-— 1))

where ¢(z,1) is a primitive recursive function that extracts the i-th element x; in the
sequence with code .
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Definition (Relativized arithmetic hierarchy)
Given a £ : N — N and k > 0, the following set A is said to be ¥a541(§) (with index e).

(z1,...,2n) €E A JnVys - - Elygk,Nyzk{e}&(ml, e Ty YLy e s Y2k) -
The following set A is a Xox12(€) set (with index e).
(1, .-, Tn) € A VYo - Yy Jyort1{e}* (@1, oo, Tny Y1, y2k) T

I1; (&) is the complement of Xx(€). Ag(§) is Xi(€) and Ik (§).

® Here, | / 1 means that the function is defined / undefined.
® We fix the arity n of set A C N™ arbitrarily so that ¥;(¢) and II;(§) sets are treated
complementary. In fact, it is enough to consider the case n = 1 using the sequence

code ¢(z,1).

Homework

Show that if R, S are 33(&) sets, so is RN S. Show that if R is defined by a X3(¢)-
formula ¢, so is the set defined by Vy < z¢p.
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Relativized
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Theorem (Relativized arithmetical enumeration theorem)

For each k > 1, there exists 35 (&) (or I1(€)) subset U of N™*1 with the following
property (U is called a universal set). For any X5 (&) (or II;(§)) subset R of N™, there
exists some e such that

R(ﬁrla"' axn) < U(@,.’El,"' 7:L'n)~

Proof.

® In the case of ¥1(), it follows from the relativized enumeration theorem. For the
IT; (€) set, take the complement of universal set U for ¥; ().

® For k> 1, a ¥(§) formula is obtained from a ¥4 (&) or IT;(£) formula by adding
appropriate arithmetical quantifiers in the front. Since there is a universal set (or
formula) for 31 (&) or 1 (£), the formula obtained from it by adding appropriate
arithmetical quantifiers is universal for 3 (&). Similarly for TI;(€). O
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Theorem (Relativized arithmetical hierarchy theorem)

For every k£ > 1 ,

Tk(§) ULk (8) © Agt1(8).

Proof.

keys: relativized arithmetical enumeration theorem and diagonalization argument.

By the relativized arithmetical enumeration theorem, there exists a universal X (¢)
subset U of N2. Then consider the II; (&) subset V (e) of N! defined by —U (e, e).

If V(e) is Xx(§), then there exists some eg such that V(e) < U(eg, e). By substituting
e = eg, we have —U(eg, e9) < V(eg) < Uleo, ep), which is a contradiction.

Therefore, V(e) is not X (§).
Furthermore, by setting W (e) < =V (e), W(e) is not II;(§), but a £ (§) set.

So, if we set Z(e,d) < (V(e) Ad =0)V (W(e) Ad > 0), then Z(e,d) is clearly a
Ap11(€) subset of N2, which is neither 5 (€) nor II(&). O
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Relativived ® Note that we have not defined 3¢ (£), (). To define Xg(€),p(§) in the formal
erithmetical arithmetical hierarchy, £ must also be a formal object such as a formula.

hierarchy

® However, X (£),I1o(€) are often used to denote the primitive recursive relations in £ in
some literature. Then, for the empty oracle (£ = 0), they are simply the primitive
recursive relations, which contradicts with our formal definition: X, I1j represent
bounded formulas or sets defined by them.

® Therefore, no formal definition is given. But a similar statement would hold whatever
¥0(€), (&) are defined, since Aq(€) is well-defined and large.
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A'is Xgy1(€) if and only if there exists some I (&) set B such that A is x5-CE, where x5
is the characteristic function of B. For k = 0, consider IIy(&) as the primitive recursive
relations in &.

Proof

® (=) Suppose A is Xx11(£). By definition, there exists a I (&) predicate
B(x1,...,2n,y1) such that

Post’s theorem

(.Il,...,l‘n) €EAs 3y13($1,-~-,$my1)-

® Therefore,
(1,...,2n) € Ao Jyixp(T1, ..y 20, 1) = 1,

and the right-hand side is xp-CE.
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® (<) Let B be a IT;(¢) set and A be xp-CE.

® By relativized Kleene's normal form theorem, we have,
(xla e 7xn) € A < ElyT(evxlv <o Ty Y, XB fy)
Post's theorem
® Furthermore,

w=xply<eVi<y(i € Be w(i)=1)Aleng(w) =y,

and the right side is Ag41(£). Combining both formulas, A is ¥;41(&). O

In the above lemma, even if B is X (&), the class of xg-CE does not change.
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Theorem (Post)

Ais Ap11(€) if and only if there exists some X (€) set B such that A is computable in x g
(A<t B).

Post’s theorem

Corollary
Ais Ay if and only if A <7 K.

Homework
[Prove Post's theorem by using the last lemma in page 20. ]
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Further Reading

e Kozen, D. C. (2006). Theory of computation (Vol. 170). Heidelberg: Springer.

® Soare, R. I. (2016). Turing computability. Theory and Applications of
S Computability. Springer.

Thank you for your attention!
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