K. Tanaka

Oracle

[Relativization](#page-10-0)

Relativized [arithmetical](#page-14-0) hierarchy

[Post's theorem](#page-19-0)

Logic and Computation II Part 6. Recursion-theoretic hierarchies

Kazuyuki Tanaka

BIMSA

April 25, 2023

23

 \equiv 990

KID KI KI KI KI KI KI KI KI KI

K. Tanaka

Oracle

hierarchy

[Post's theorem](#page-19-0)

Logic and Computation II -

• Part 4. Formal arithmetic and Gödel's incompleteness theorems

✒ ✑

- Part 5. Automata on infinite objects
- Part 6. Recursion-theoretic hierarchies
- Part 7. Admissible ordinals and second order arithmetic

Part 6. Schedule

- Apr.25, (1) Oracle computation and relativization
- Apr.27, (2) m-reducibility and simple sets
- May 4, (3) T-reducibility and Post's problem
- May 9, (4) Arithmetical hierarchy and polynomial-time hierarchy
- May 11, (5) Analytical hierarchy and descriptive set theory I
- May 16, (6) Analytical hierarchy and descriptive set theory II

 $\left\{ \begin{array}{ccc} \Box & \Diamond & \Box & \Diamond & \Box \end{array} \right.$

K. Tanaka

Oracle

[Relativization](#page-10-0)

Relativized [arithmetical](#page-14-0) hierarchy

[Post's theorem](#page-19-0)

1 [Introduction](#page-3-0)

2 [Oracle computation](#page-4-0)

3 [Relativization](#page-10-0)

4 [Relativized arithmetical hierarchy](#page-14-0)

6 [Post's theorem](#page-19-0)

Today's topics

メロトメ 御 トメ ミトメ ミト 造 299 3 / 23

Introduction

Logic and [Computation](#page-0-0)

K. Tanaka

[Introduction](#page-3-0)

Oracle

hierarchy

[Post's theorem](#page-19-0)

- Fix a function $\xi : \mathbb{N} \to \mathbb{N}$. Then, a function $f : \mathbb{N}^n \to \mathbb{N}$ is said to be **computable** in ξ if there exists an algorithm that computes f using ξ as a database.
- Consider a Turing machine as a computational model. Besides the usual input tape and working tapes, it is equipped with an infinite tape storing ξ as data, from which necessary information (values of $\xi(n)$) can be retrieved.
- Such a machine is called an **oracle Turing machine**. A function that can be computed by **oracle** ξ is called ξ -**computable** or **computable** in ξ .
- The three classes of functions defined in part 1 in last semester (primitive recursive functions, recursive functions, and partial recursive functions) are extended as primitive recursive functions in ξ , recursive functions in ξ , and partial recursive functions in ξ , by adding ξ to the initial functions in each definition.

K. Tanaka

Oracle [computation](#page-4-0)

hierarchy

[Post's theorem](#page-19-0)

Primitive recursive in ξ

Definition

Given a function $\xi : \mathbb{N} \to \mathbb{N}$, the functions primitive recursive in ξ are defined as below.

1. Constant 0, successor function $S(x) = x + 1$, projection $P_i^n(x_1, x_2, \ldots, x_n) = x_i \ (1 \leq i \leq n)$ and ξ are primitive recursive in ξ .

2. Composition.

If $g_i: \mathbb{N}^n \to \mathbb{N}, h: \mathbb{N}^m \to \mathbb{N}$ $(1 \leq i \leq m)$ are primitive recursive in ξ , so is $f = h(g_1, \ldots, g_m) : \mathbb{N}^n \to \mathbb{N}$ defined as below:

$$
f(x_1,\ldots,x_n)=h(g_1(x_1,\ldots,x_n),\ldots,g_m(x_1,\ldots,x_n)).
$$

3. Primitive recursion.

If $g:\mathbb{N}^n\to\mathbb{N},\,h:\mathbb{N}^{n+2}\to\mathbb{N}$ are primitive recursive in ξ , so is $f:\mathbb{N}^{n+1}\to\mathbb{N}$ defined as below:

$$
f(x_1,...,x_n,0) = g(x_1,...,x_n),
$$

$$
f(x_1,...,x_n,y+1) = h(x_1,...,x_n,y,f(x_1,...,x_n,y)).
$$

Recursive in *ξ*

Definition

The functions recursive in ξ are defined as below.

- 1. Constant 0, Successor function $S(x) = x + 1$, **Projection** $P_i^n(x_1, x_2, \dots, x_n) = x_i$ $(1 \leq i \leq n)$ and ξ are recursive in ξ .
- 2. **Composition**. Analogous to primitive recursive in ξ .
- 3. **Primitive recursion**. Analogous to primitive recursive in ξ .
- 4. minimalization (minimization). Let $g: \mathbb{N}^{n+1} \to \mathbb{N}$ be recursive in ξ satisfying that $\forall x_1 \cdots \forall x_n \exists y \; g(x_1, \cdots, x_n, y) = 0$. Then, the function $f : \mathbb{N}^n \to \mathbb{N}$ defined by

$$
f(x_1, \cdots, x_n) = \mu y(g(x_1, \cdots, x_n, y) = 0)
$$

i[s](#page-10-0) rec[u](#page-3-0)rsive in ξ , w[h](#page-9-0)ere $\mu y(g(x_1, \dots, x_n, y) = 0)$ denotes [the](#page-4-0) [s](#page-6-0)m[all](#page-5-0)[es](#page-6-0)t y su[c](#page-4-0)h [t](#page-10-0)[ha](#page-0-0)t $g(x_1, \dots, x_n, y) = 0.$ $6 / 23$

Logic and [Computation](#page-0-0) K. Tanaka

Oracle [computation](#page-4-0)

hierarchy

[Post's theorem](#page-19-0)

K. Tanaka

Definition

Oracle [computation](#page-4-0)

[arithmetical](#page-14-0) hierarchy

[Post's theorem](#page-19-0)

Partial recursive in ξ (part $1/3$)

The function partial recursive in ξ are defined as follows.

- 1. Constant 0, Successor function $S(x) = x + 1$, Projection $P_i^n(x_1, x_2, \cdots, x_n) = x_i \ (1 \leq i \leq n)$ and ξ are partial recursive in ξ .
- 2. Composition. If $g_i: \mathbb{N}^n \to \mathbb{N}, h: \mathbb{N}^m \to \mathbb{N} (1 \leq i \leq m)$ are partial recursive in ξ , the composed function $f = h(g_1, \cdots, g_m): \mathbb{N}^n \to \mathbb{N}$ defined by

$$
f(x_1, \dots, x_n) \sim h(g_1(x_1, \dots, x_n), \dots, g_m(x_1, \dots, x_n))
$$

is partial recursive in ξ, where $h(q_1(x_1, \dots, x_n), \dots, q_m(x_1, \dots, x_n)) = z$ means that each $g_i(x_1, \cdots, x_n) = y_i$ is defined and $h(y_1, \cdots, y_m) = z.$

Note: By $f(x_1, \dots, x_n) \sim q(x_1, \dots, x_n)$, we mean that either both functions are undefined or defined with the same value.

7 / 23

KORK EXTERNS ORA

K. Tanaka

Oracle [computation](#page-4-0)

Relativized [arithmetical](#page-14-0) hierarchy

[Post's theorem](#page-19-0)

Partial recursive in ξ (part 2/3)

8 / 23

K ロ X x 何 X x モ X x モ X → 三 电 → の Q Q →

Definition

3. Primitive recursion.

If $g:\mathbb{N}^n\to\mathbb{N}, h:\mathbb{N}^{n+2}\to\mathbb{N}$ are partial recursive in ξ , the function $f:\mathbb{N}^{n+1}\to\mathbb{N}$ defined by

$$
f(x_1, \dots, x_n, 0) \sim g(x_1, \dots, x_n)
$$

$$
f(x_1, \dots, x_n, y+1) \sim h(x_1, \dots, x_n, y, f(x_1, \dots, x_n, y))
$$

is partial recursive in ξ .

K. Tanaka

Oracle [computation](#page-4-0)

-
- hierarchy

[Post's theorem](#page-19-0)

Partial recursive in ξ (part 3/3)

9 / 23

KOD KARD KED KED BI YOUN

Definition

- 4. Minimization.
	- Let $g: \mathbb{N}^{n+1} \to \mathbb{N}$ be partial recursive in ξ .
	- If " $g(x_1, \dots, x_n, c) = 0$, and for each $z < c$, $g(x_1, \dots, x_n, z)$ is defined with non-zero values", then we put $\mu y(g(x_1, \dots, x_n, y) = 0) = c$; if there is no such c, then $\mu y (q(x_1, \dots, x_n, y) = 0)$ is undefined.
	- Then $f: \mathbb{N}^n \to \mathbb{N}$ satisfying

$$
f(x_1, \dots, x_n) \sim \mu y(g(x_1, \dots, x_n, y) = 0)
$$

is partial recursive in ξ .

K. Tanaka

[Introduction](#page-3-0)

Oracle [computation](#page-4-0)

hierarchy

[Post's theorem](#page-19-0)

Definition

An n -ary relation $R\subset \mathbb{N}^n$ is called $(\hbox{primitive})$ recursive in ξ , if its characteristic function $\chi_R:\mathbb{N}^n\to\{0,1\}$ is (primitive) recursive in $\xi;$

$$
\chi_R(x_1,\ldots,x_n) = \begin{cases} 1 & \text{if } R(x_1,\ldots,x_n) \\ 0 & \text{otherwise} \end{cases}
$$

- All the theorems of recursion theory mentioned in part 1 of the last semester can be extended to statements with oracles, which are called relativizations of the original theorems. We will show some examples of relativization in the following slides.
- The (partial) recursive functions in ξ also match the (partial) computable functions in ϵ , and the domain of a partial recursive function in ϵ is called compututably enumerable in ξ (ξ -CE).

10 / 23

KO KA KO KE KE KE KA KA KA KA KA KA KA A

K. Tanaka

Oracle

[Relativization](#page-10-0)

[arithmetical](#page-14-0) hierarchy

[Post's theorem](#page-19-0)

Theorem (Relativized Kleene normal form theorem)

There are a primitive recursive function $U(y)$ and a primitive recursive relation in ξ $T^\xi(e,x_1,\cdots,x_n,y)$ such that if $f(x_1,\cdots,x_n)$ is partial recursive in ξ , then there exists e such that

$$
f(x_1, \dots, x_n) \sim U(\mu y T^{\xi}(e, x_1, \dots, x_n, y)),
$$

where $\mu y T^\xi(e,x_1,\cdots,x_n,y)$ takes the smallest value y satisfying $T^\xi(e,x_1,\cdots,x_n,y)$; if there is no such y , it is undefined.

Proof.

- $\bullet\,$ We define a relation $T^\xi(e,x_1,\cdots,x_n,y)$ as follows: $T^\xi(e, x_1, \cdots, x_n, y) \Leftrightarrow \text{ ``}y$ is the Gödel number (code) of the whole computation process γ of TM of index e with input (x_1, \dots, x_n) and oracle ξ "
- The whole computation process γ is a sequence of configurations $\alpha_0 \triangleright \alpha_1 \triangleright \cdots \triangleright \alpha_n$ with an initial α_0 and an accepting α_n , which can regarded as a word over $\Omega \cup Q \cup \{\triangleright\}.$
- In general, it is not decidable whether a whole computation process γ exists or not. But for [a](#page-13-0)gi[v](#page-9-0)en γ , we can easily check that for each $i < n$, $\alpha_i \triangleright \alpha_{i+1}$ $\alpha_i \triangleright \alpha_{i+1}$ $\alpha_i \triangleright \alpha_{i+1}$ $\alpha_i \triangleright \alpha_{i+1}$ [is](#page-10-0) a v[al](#page-10-0)[id](#page-13-0) but for a given γ , we [c](#page-9-0)an easily check that for each $i < n$, $\alpha_i > \alpha_{i+1}$ is a valid t[ra](#page-14-0)nsi[tio](#page-0-0)n of a TM, as well as α_0 and α_n are an initial an[d a](#page-9-0)c[ce](#page-11-0)[ptin](#page-10-0)g configuratio[ns.](#page-22-0) 23

K. Tanaka

Oracle

[Relativization](#page-10-0)

hierarchy

[Post's theorem](#page-19-0)

Some remarks on the proof

12 / 23

KO KARA KEK (EK) EL VOQO

- A primitive recursive function $U(y)$ that extracts the output from the code of the computational process does not depend on ξ .
- $\bullet\,$ We call $\,U(\mu y T^\xi(e,x_1,\cdots,x_n,y))$ a $\,$ partial recursive function in $\,\xi\,$ of index $\,e$, denoted as $\{e\}^{\xi}(x_1,\cdots,x_n)$.
- \bullet If ξ in $\{e\}^{\xi}(x_1,\cdots,x_n)$ is regarded as an argument, it can be rewritten as ${e}(x_1, \cdots, x_n, \xi).$
- Notice that to evaluate $\{e\}(x_1, \dots, x_n, \xi)$, at most the initial segment $\xi \upharpoonright y$ is used in the calculation, where y is the code of the whole calculation process γ . Furthermore, if the finite sequence $\xi \upharpoonright y$ is identified with its code, $\{e\}(x_1, \dots, x_n, \xi \upharpoonright y)$ becomes an ordinary partial recursive function. □

K. Tanaka

[Introduction](#page-3-0)

Oracle

[Relativization](#page-10-0)

hierarchy

[Post's theorem](#page-19-0)

Definition

Let $U(y)$ and T be primitive recursive functions defined in and after the relativized Kleene normal form theorem. The following function $F:\mathbb{N}^n\times (\mathbb{N}^\mathbb{N})^k\to \mathbb{N}$ is called a **partial** recursive functional with index e .

$$
F(x_1,\dots,x_n,\xi_1,\dots,\xi_k)=U(\mu yT(e,x_1,\dots,x_n,y,\xi_1\upharpoonright y,\dots,\xi_k\upharpoonright y)).
$$

 \bullet Here $\mathbb{N}^{\mathbb{N}}$ is the set of total functions from \mathbb{N} to \mathbb{N} . The domain D of a partial recursive functional $F:\mathbb{N}^n\times (\mathbb{N}^\mathbb{N})^k\to \mathbb{N}$ is

 $(x_1, \dots, x_n, \xi_1, \dots, \xi_k) \in D \Leftrightarrow \exists y T(e, x_1, \dots, x_n, y, \xi_1 \upharpoonright y, \dots, \xi_k \upharpoonright y),$

13 / 23

KO KA KO KE KE KE KA KA KA KA KA KA KA A

which is called a CE set (in a broad sense) or Σ^0_1 set.

• Such general classes will be treated in the following lectures.

K. Tanaka

Oracle

[Relativization](#page-10-0)

[arithmetical](#page-14-0) hierarchy

[Post's theorem](#page-19-0)

Theorem (Relativized enumeration theorem)

 $\{e\}^\xi(x_1,\cdots,x_n)$ is partial recursive in ξ on e,x_1,\cdots,x_n , and it is also a partial recursive functional on e, x_1, \cdots, x_n, ξ .

Theorem (Relativized parameter theorem)

For any $m,n\geq 1$, there exists a primitive recursive function $|S^{m}_n:\mathbb{N}^{m+1}\to\mathbb{N}$ such that

$$
\{e\}^{\xi}(x_1,\dots,x_n,y_1,\dots,y_m) \sim \{S_n^m(e,y_1,\dots,y_m)\}^{\xi}(x_1,\dots,x_n).
$$

Theorem (Relativized recursion theorem)

Let $f(x_1, \dots, x_n, y)$ be partial recursive in ξ . There exists e such that

 ${e}^{\xi}(x_1,\dots,x_n) \sim f(x_1,\dots,x_n,e).$

14 / 23

KOD KAD KED KED E VOOR

K. Tanaka

Oracle

Relativized [arithmetical](#page-14-0) hierarchy

[Post's theorem](#page-19-0)

Relativized arithmetical hierarchy

15 / 23

KO KARA KEK (EK) EL VOQO

- Before dealing with the relativization of hierarchies, recall some basic definitions.
- We inductively define hierarchical classes of formulas Σ_n and Π_n in Lecture04-02. The sets of natural numbers defined by the Σ_1 formulas coincides with the CE sets as proved in Lecture04-03.
- When discussing the form of formulas, the same kind of quantifiers are joined together as follows.

 $\exists x_1 \cdots \exists x_n \varphi(x_1, \cdots, x_n) \Leftrightarrow \exists x \varphi(c(x, 0), \cdots, c(x, n-1))$

where $c(x,i)$ is a primitive recursive function that extracts the $i\text{-th}$ element x_i in the sequence with code x .

K. Tanaka

Oracle

Relativized [arithmetical](#page-14-0) hierarchy

[Post's theorem](#page-19-0)

Definition (Relativized arithmetic hierarchy)

Given a $\xi : \mathbb{N} \to \mathbb{N}$ and $k \geq 0$, the following set A is said to be $\Sigma_{2k+1}(\xi)$ (with index e). $(x_1,\ldots,x_n)\in A \Leftrightarrow \exists y_1\forall y_2\cdots\exists y_{2k-1}\forall y_{2k}\{e\}^{\xi}(x_1,\ldots,x_n,y_1,\ldots,y_{2k})\downarrow.$

The following set A is a $\Sigma_{2k+2}(\xi)$ set (with index e).

 $(x_1,\ldots,x_n)\in A \Leftrightarrow \exists y_1\forall y_2\cdots\forall y_{2k}\exists y_{2k+1}\{e\}^{\xi}(x_1,\ldots,x_n,y_1,\ldots,y_{2k})\uparrow.$

 $\Pi_k(\xi)$ is the complement of $\Sigma_k(\xi)$. $\Delta_k(\xi)$ is $\Sigma_k(\xi)$ and $\Pi_k(\xi)$.

- Here, ↓ / ↑ means that the function is defined / undefined.
- We fix the arity n of set $A \subset \mathbb{N}^n$ arbitrarily so that $\Sigma_k(\xi)$ and $\Pi_k(\xi)$ sets are treated complementary. In fact, it is enough to consider the case $n = 1$ using the sequence code $c(x, i)$.

 $\sqrt{ }$ Homework $\overline{}$

Show that if R, S are $\Sigma_3(\xi)$ sets, so is $R \cap S$. Show that if R is defined by a $\Sigma_3(\xi)$ formula φ , so is the set defined by $\forall y < z\varphi$.

✒ ✑ 16 / 23

K. Tanaka

Oracle

Relativized [arithmetical](#page-14-0) hierarchy

[Post's theorem](#page-19-0)

Proof.

- In the case of $\Sigma_1(\xi)$, it follows from the relativized enumeration theorem. For the $\Pi_1(\xi)$ set, take the complement of universal set U for $\Sigma_1(\xi)$.
- For $k > 1$, a $\Sigma_k(\xi)$ formula is obtained from a $\Sigma_1(\xi)$ or $\Pi_1(\xi)$ formula by adding appropriate arithmetical quantifiers in the front. Since there is a universal set (or formula) for $\Sigma_1(\xi)$ or $\Pi_1(\xi)$, the formula obtained from it by adding appropriate arithmetical quantifiers is universal for $\Sigma_k(\xi)$. Similarly for $\Pi_k(\xi)$.

17 / 23

KOD KARD KED KED BI YOUN

Theorem (Relativized arithmetical enumeration theorem)

For each $k\geq 1$, there exists $\Sigma_k(\xi)$ (or $\Pi_k(\xi))$ subset U of \mathbb{N}^{n+1} with the following property $(U$ is called a universal set). For any $\Sigma_k(\xi)$ (or $\Pi_k(\xi)$) subset R of \mathbb{N}^n , there exists some e such that

$$
R(x_1, \cdots, x_n) \Leftrightarrow U(e, x_1, \cdots, x_n).
$$

K. Tanaka

Oracle

Relativized [arithmetical](#page-14-0) hierarchy

[Post's theorem](#page-19-0)

Theorem (Relativized arithmetical hierarchy theorem)

For every $k \geq 1$,

$$
\Sigma_k(\xi) \cup \Pi_k(\xi) \subsetneq \Delta_{k+1}(\xi).
$$

Proof.

- keys: relativized arithmetical enumeration theorem and diagonalization argument.
- By the relativized arithmetical enumeration theorem, there exists a universal $\Sigma_k(\xi)$ subset U of $\mathbb{N}^2.$ Then consider the $\Pi_k(\xi)$ subset $V(e)$ of \mathbb{N}^1 defined by $\neg U(e,e).$
- If $V(e)$ is $\Sigma_k(\xi)$, then there exists some e_0 such that $V(e) \Leftrightarrow U(e_0, e)$. By substituting $e = e_0$, we have $\neg U(e_0, e_0) \Leftrightarrow V(e_0) \Leftrightarrow U(e_0, e_0)$, which is a contradiction.
- Therefore, $V(e)$ is not $\Sigma_k(\xi)$.
- Furthermore, by setting $W(e) \Leftrightarrow \neg V(e)$, $W(e)$ is not $\Pi_k(\xi)$, but a $\Sigma_k(\xi)$ set.
- So, if we set $Z(e, d) \Leftrightarrow (V(e) \wedge d = 0) \vee (W(e) \wedge d > 0)$, then $Z(e, d)$ is clearly a $\Delta_{k+1}(\xi)$ subset of \mathbb{N}^2 , which is neither $\Sigma_k(\xi)$ nor $\Pi_k(\xi)$.

18 / 23

Comments on $k = 0$

19 / 23

KOD KAD KED KED E VOOR

K. Tanaka

Logic and [Computation](#page-0-0)

Oracle

Relativized [arithmetical](#page-14-0) hierarchy

[Post's theorem](#page-19-0)

- Note that we have not defined $\Sigma_0(\xi), \Pi_0(\xi)$. To define $\Sigma_0(\xi), \Pi_0(\xi)$ in the formal arithmetical hierarchy, ϵ must also be a formal object such as a formula.
- However, $\Sigma_0(\xi)$, $\Pi_0(\xi)$ are often used to denote the primitive recursive relations in ξ in some literature. Then, for the empty oracle ($\xi \equiv 0$), they are simply the primitive recursive relations, which contradicts with our formal definition: Σ_0 , Π_0 represent bounded formulas or sets defined by them.
- Therefore, no formal definition is given. But a similar statement would hold whatever $\Sigma_0(\xi)$, $\Pi_0(\xi)$ are defined, since $\Delta_1(\xi)$ is well-defined and large.

K. Tanaka

Oracle

[arithmetical](#page-14-0) hierarchy

[Post's theorem](#page-19-0)

Lemma

A is $\Sigma_{k+1}(\xi)$ if and only if there exists some $\Pi_k(\xi)$ set B such that A is χ_B -CE, where χ_B is the characteristic function of B. For $k = 0$, consider $\Pi_0(\xi)$ as the primitive recursive relations in ξ .

Proof

• (\Rightarrow) Suppose A is $\Sigma_{k+1}(\xi)$. By definition, there exists a $\Pi_k(\xi)$ predicate $B(x_1, \ldots, x_n, y_1)$ such that

$$
(x_1,\ldots,x_n)\in A \Leftrightarrow \exists y_1 B(x_1,\ldots,x_n,y_1).
$$

• Therefore.

$$
(x_1,\ldots,x_n)\in A \Leftrightarrow \exists y_1\chi_B(x_1,\ldots,x_n,y_1)=1,
$$

20 / 23

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君 ○ ◆ ○ Q ◆

and the right-hand side is χ_B -CE.

K. Tanaka

-
- Oracle
- [Relativization](#page-10-0)
- Relativized [arithmetical](#page-14-0) hierarchy
- [Post's theorem](#page-19-0)
- (\Leftarrow) Let B be a $\Pi_k(\xi)$ set and A be χ_B -CE.
- By relativized Kleene's normal form theorem, we have,

$$
(x_1, \ldots, x_n) \in A \Leftrightarrow \exists y T(e, x_1, \ldots, x_n, y, \chi_B \upharpoonright y).
$$

• Furthermore,

$$
w = \chi_B \upharpoonright y \Leftrightarrow \forall i < y \ (i \in B \Leftrightarrow w(i) = 1) \land \text{leng}(w) = y,
$$

21

KID KARA KE KIEK E KORO

and the right side is $\Delta_{k+1}(\xi)$. Combining both formulas, A is $\Sigma_{k+1}(\xi)$.

In the above lemma, even if B is $\Sigma_k(\xi)$, the class of χ_B -CE does not change.

K. Tanaka

Oracle

Relativized [arithmetical](#page-14-0) hierarchy

[Post's theorem](#page-19-0)

Theorem (Post)

A is $\Delta_{k+1}(\xi)$ if and only if there exists some $\Sigma_k(\xi)$ set B such that A is computable in χ_B $(A \leq_T B)$.

✒ ✑

22 / 23

 2990

K ロ メ イ 団 メ ス ミ メ ス ヨ メ ニ ヨ

Corollary

A is Δ_2 if and only if $A \leq_T K$.

 $\sqrt{ }$ Homework $\overline{}$

Prove Post's theorem by using the last lemma in page [20.](#page-19-1)

K. Tanaka

Oracle

[arithmetical](#page-14-0) hierarchy

[Post's theorem](#page-19-0)

Further Reading

• Kozen, D. C. (2006). Theory of computation (Vol. 170). Heidelberg: Springer.

✒ ✑

23 / 23

 Ω

メロメメ 倒 メメ ミメメ ミメ

• Soare, R. I. (2016). Turing computability. Theory and Applications of Computability. Springer.

Thank you for your attention!