K. Tanaka

Reca

Parity games

Uniform memoryless determinacy Logic and Computation II Part 5. Automata on infinite objects

Kazuyuki Tanaka

BIMSA

April 14, 2023

イロト 不得下 不同下 不同下

≡ ೨۹৫ 1 / 19

K. Tanaka

Recap

Parity games

Uniform memoryless determinacy

- Logic and Computation II -
 - Part 4. Formal arithmetic and Gödel's incompleteness theorems
 - Part 5. Automata on infinite objects
 - Part 6. Recursion-theoretic hierarchies
 - Part 7. Admissible ordinals and second order arithmetic

✓ Part 4. Schedule

- Mar.28, (1) Automata on infinite strings
- Mar.30, (2) The decidability of S1S
- Apr. 4, (3) Tree automata
- Apr. 6, (4) The decidability of S2S
- Apr.11, (5) Finite model theory
- Apr.13, (6) Parity games

K. Tanaka

Recap

Parity games

Uniform memoryless determinacy

1 Recap

2 Parity games

3 Uniform memoryless determinacy

Today's topics

K. Tanaka

Recap

Parity games

Uniform memoryless determinacy The outline of the proof of the main lemma.

Lemma

For any PTA M, there is a PTA M' that accepts the complement of L(M).

Recap

Parity games

- A parity game $G = (V_{\mathsf{I}}, V_{\mathsf{II}}, E, \pi)$ is a game on a directed graph $(V_{\mathsf{I}} \cup V_{\mathsf{II}}, E)$ with a priority function $\pi : V_{\mathsf{I}} \cup V_{\mathsf{II}} \to \{0, 1, \cdots, k\}$ and $V_{\mathsf{I}} \cap V_{\mathsf{II}} = \emptyset$.
- Two players, player I and II, move a token along the edges of the graph. At a vertex $v \in V_{I}$ (V_{II}), it is player I (II)'s turn to choose some v' such that $(v, v') \in E$.
- For an infinite resulting path $\rho = \rho_0 \rho_1 \cdots$ (called a **play**), let $\pi(\rho) := \pi(\rho_0)\pi(\rho_1)\cdots$. Player I **wins** in ρ iff the smallest number appearing infinitely often in $\pi(\rho)$ is even.
- A strategy for player I is a mapping $\sigma : (V_{I} \cup V_{II})^{<\omega}V_{I} \rightarrow V_{I} \cup V_{II}$. A play ρ is **consistent** with σ if for all i, $\rho_{i} \in V_{I} \Rightarrow \sigma(\rho_{0}\rho_{1}\cdots\rho_{i}) = \rho_{i+1}$.
- σ is a **winning strategy** for player I if Player I wins in any play consistent with σ .
- A (winning) strategy for player II can be defined similarly.
- A game is said to be **determined** if one of the players has a winning strategy.
- Martin proved that Borel games (including parity games) are determined.

Logic and Computation K. Tanaka

Recap

- Parity games
- Uniform memoryless determinacy

- K. Tanaka
- Recap
- Parity games
- Uniform memoryless determinacy

- A memoryless strategy for player I is a mapping $\sigma: V_{I} \rightarrow V_{I} \cup V_{II}$.
- A memoryless strategy for player II is a mapping $\tau: V_{II} \rightarrow V_{I} \cup V_{II}$.
- From now on, by a strategy we mean a memoryless strategy.
- A play ρ is **consistent** with such a σ if for all $i, \rho_i \in V_I \Rightarrow \sigma(\rho_i) = \rho_{i+1}$. Similar for τ .
- σ (τ) is a **winning strategy** if player I (II) wins in any play consistent with σ (τ) .
- Let $W_{\rm I}(G,\sigma)$ be the set of starting points $\rho_0\in V$ such that σ is a winning strategy for player I. Let

$$W_{\mathsf{I}}(G) = \bigcup_{\mathsf{I}'s \text{ winning strategy } \sigma} W_{\mathsf{I}}(G, \sigma).$$

- Similarly, $W_{\mathrm{II}}(G,\tau)$ and $W_{\mathrm{II}}(G)$ are defined.
- Clearly, $W_{\mathsf{I}}(G) \cap W_{\mathsf{II}}(G) = \emptyset$.
- When $W_{I}(G) \cup W_{II}(G) = V$, the game G is said to have **memoryless determinacy**.

<ロト < 回 ト < 目 ト < 王 ト イ 王 ト イ 王 ト 王 の Q () 6 / 19

K. Tanaka

Recap

Parity games

Uniform memoryless determinacy Consider the following parity game $G = (V_{I}, V_{II}, E, \pi)$, where $V_{I} = \{q_{2}, q_{3}\}$ and $V_{II} = \{q_{1}\}, \pi(q_{i}) = i$ for i = 1, 2, 3.

•
$$W_{\mathsf{I}}(G) = \{q_2\}$$

Example (revisit)

• $W_{\mathsf{II}}(G) = \{q_1, q_3\}$

• Since $W_{I}(G) \cup W_{II}(G) = V$, the above game G has memoryless determinacy.

イロト イヨト イヨト イヨト

K. Tanaka

Recap

Parity games

Uniform memoryless determinacy

Lemma

In any parity game G, there exists a strategy σ for player I such that $W_{I}(G, \sigma) = W_{I}(G)$. Similarly, there exists a II's strategy τ such that $W_{II}(G, \tau) = W_{II}(G)$.

Proof

- By the well-ordering theorem, let $W_{I}(G) = \{v_{\beta}\}_{\beta < \alpha}$ (α, β are ordinals).
- For each $\beta < \alpha$, let σ_{β} be a winning strategy of player I starting from v_{β} .
- Then, we define a function $f: W_{\mathbf{I}}(G) \to \alpha$ as follows: for $v \in W_{\mathbf{I}}(G)$, let f(v) the smallest $\beta < \alpha$ such that $v \in W_{\mathbf{I}}(G, \sigma_{\beta})$.
- Finally, we define a strategy σ as $\sigma(v) := \sigma_{f(v)}(v)$. We want to show that $W_{\mathrm{I}}(G, \sigma) = W_{\mathrm{I}}(G)$. Since $W_{\mathrm{I}}(G, \sigma) \subseteq W_{\mathrm{I}}(G)$, it is sufficient to show any play consistent with σ starting from a vertex of $W_{\mathrm{I}}(G)$ is a winning play for I.

- Logic and Computation
- K. Tanaka
- Recap
- Parity games
- Uniform memoryless determinacy

- Now, let ρ be a play consistent with σ , starting from vertex ρ_0 of $W_{\rm I}(G)$.
- If ρ is also consistent with $\sigma_{f(\rho_0)}$, then player I wins in ρ , which completes the proof. Otherwise, we can get the smallest k such that $\rho_k \in V_I$ and $\rho_{k+1} \neq \sigma_{f(\rho_0)}(\rho_k)$.
- Since $\rho \upharpoonright (k+1)$ is consistent with $\sigma_{f(\rho_0)}$, player I can win the game from ρ_k following $\sigma_{f(\rho_0)}$, that is, $\rho_k \in W_{\mathsf{I}}(G, \sigma_{f(\rho_0)})$. But $\rho_{k+1} = \sigma(\rho_k) = \sigma_{f(\rho_k)}(\rho_k) \neq \sigma_{f(\rho_0)}(\rho_k)$, so $f(\rho_k) < f(\rho_0)$.
- Player I wins if ρ obeys $\sigma_{f(\rho_k)}$ from ρ_k onwards.
- Othewise, some k' appears such that $\rho_{k'} \in V_{\mathsf{I}}$ and $\rho_{k'+1} \neq \sigma_{f(\rho_k)}(\rho_{k'})$, then $f(\rho_{k'}) < f(\rho_k) < f(\rho_0)$.
- By repeating this, the descending sequence of ordinal numbers ends in finite steps. So there exists some $l \in \omega$ such that ρ is consistent with $\sigma_{f(\rho_l)}$ from ρ_l , and hence player I wins.

- Therefore, σ is I's winning strategy starting from any vertex of $W_{\rm I}(G)$. That is, $W_{\rm I}(G,\sigma) = W_{\rm I}(G)$.
- $W_{\mathrm{II}}(G,\tau) = W_{\mathrm{II}}(G)$ can be shown similarly.

K. Tanaka

- Recap
- Parity games
- Uniform memoryless determinacy

- If there exist σ and τ such that $W_{I}(G, \sigma) \cup W_{II}(G, \tau) = V$, game G is said to have uniform memoryless determinacy.
- From the above lemma, if a parity game has memoryless determinacy, it also has uniform memoryless determinacy.
- We say that $v \in V$ is an **absorbing vertex** if no edges exit from v, i.e., $\{w : (v, w) \in E\} = \{v\}$. Note that we assume that no deadlocks exist.
- We say that $v \in V$ is a **vanishing vertex** if no edges enter v, i.e., $\{w : (w, v) \in E\} = \emptyset$.
- Vertices that are neither absorbing nor vanishing are called **relevant vertices**, and the set of such vertices is denoted by $V_{\rm r}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

10 / 19

• $\pi(v)$ for $v \in V_r$ is called a **relevant priority**.

K. Tanaka

Recap

Parity games

Uniform memoryless determinacy Consider the following parity game $G = (V_{I}, V_{II}, E, \pi)$, where $V_{I} = \{v_{2}, v_{3}, v_{4}\}$ and $V_{II} = \{v_{0}, v_{1}\}$, $\pi(v_{i}) = i$ for i = 0, 1, 2, 3, 4.

4 日 × 4 同 × 4 回 × 4 回 ×

- $W_{\mathsf{I}}(G) = \{v_0, v_1, v_2, v_3, v_4\}$
- $W_{\mathsf{H}}(G) = \emptyset$

Example 2

- $\bullet\,$ The above game G is uniform memoryless determined.
- v_0 is absorbing, v_4 is vanishing, v_1, v_2 and v_3 are relevant.
- $\{1, 2, 3\}$ is the set of relevant priorities.

K. Tanaka

Recap

Parity games

Uniform memoryless determinacy

Theorem

Any parity game G has uniform memoryless determinacy.

Proof

Consider a parity game $G = (V_{\rm I}, V_{\rm II}, E, \pi)$. We prove by induction on the number of relevant priorities $\pi(V_{\rm r})$.

Base case:

- If there are no relevant points, all vertices are absorbing or vanishing.
- From an absorving vertex $v, v \in W_{I}(G, \sigma)$ for any σ (if $\pi(v)$ is even), or $v \in W_{II}(G, \tau)$ for any τ (otherwise).
- From a vanishing vertex v, each edge goes to an absorbing vertex, where the winner is determined regardless of the strategy. So, by selecting an appropriate $\sigma(v)$ or $\tau(v)$, we have $v \in W_{\rm I}(G,\sigma) \cup W_{\rm II}(G,\tau)$, where the values of σ and τ at other vertex than v are not irrelevant.

12 / 19

• Thus, there exist σ and τ such that $W_{\mathsf{I}}(G, \sigma) \cup W_{\mathsf{II}}(G, \tau) = V$.

K. Tanaka

Recap

Parity games

Uniform memoryless determinacy

Induction case:

- Suppose the number of relevant priorities is k > 0. We first prove a weak claim $W_{\rm I}(G) \cup W_{\rm II}(G) \neq \emptyset$.
- $\bullet\,$ For simplicity, assume that the minimum of the relevant priorities is 0.
- We will modify the game G so that the vertices with priority 0 are changed to non-relevant vertices. Such a modified game is called G^+ , to which we will apply the induction hypothesis.
- Let D be the set of relevant vetices with priority 0 in G.
- Make a copy of D and put $\tilde{D} := \{ \tilde{v} : v \in D \}.$
- $G^+ = (V^+_{\rm I}, V^+_{\rm II}, E^+, \pi^+)$ is defined as follows.
- $V_{\mathrm{I}}^+ := V_{\mathrm{I}} \cup \{ \tilde{v} : v \in D \cap V_{\mathrm{I}} \},$
- $V_{\mathsf{II}}^+ := V_{\mathsf{II}} \cup \{ \tilde{v} : v \in D \cap V_{\mathsf{II}} \},$
- $$\begin{split} E^+ &:= \{(u,v) \in E: v \notin D\} \cup \{(u,\tilde{v}): (u,v) \in E \land v \in D\} \cup \{(\tilde{v},\tilde{v}): v \in D\} \end{split}$$
- $\pi^+ := \pi \cup \{ (\tilde{v}, 0) : v \in D \}.$

 G^+ is obtained by separating each vertex v of D into vanishing vertex $\mathfrak{a}_{\mathfrak{A}}$ v and absorbing vertex $\mathfrak{A}\mathfrak{Z}/19$

- Logic and Computation
- K. Tanaka

- Uniform memoryless determinacy

- Therefore, the number of relevant priorities of G^+ is one less than that of G.
- By induction hypothesis, there exist σ^+ and τ^+ such that $W_{\rm I}(G^+,\sigma^+) \cup W_{\rm II}(G^+,\tau^+) = V^+ = V_{\rm I}^+ \cup V_{\rm II}^+.$
- The strategies $\sigma^{\pm}: V_{\mathrm{I}} \to V$ and $\tau^{\pm}: V_{\mathrm{II}} \to V$ in G can be derived from $\sigma^+: V_{\mathbf{I}}^+ \to V^+$ and $\tau^+: V^+_{\mu} \to V^+$ by restricting it to V.
- That is, σ^{\pm} restricts the domain of σ^{+} to V_I, and when the value is $\tilde{v} \in \tilde{D}$, change it to v. τ^{\pm} can be obtained similarly.

- First, consider the case $W_{\rm I}(G^+, \sigma^+) = V^+$.
- Take any play ρ consistent with σ^{\pm} in G.
- If a vertex of D appears infinitely many times in ρ , then player I wins in ρ .
- Otherwise, from some vertex in ρ (written as ρ') does not visit D, and so since ρ' obeys σ^{\pm} in G, ρ' obeys σ^{+} in G⁺, which means that player I wins in G⁺, and I also wins with ρ' in G. Finally, player I wins even with ρ in G, because any finite part of the play makes no difference to the parity condition. ▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲□ ● ● ● ●

• That is,
$$W_{\mathrm{I}}(G, \sigma^{\pm}) = V$$
.

K. Tanaka

Recap

Parity games

Uniform memoryless determinacy

- Next, consider the case $W_{\rm I}(G^+, \sigma^+) \neq V^+$.
- Then we have $v \in W_{\mathrm{II}}(G^+, \tau^+) = V^+ W_{\mathrm{I}}(G^+, \sigma^+).$
- Consider a play starting from v consistent with τ⁺. If an absorbing vertex ṽ ∈ D̃ appears in the middle, then after that it just repeats ṽ, and so priority 0 appears infinitely often, which means player I wins. This contradicts with v ∈ W_{II}(G⁺, τ⁺).
- Therefore, in such a play of G^+ , a vanishing vertex may appear only at the start, and no vertex in $D\cup \tilde{D}$ appear in the middle.
- Thus, any play of G starting from v and consistent with τ[±] does not enter D in the middle, and so it is also consistent with τ⁺, which means player II wins. That is, v ∈ W_{II}(G, τ[±]).

15/19

• Combining the above two cases, we can say at least $W_{I}(G) \cup W_{II}(G) \neq \emptyset$.

K. Tanaka

- Recap
- Parity games
- Uniform memoryless determinacy

- Next we show $W_{I}(G) \cup W_{II}(G) = V$. By the way of contradiction, assume $W_{I}(G) \cup W_{II}(G) \neq V$.
- Let $V^- := V (W_{I}(G) \cup W_{II}(G))$ and consider the game G^- by restricting G to V^- .
- Note that for every $v \in V^-$ there is a $u \in V^-$ such that $(v, u) \in E$. Because if every u such that $(v, u) \in E$ belongs to $W_{\mathrm{I}}(G) \cup W_{\mathrm{II}}(G)$, so is v, which contradicts $v \in V^-$.
- Therefore, the game G^- is a correct parity game.
- Let $v \in W_{I}(G^{-})$ and σ^{-} be a winning strategy for I starting from v in G^{-} .
- Now consider a play ρ starting at v consistent with σ^- in G.
- At u ∈ V_{II} ∩ V⁻ in the middle of play, no vertex of W_{II}(G) will be chosen in the next move. Because if it were selected, we would have u ∈ W_{II}(G), which contradicts u ∈ V⁻.

K. Tanaka

Recap

Parity games

Uniform memoryless determinacy

- Therefore, ρ is a play consistent with σ^- in G^- , and so player I wins. That is, $v \in W_{\rm I}(G)$.
- But since $V^- \cap W_{\mathrm{I}}(G) = \emptyset$, $W_{\mathrm{I}}(G^-) = \emptyset$.
- Similarly, $W_{\mathrm{II}}(G^-) = \varnothing$, so $W_{\mathrm{I}}(G^-) \cup W_{\mathrm{II}}(G^-) = \varnothing$.
- Since G^- is a parity game with at most k relevant priorities, $W_{\mathrm{II}}(G^-) \cup W_{\mathrm{II}}(G^-) \neq \emptyset$, which contradicts the assumption of $W_{\mathrm{II}}(G, \sigma) \cup W_{\mathrm{II}}(G, \tau) \neq V$. \Box
- Further readings

The above proof is based on S. Le Roux's paper:

"Memoryless determinacy of infinite parity games: Another simple proof", *Info. Proc. Letters* 143 (2019).

Le Roux's proof also relies on Haddad's paper: "Memoryless determinacy of finite parity games: another simple proof", *Info. Proc. Letters* 132 (2018) 19–21. which in turn refers to many previous studies.

K. Tanaka

Recap

Parity games

Uniform memoryless determinacy

- In a parity game G over a finite graph, it can be checked in polynomial time whether a given memoryless strategy is a winning strategy. So $W_{I}(G)$ is NP.
- Similarly $W_{II}(G)$ is also NP and $W_{I}(G) = V W_{II}(G)$, so $W_{I}(G) \in NP \cap \text{co-NP}$.
- However, it is not yet known whether it will be in P, and currently it is $O(|G|^{\log n+6})$ (where *n* is the number of priorities), due to Calude-Jain-Khoussainov-Li-Stephan results (STOC 2017).

DECIDING PARITY GAMES IN QUASI-POLYNOMIAL TIME*

CRISTIAN S. CALUDE†, SANJAY JAIN‡, BAKHADYR KHOUSSAINOV†, WEI LI§, AND FRANK STEPHAN‡§

Abstract. It is shown that the parity game can be solved in quasi-polynomial time. The parameterized parity game—with n nodes and m distinct values (a.k.a. colors or priorities)—is proven to be in the class of fixed parameter tractable problems when parameterized over m. Both results improve known bounds, from runtime $n^{O(\sqrt{n})}$ to $O(n^{\log(m)+6})$ and from an **XP** algorithm with runtime $O(n^{\Theta(m)})$ for fixed parameter m to a fixed parameter tractable algorithm with runtime $O(n^{5} + 2^{m \log(m)+6})$. As an application, it is proven that colored Muller games with n nodes and m colors can be decided in time $O((m^m \cdot n)^5)$; it is also shown that this bound cannot be improved to $2^{o(m + \log(m))} \cdot n^{O(1)}$ in the case that the exponential time hypothesis is true. Further investigations deal with memoryless Muller games and multidimensional parity games.

K. Tanaka

Recap

Parity games

Uniform memoryless determinacy

Course Announcement:

- There is no class next week = no class on April 18 and 20, 2023.
- Before Golden Week, we still have two classes on April 25 and 27, 2023.