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Logic and Computation II� �
• Part 4. Formal arithmetic and Gödel’s incompleteness theorems

• Part 5. Automata on infinite objects

• Part 6. Recursion-theoretic hierarchies

• Part 7. Admissible ordinals and second order arithmetic� �
Part 4. Schedule� �
• Mar.28, (1) Automata on infinite strings

• Mar.30, (2) The decidability of S1S

• Apr. 4, (3) Tree automata

• Apr. 6, (4) The decidability of S2S

• Apr.11, (5) Finite model theory

• Apr.13, (6) Parity games� �
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Recap
• The tree automaton M = (Q,Ω, δ, Q0, Acc):

• δ ⊆ Q× Ω×Q2: a transition relation,

• Acc: an acceptance conditions.

• For an input Ω-labeled tree t : {0, 1}∗ → Ω, a run-tree of
M is a Q-labeled tree s : {0, 1}∗ → Q such that
• s(ϵ) ∈ Q0, where ϵ is the root of the tree.
• for any u ∈ {0, 1}∗, (s(u), t(u), s(u0), s(u1)) ∈ δ.

• For a Q-labeled tree s and an infinite path α, s(α) denotes
the ω-sequence of states on α in s. Inf(s(α)) denotes the
set of states which appears infinitely often on s(α).

• An input tree t is accepted by a tree automaton M iff there
is a run-tree s in which all its infinite paths s(α) satisfy:
• For MTA M , Acc is F(⊆ P(Q)): Inf(s(α)) ∈ F .

• For PTA M , Acc is π : Q → {0, 1, . . . , k}:
min{π(q) : q ∈ Inf(s(α))} is even.

… …

𝒂𝒂𝟏𝟏
= 𝑡𝑡(𝜖𝜖)

𝒂𝒂𝟐𝟐
= 𝑡𝑡(0)

𝒂𝒂𝟐𝟐
= 𝑡𝑡(1)

𝒂𝒂𝟑𝟑
= 𝑡𝑡(00)

𝒂𝒂𝟒𝟒
= 𝑡𝑡(01)

𝒂𝒂𝟓𝟓
= 𝑡𝑡(10)

𝒂𝒂𝟔𝟔
= 𝑡𝑡(11)

… …

𝒒𝒒𝟎𝟎
= s(𝜖𝜖)

𝒒𝒒𝟏𝟏
= s(0)

𝒒𝒒𝟐𝟐
= s(1)

𝒒𝒒𝟑𝟑
= s(00)

𝒒𝒒𝟒𝟒
= s(01)

𝒒𝒒𝟓𝟓
= s(10)

𝒒𝒒𝟔𝟔
= s(11)

An Ω label 
input tree

A 𝑄𝑄 label 
run of the input tree
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• PTA ↔ MTA.

• The tree languages accepted by PTA’s are closed under complement.

• It is decidable whether the accepted language of PTA is empty or not.

• Any S2S formula φ(X⃗) has an equivalent MTA Mφ, and vice versa.

• S2S is decidable.
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Introduction
• Second-order logic is also very useful for describing classes of finite structures, and its
hierarchy is closely linked to the computational complexity.

• We first review some popular classes of first-order formulas. Then, we discuss Fagin’s
famous theorem on the equivalence between Σ1

1 formulas and NP problems.

• Let FO be the set of all first-order sentences in L. For simplicity, assume that L is
finite. Also, we do not discriminate between a formula and its Gödel number.

• Now, define the following subsets of FO.
• Sat := {φ ∈ FO : φ has a model (satisfiable)}.

• FinSat := {φ ∈ FO : φ has a finite model}.

• InfSat := Sat− FinSat = {φ ∈ FO : φ has only infinite models}.

• Valid := {φ ∈ FO : φ is true for all structures}.

• FinVal := {φ ∈ FO : φ is true for all finite structures)}.
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Lemma

About the five subsets of FO, the following hold.
(1) Valid is CE (Σ1).
(2) Sat is co-CE (Π1).
(3) FinSat is CE.
(4) InfSat is co-CE.
(5) FinVal is co-CE.

Proof

(1) By the completeness theorem, φ ∈ Valid ⇔ ⊢ φ , and by the theorem on p.17 of Slide
04-03, the right-hand side is CE, so is the left-hand side.

(2) It follows from φ ∈ Sat ⇔ ¬φ /∈ Valid.

(3) Enumerate the finite structures, and sequentially check whether φ holds in a finite
structure. If one finds a model of φ, the algorithm terminates successfully. Otherwise,
it does not halt. Thus, FinSat is CE.

(4) The complement of InfSat is (FO− Sat) ∪ FinSat, which is CE.

(5) Clear from φ ∈ FinVal ⇔ ¬φ /∈ FinSat. □

7 / 20



Logic and
Computation

K. Tanaka

Recap

Introduction

Trakhtenbrot’s
theorem

Noncompactness
of finite model
theory

Finite model
theory of SO

Fagin’s Theorem

• Let L be a finite (or recursive) language containing LOR. Then we will show that
none of the above five classes are decidable (computable, recursive).

• Since the provability of first-order logic is undecidable, Valid and Sat are also
undecidable by the completeness theorem.

• To simplify the discussion for the remaining three classes, we assume that L has
sufficiently (but finitely) many relation symbols.

• The proof of the following theorem is almost the same as Turing’s proof of the
undecidability of first-order logic, and the details also overlap with the proof of Cook’s
theorem.

Theorem (Trakhtenbrot’s theorem (1950)1)

FinSat is not decidable.

1Boris Trakhtenbrot. Born in Moldova, Eastern Europe. He taught in Russia and lived in Israel in his
later years.
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Proof

• Let M = (Q,Ω, δ, Q0, F ) be a universal Tm with one tape, and
Q = {q0, q1, . . . , qm−1}, Q0 = {q0} and Ω = {0, 1}.

• In the following, we will define a first-order sentence Ψw which means “M accepts
w ∈ Ω∗ ” and then show w ∈ L(M) ⇔ Ψw ∈ FinSat. Since w ∈ L(M) is undecidable
as a halting problem, FinSat is also undecidable.

• The sentence Ψw is constructed by encoding the computation process of M on input
w and embedding it in a finite structure A.

• First, assume that the language of A contains the symbol <, and add the assertion
that ”< is a linear order on A” to Ψw.

• Then, if |A| = n, then A can be identified with {0, 1, . . . , n− 1}.
• We do not rule out the possibility of |A| = ∞ in the definition of Ψw, but since we

only treat finite structures, we do not need to think about the infinite case.
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• We consider the elements 0, 1, . . . , n− 1 of A represent both the time (steps) of the
computation and the position of the tape.

• Then, L is assumed to have the relational symbols Ti(t, p) (i = 0, 1, B), which
indicates that i is written on the tape in position p at time t, and also the relation
symbols Hq(t, p) (q ∈ Q), which means “at time t, the head is at position p and the
internal state is q”.

• We can describe the transition function δ as first-order relations among Ti(t, p) and
Hq(t, p) (see the proof of Cook’s theorem ), and put them into Ψw. Also, add the
initial configuration ∀pTw(p)(0, p) ∧Hq0(0, 0) and the accepting condition
∃t∃p ∃qf ∈FHqf (t, p) to Ψw.

• Then it is clear that w is accepted by M if and only if Ψw has a finite model A. □
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The language L of Ψw in the above proof includes {<, T0, T1, TB , Hq0 , . . . ,Hqn−1}. But it
is known that if L has a binary function, then Trakhtenbrot’s theorem holds. A related fact
is that group theory and finite group theory are undecidable (Tarski, Mal’cev).

Corollary

FinVal is not decidable.

Proof φ ∈ FinVal ⇔ ¬φ /∈ FinSat and so Trakhtenbrot’s theorem implies the corollary. □

Before dealing with InfSat, let us define the following useful concepts.

Definition

T ⊂ FO is said to have the finite model property if T ∩ Sat = T ∩ FinSat.

Lemma

If T ⊂ FO is decidable and has the finite model property, then T ∩ Sat is decidable.

Proof If T is decidable, by lemma in Page 7 of this slides, T ∩ Sat is co-CE and
T ∩ FinSat is CE. By the f.m.p., T ∩ Sat = T ∩ FinSat, and so it is decidable. □
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Corollary

InfSat is not decidable.

Proof

• B.W.O.C., assume that InfSat is decidable.

• Then its complement FO− InfSat is also decidable. Since

(FO− InfSat) ∩ Sat = FinSat,

FO− InfSat has finite model property. By the lemma in Page 11 of this slides, FinSat
is also decidable.

• However, this contradicts the Trakhtenbrot’s theorem, which denies our assumption.
That is, InfSat is not decidable. □
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• Trachtenbrot’s theorem means that in the world of finite structures, the validity
cannot be formalized as a deductive system.

• As can be expected from this fact, most properties of ordinary first-order logic does
not hold in that world.

Lemma (Noncompactness of finite model theory)

There exists a theory T (⊂ FO) such that any finite part S ⊂ T has a finite model, but the
whole T does not have a finite model.

Proof Let σn be the following formula which means that there are at least n elements

σn := ∃x0 . . . ∃xn−1

∧
i<j<n

xi ̸= xj .

Obviously, the theory T := {σn : n ∈ N} satisfies the lemma. □

In addition, fundamental theorems of first-order logic, such as E. Beth’s definability
theorem and W. Craig’s interpolation theorem, do not hold.
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• Next we consider the following problem: for a fixed formula, to decide whether or not
a given finite structure satisfies the formula.

• To do this, we must code a finite structure as a string. Let n be the number of
elements in a finite structure. Then a subset of the domain can be encoded with a
binary sequence of length n, and general relations and functions on the domain with
sequences of length nk, where k is an arbitrary constant. In sum, the code size of a
finite structure with n elements is about nk.

• On the other hand, in order to evaluate a logical expression, it is necessary to
memorize the values of variables during the computation, which requires the space in
a constant multiple of log n, which is the same as a constant multiple log of input
length nk. So, the computational complexity is the deterministic log-space L. This
claim is often is represented as

FO ⊂ L
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• Now we consider finite model theory of second-order logic SO.

• A second-order logical expression ∃R1 . . . ∃Rnφ(R1, . . . , Rn) (with first-order φ) is
called existential second-order formula (ESO for short) or Σ1

1.

• Similarly, the formula obtained by binding with universal second-order quantifiers is
called universal second-order formula (USO for short) or Π1

1.

• If all quantified relations (variables) are unary (set variables), they are called m-Σ1
1 and

m-Π1
1, respectively, where m stands for monadic.

• We start with investigating properties of graphs. A graph G = (V,E), either finite or
infinite, can be viewed as a first-order structure in which the set of vertices V is a
domain and the set of edges E is a binary relation on it. The property of the following
example cannot be expressed by a first-order formula, but can be expressed by a
second-order formula.
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Examples� �
(1) The non-connectivity of G = (V,E) can be expressed by an m-Σ1

1 formula as follows.

∃S(∃xS(x) ∧ ∃y¬S(y) ∧ ∀x, y(S(x) ∧ ¬S(y) → ¬E(x, y))).

Its negation, i.e., connectivity, cannot be represented by m-Σ1
1.

(2) The fact that a (directed/undirected) graph G = (V,E) has a Hamiltonian path
can be represented by Σ1

1 as follows.

∃ < (“ < is a linear order over V ” ∧ ∀x, y(¬∃z(x < z < y) → E(x, y))).

This can not be expressed by m-Σ1
1 nor any MSO.� �

Homework� �
Write an m-Σ1

1 formula expressing that the vertices of the graph G = (V,E) can be
painted with k colors so that adjacent vertices have different colors.� �

16 / 20



Logic and
Computation

K. Tanaka

Recap

Introduction

Trakhtenbrot’s
theorem

Noncompactness
of finite model
theory

Finite model
theory of SO

Fagin’s Theorem

Here are some basic facts about finite structures.

Lemma

The problem of whether or not a finite structure has a property represented by Σ1
1 is NP.

Proof

• Let ∃R⃗φ(R⃗) be a Σ1
1 formula.

• Given a finite structure A, we nondeterministically choose a relation R⃗ on A and
check whether (A, R⃗) satisfies φ(R⃗) or not.

• Since FO ⊆ L ⊆ P and R⃗ (the code ≤ nk) is chosen nondeterministically, this problem
is NP.

□

Surprisingly, the converse of the above lemma also holds. The proof is similar to that of
Trachtenbrot’s theorem. The key point is that binary relations <, relations Ti and Hq

appear as second-order existential quantifiers.
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Theorem (Fagin’s Theorem (1973))

An NP problem can be expressed as Σ1
1 on finite structures .

Proof
• Let M = (Q,Ω, δ, Q0, F ) determine an NP problem nondeterministically in TIME(nk).
Suppose Q = {q0, q1, . . . , qm−1}, Q0 = {q0} and Ω = {0, 1}.

• Given a finite structure A, assume that there exists a linear order < on A. So, if
|A| = n then A can be identified with {0, 1, . . . , n− 1}.

• Since M works within time nk, the time can be represented by a k-tuple t⃗ of elements
in the structure. Hence, the head position on the tape can also be represented by a
k-tuple p⃗.

• Then, with these arguments, let Ti(⃗t, p⃗) represent ”at time t⃗ and on the tape position
p⃗, a symbol i = 0, 1, B is written,” and Hq (⃗t, p⃗) ”at time t⃗, the head is on position p⃗
and the internal state is q.”

• In addition, add the formulas describing the initial configuration and the accepting
condition into Ψ (cf. Trakhtenbrot’s theorem).

• Then, the NP problem can be decided by checking whether or not the Σ1
1 formula

∃ < ∃(T0, T1, TB)∃(Hq0 , . . . ,Hqn−1
)Ψ holds in A. □
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The above theorem immediately leads to Cook’s theorem.

Corollary

SAT is NP-complete.

Proof

• SAT can be viewed as ESO and so it is NP.

• By Fagin’s theorem, any NP problem can be expressed by a fixed ESO formula on a
finite structure. Since a first-order quantifier on a structure with n elements can be
identified with a conjunction or disjunction of n components, a first-order formula on
it can be converted to a Boolean formula of length nk.

• Hence, ESO on a finite structure can be converted to SAT. Therefore, SAT is
NP-hard. □
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Thank you for your attention!
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