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Logic and Logic and Computation Il

Computation
e ¢ Part 4. Formal arithmetic and Godel’s incompleteness theorems
® Part 5. Automata on infinite objects

® Part 6. Recursion-theoretic hierarchies

® Part 7. Admissible ordinals and second order arithmetic

-~ Part 4. Schedule ~

® Mar.28, (1) Automata on infinite strings
® Mar.30, (2) The decidability of S1S

® Apr. 4, (3) Tree automata

® Apr. 6, (4) The decidability of S2S

® Apr.11, (5

(5) Finite model theory
® Apr.13, (6) Parity games
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The outline of the proof of the main lemma.

Lemma
For any PTA M, there is a PTA M’ that accepts the complement of L(M).

PTA M does not acceptt < Il has a winning strategy o for t in the game G(M, t).

)

The Q x Sj; labeled T%° has no path satisfying the
parity conditions.
¢

The w-language L(t,0) on Q' = Q X S;; has no w-
sequence of states satisfying the parity condition.

)
PTA M' accepts t. & L(t,0) NL(A) = 0. Let A be an NPA which

accepts all w-words on Q'}

Let A’ be a DPA which accepts
the complement of L(A). Let M’
be a PTA constructed form A'.
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A parity game G = (V},V}, E, ) is a game on a directed graph (VU W, E) with a
Parity games priority function m: U Vjj — {0,1,--- .k} and NV} = @.

Two players, player | and Il, move a token along the edges of the graph. At a vertex
v €WV (Vi), it is player | (I1)'s turn to choose some v’ such that (v,v’) € E.

For an infinite resulting path p = pgp1 - -+ (called a play), let 7(p) := w(po)mw(p1) - - .
Player | wins in p iff the smallest number appearing infinitely often in 7(p) is even.

A strategy for player | is a mapping o : (VU V}))<“V| = VU W,.
A play p is consistent with o if for all i, p; € Vi = o(pop1 - pi) = pit1-

® o is a winning strategy for player | if Player | wins in any play consistent with o.

A (winning) strategy for player Il can be defined similarly.

® A game is said to be determined if one of the players has a winning strategy.

Martin proved that Borel games (including parity games) are determined.
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* A memoryless strategy for player Il is a mapping 7 : Vjj = VU V.

Parity games

From now on, by a strategy we mean a memoryless strategy.

® A play p is consistent with such a o if for all 4, p; € Vi = o(p;) = piy1. Similar for 7.

o (7) is a winning strategy if player | (II) wins in any play consistent with o (7) .

Let Wi(G, o) be the set of starting points pg € V' such that o is a winning strategy for
player I. Let

me = U WG

I’s winning strategy o

Similarly, Wii(G, 7) and Wy (G) are defined.

Clearly, Wi(G) N Wy(G) = @.

When W\ (G) U W) (G) =V, the game G is said to have memoryless determinacy.
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~ Example (revisit) ~

Parity games Consider the following parity game G = (V|, Wi, E, 7), where Vi = {q2,q3} and V}; =
{ql}’ 7T(Q’L) =1 fori = 17 273
\_/ \_/
q2 q1 q3

* Wi(G) = {a2}
* Wi(G) ={q1,4s}
® Since Wi(G) U W, (G) =V, the above game G has memoryless determinacy.

J
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Lemma

In any parity game G, there exists a strategy o for player | such that Wi(G, o) = W|(G).
Similarly, there exists a Il's strategy 7 such that W(G, ) = Wj(G).

Proof
® By the well-ordering theorem, let W|(G) = {vs}s<a (@, 8 are ordinals).

® For each § < «, let o3 be a winning strategy of player | starting from vg.

® Then, we define a function f : W|(G) — « as follows: for v € W|(G), let f(v) the
smallest § < « such that v € Wi(G, o).

® Finally, we define a strategy o as o (v) := 0(,)(v). We want to show that
Wi(G, o) = Wi(G). Since W\(G, o) C W(G), it is sufficient to show any play
consistent with o starting from a vertex of W|(G) is a winning play for |.
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Now, let p be a play consistent with o, starting from vertex po of Wi(G).

If p is also consistent with o(,,), then player | wins in p, which completes the proof.
Otherwise, we can get the smallest k such that p, € Vi and pry1 # 05(p0) (k)

Since p[(k + 1) is consistent with o ¢(,,), player | can win the game from pj, following
Tf(po) thatis, pi € Wi(G,05(p,)). But prs1 = 0(pk) = 0 5(01) (P1) # T f(p) (P). SO
flor) < f(po).-

Player | wins if p obeys o(,, ) from pj;, onwards.

Othewise, some k' appears such that px € Vi and prry1 7 05(,,)(prr), then

fowr) < flpr) < fpo).

By repeating this, the descending sequence of ordinal numbers ends in finite steps. So
there exists some | € w such that p is consistent with o (,,) from p;, and hence player
| wins.

Therefore, o is I's winning strategy starting from any vertex of W|(G). That is,
Wi(G, o) = WI(G).

Wi(G, 1) = Wi(G) can be shown similarly. O
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e |f there exist o and 7 such that W|(G, o) U W, (G, 7T) =V, game G is said to have
uniform memoryless determinacy.

Parity games

® From the above lemma, if a parity game has memoryless determinacy, it also has
uniform memoryless determinacy.

® \We say that v € V' is an absorbing vertex if no edges exit from v, i.e.,
{w: (v,w) € E} = {v}. Note that we assume that no deadlocks exist.

® We say that v € V is a vanishing vertex if no edges enter v, i.e.,
{w:(w,v) e E} =02.

® \ertices that are neither absorbing nor vanishing are called relevant vertices, and the
set of such vertices is denoted by V;.

e 7(v) for v € V} is called a relevant priority.
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Consider the following parity game G = (W, Vj, E, ), where Vi = {v2,v3,v4} and

Parity games ‘/” = {'U(),’Ul}, 7T(’UZ) =1 fOr 1= 07 1, 2, 3,4
Vg
V2 (1 V3 —>| Vg
A —

VI/'(G) = {0077}1)”2’”37@4}
Wi(G) =o

® The above game G is uniform memoryless determined.

Vg is absorbing, v4 is vanishing, v1,v2 and vs are relevant.

{1,2,3} is the set of relevant priorities.
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Theorem

Any parity game G has uniform memoryless determinacy.

Proof
Consider a parity game G = (W}, Vi, E, ). We prove by induction on the number of
relevant priorities m(V;).
Base case:
® [f there are no relevant points, all vertices are absorbing or vanishing.

® From an absorving vertex v, v € W|(G, o) for any o (if w(v) is even), or v € Wyi(G, 1)
for any 7 (otherwise).

® From a vanishing vertex v, each edge goes to an absorbing vertex, where the winner is
determined regardless of the strategy. So, by selecting an appropriate o(v) or 7(v), we
have v € Wi(G, o) UW) (G, T), where the values of o and 7 at other vertex than v are
not irrelevant.

® Thus, there exist o and 7 such that Wi(G, o) U W, (G, ) = V.
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e Induction case:

Compuen ® Suppose the number of relevant priorities is & > 0. We first prove a weak claim
Wi(G) UW(G) # @.

® For simplicity, assume that the minimum of the relevant priorities is 0.

K. Tanaka

Uniform

memoryless ® \We will modify the game G so that the vertices with priority 0 are changed to
erermineey non-relevant vertices. Such a modified game is called G, to which we will apply the
induction hypothesis.

® |et D be the set of relevant vetices with priority 0 in G.

* Make a copy of D and put D := {#: v € D}. \
o Gt = (V1V}, E*,nt) is defined as follows. a
v
e Vit :=Viu{o:ve DNW}, N
. ] rN (T
* Vi i=Wiu{o:ve DNV}, / N
e Ft:={(u,v) € E:vé¢ D}U{(u,d): (u,v) € 4i:I,II
EANveDtU{(v,0):v e D} G is obtained by separating each
o 1t =7 U{(5,0):ve D} vertex v of D into vanishing vertex

v and absorbing vertex 113/ 19
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Therefore, the number of relevant priorities of G is one less than that of G.

By induction hypothesis, there exist ot and 77 such that
Wi(GH o) Uy (G, rH) =V =V u Y.

The strategies oF:Vi—>Vand 7¥: V) = Vin
G can be derived from o : V;" — V' and
t:Vf — V7 by restricting it to V.

That is, o restricts the domain of o* to V4, and
when the value is v € D, change it to v. 7% can
be obtained similarly.

First, consider the case Wi(G+,0T) =V,
Take any play p consistent with & in G.
If a vertex of D appears infinitely many times in p, then player | wins in p.
Otherwise, from some vertex in p (written as p’) does not visit D, and so since p/
obeys 0% in G, p’ obeys ¢ in Gt, which means that player | wins in GT, and | also
wins with p’ in G. Finally, player | wins even with p in G, because any finite part of
the play makes no difference to the parity condition.
That is, Wi(G,0%) = V.
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Next, consider the case Wi(GT,01) #£ VT,
Then we have v € Wy (GT, 7)) = VT — W (GT,0™).

Consider a play starting from v consistent with 77, If an absorbing vertex o € D
appears in the middle, then after that it just repeats o, and so priority 0 appears
infinitely often, which means player | wins. This contradicts with v € Wj;(GT,77T).

Therefore, in such a play of GT, a vanishing vertex may appear only at the start, and
no vertex in D U D appear in the middle.

Thus, any play of G starting from v and consistent with 7% does not enter D in the
middle, and so it is also consistent with 77, which means player Il wins. That is,

RS VVH(G,Ti).

Combining the above two cases, we can say at least W1(G) U W) (G) # @.
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Wi(G) U Wi(G) # V.

Uniform ® Llet V™ :=V — (Wi(G) UW;(G)) and consider the game G~ by restricting G to V.

memoryless
determinacy

® Note that for every v € V'~ there is a u € V'~ such that (v,u) € E. Because if every
u such that (v,u) € E belongs to W1(G) U W) (G), so is v, which contradicts v € V.

® Therefore, the game GG~ is a correct parity game.
® let v € Wi(G™) and o~ be a winning strategy for | starting from v in G™.
® Now consider a play p starting at v consistent with ¢~ in G.

® At u € VNV~ in the middle of play, no vertex of W} (G) will be chosen in the next
move. Because if it were selected, we would have u € W)(G), which contradicts
ueV.
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Therefore, p is a play consistent with ¢~ in G~, and so player | wins. That is,
v e Wi(G).

But since V- N1 (G) = @, Wi(G™) = 2.

Similarly, W, (G™) =@, so Wi(GT)UWy(G™) = 2.

® Since GG~ is a parity game with at most k relevant priorities, Wi(G~)UW,(G™) # &,

which contradicts the assumption of Wi(G, o) U Wy (G, 7) # V.
~ Further readings

O

The above proof is based on S. Le Roux's paper:
Letters 143 (2019).

games: another simple proof”, Info. Proc. Letters 132 (2018) 19-21.

which in turn refers to many previous studies.

N

“Memoryless determinacy of infinite parity games: Another simple proof”, Info. Proc.

Le Roux’s proof also relies on Haddad's paper: “ Memoryless determinacy of finite parity

~

J
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given memoryless strategy is a winning strategy. So Wi(G) is NP.

e Similarly Wy (G) is also NP and Wi(G) = V-Wi(G), so Wi(G) € NPN co-NP.
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® However, it is not yet known whether it will be in P, and currently it is O(|G|!°8"+6)
(where n is the number of priorities), due to Calude-Jain-Khoussainov-Li-Stephan

results (STOC 2017).

DECIDING PARITY GAMES IN QUASI-POLYNOMIAL TIME*

CRISTIAN S. CALUDE', SANJAY JAIN?, BAKHADYR KHOUSSAINOV', WEI LI, AND
FRANK STEPHAN?S

Abstract. It is shown that the parity game can be solved in quasi-polynomial time. The
parameterized parity game—with n nodes and m distinct values (a.k.a. colors or priorities)—is
proven to be in the class of fixed parameter tractable problems when parameterized over m. Both
results improve known bounds, from runtime n®vV™ to O(n!°8(™)+6) and from an XP algorithm
with runtime O(ne(m)) for fixed parameter m to a fixed parameter tractable algorithm with runtime
o(n® + 2"""‘3("””(’""), As an application, it is proven that colored Muller games with n nodes and
m colors can be decided in time O((m™ - n)®); it is also shown that this bound cannot be improved
to 20(m1log(m)) . O() in the case that the exponential time hypothesis is true. Further investigations
deal with memoryless Muller games and multidimensional parity games.
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-~ Join!

-

Please scan the QRcode to join our ques-
tionnaire to improve the course.

Logic and Computation Il, Spring
2023

https:
//forms.office.com/r/0JeYWvqwRi

~

Course Announcement:

® There is no class next week = no class
on April 18 and 20, 2023.

® Before Golden Week, we still have two
classes on April 25 and 27, 2023.

J
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