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Computation
e ¢ Part 4. Formal arithmetic and Godel’s incompleteness theorems
® Part 5. Automata on infinite objects

® Part 6. Recursion-theoretic hierarchies

® Part 7. Admissible ordinals and second order arithmetic

-~ Part 4. Schedule ~N

® Mar.28, (1) Automata on infinite strings
® Mar.30, (2) w-automata and S1S
® Apr.04, (3) Tree automata and S2S (1)
® Apr.04, (4) Tree automata and S2S (2)
(5)
(6)

® Apr.11, Finite model theory
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Recap

® Let Q be a finite set (alphabet) and Q“ be the set of w-words agajas -+ on .

A run of a nondeterministic automaton M = (Q, Q, J, Qo,Acc) on an input
a = apaiag - -- € Q¥ is an infinite sequence of states gyq1q2 - - - € Q¥ satisfying:

9 € Qo, (4i,ai,qit1) €6 (1 > 0).
By Inf(o), we denote the set of states that appear infinitely in o.
® An infinite run o is accepted with a Biichi condition (F' C Q) if Inf(o) N F # @.
An infinite run o is accepted with a Muller condition (F C P(Q)) if Inf(c) € F.

An infinite run o is accepted with a Rabin condition (F = {(/,, R;) | (1 <i < k)},
,Ri C Q), if there exists ¢ such that Inf(o) N (7, # @ and Inf(0) N R, = @.

An input word « is accepted by NBA/NMA/NRA M if there is an accepted run with

a Biichi/Muller/Rabin condition on «a.

A deterministic automaton with a Biichi/Muller/Rabin condition is called
DBA/DMA/DRA.

4/19



Logic and
Computation

K. Tanaka

Recap

(b) and (e) are obvious. (c) and (d) are also easy to show.
To show @ For an NMA M with an accepting set F,

NMA
construct an NBA N to simulate M.
N nondeterministically predicts that all states of M not d =
in Inf(o) have appeared at some point, and then guesses
DMA
Inf(o) is a certain set A € F. And check if A is indeed )i
Inf(o). b c
(@) is the most difficult to prove. It was first prove by DRA
McNaughton in 1966, but later shown more efficiently by
Safra in 1988. 2
Summary NBA f
® S1S is the MSO theory of (NUP(N),z + 1, €). g
DBA

® \We proved that S1S and NBA have equivalent
expressive power. The decision problem of S1S “automaton M; — automaton
can be reduced to the emptiness problem of NBA. M," means L(M;) C L(Ms,).
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Introducing tree automata

® Fix a finite set of symbols (or labels) €.

® An (Q-)labelled tree is an infinite complete binary tree {0, 1}* with each vertex
labelled by a symbol in . It can be viewed as a function ¢ : {0,1}* — Q.

Definition aa
The tree automaton M = (Q,Q,d, Qo, Acc):
® (): a set of states, @ @

® §C Q x N xQ? a transition relation,

® Qo C Q: a set of initial states, and (¢;a,q1,42) € 0 means that
by reading a, the state changes
from ¢ to ¢; and ¢y simultane-

ously.

® Acc: an acceptance conditions, such as Biichi ,
Rabin, Muller.

M is deterministic if § is a function (6 : Q x © — @Q?) and Q is a singleton set.
However, for tree automata, deterministic ones are rarely used.
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Run-trees of tree automata

To determine the acceptance of the input tree, we define a mﬁiﬁ:ﬁl

run-tree representing the state transitions.

For an input Q-labelled tree ¢ : {0,1}* — Q, a run-tree of
M is a Q-labelled tree s : {0, 1} — () such that
® s(e) € Qp, where € is empty and represents the root
of the binary tree. :
® for any u € {0,1}*, (s(u), t(u), s(u0), s(ul)) € 4. [

If M is deterministic then there is only one run-tree for any A@abel
i run of the input tree
Input tree.

To simplify the discussion, assume that for any input, a
run-tree can be constructed. (Such an automaton is said
to be complete). This modification is easily done by
adding new meaningless states.
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¢ A (infinite) path through the binary tree {0,1}* is a function f : N — {0,1}* such
that f(0) = € and f(n + 1) is a child (an immediate successor) of f(n) for all n.

K. Tanaka

Introducing tree ® For a (Q-labelled tree s and an infinite path «, s(«) denotes the w-sequence of states
automata .
(labels) on path « in s.

® An input tree t is accepted by a tree automaton M if there is a run-tree s in which all
of the paths s(«) satisfy (one of ) the following acceptance conditions.
® If M is a Biichi tree automaton (BTA), then the acceptance condition Acc is
F(C Q): an input tree t € L(M) if there is a run-tree s in which all its infinite
paths s(a) satisfying Inf(s(a)) N F # @.
® If M is a Muller tree automaton (MTA), Accis F(C P(Q)): an input tree
t € L(M) if there is a run-tree s in which all its infinite paths s(«) satisfying that
Inf(s(a)) € F.
® If M is a Rabin tree automata(RTA), Accis F = {(C/,, R;) | 1 <i < k}, where
,R; C Q: an input tree t € L(M) if there is a run-tree s s.t in all its infinite
paths s(a) there exists 4 satisfying Inf(s(a)) NG, # @ and Inf(s(a)) N R; = @.
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~ Example ~
® Let QO = {a,b}. Let T be the set of Q-labelled trees with at
least one path in which a appears infinitely many times.

e ABTA M = (Q,9Q,0,Qq, F) is defined as follows.
QO = {QG}a F= {Qtlaqeo}a

5(Qy’x) = {(QIaqw)7 (QOqux)}7 5((]00733) = {(QOoaqoo)}

® Therefore, the acceptance of the input tree ¢ is determined by
whether or not g, appears infinitely in a nondeterministically
selected path.

Q = {qa> W 4o }

® Thus M accepts language T7.

- J
~ Remarks from the viewpoint of analytical hierarchy —

The accepting language of any deterministic tree automaton can be
expressed as a I1} statement (-. Its run-tree is uniquely determined).
Since Ty is (fnc-)X} and cannot be simplified any further, it cannot

be accepted by any deterministic tree automaton.

\ J

Goo
xy/ ok

oo oo

x = aq, orgb/ 19
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We will prove the decidability of S2S, a monadic second-order theory of 2 successors,
by using the expressive equivalence between S2S and MTA.

The standard model of S2S is
({0’ 1}* U P({O? 1}*)7 So(x), Sl($>7 E)a

where S;(x) is a kind of successor function, i.e., S;(w) is w"i for any w € {0,1}*
(¢ =0,1). (Note: w"i is also written as w - i or simply w .)

Let P, be the set of nodes with label a € Q, i.e., P, =t!(a). If an 525 formula ¢
(in an extended language with {P, : a € 2}) holds in the structure
({0,1}* UP({0,1}*), So(z), S1(x), €, Pa)acq, we say that the formula ¢ holds for ¢.

Then there is a two-way translation between an MTA M and an S2S formula ¢, and
for any ()-labeled tree ¢,
“M accepts t" is equivalent to “p satisfies ¢".

10/ 19



Logic and
Computation

K. Tanaka Lemma

The class of languages accepted by MTA is closed under set union and projections.

Introducing tree
automata

Proof
® et M, = (Q179,517Q(1)7.7:1) and My = (QQ,Q,éQ,Q(Q),]:Q) be MTA's. We may
assume Q1 N Q2 = 2.
Then, an MTA that accepts L(M;) U L(Ms) is
N = (Q1UQ2,9,01 Uby, Q5 UQG, F1 U Fa).

® Suppose that a set L of 1 x s-labeled trees is accepted by an MTA
M = (QaQI X Q2767 QO7F)' An MTA N = (Q79175/3Q07f) that accepts the
projection of L onto 7 is defined as,

(p,a,qi1,q2) € &' < there exists b € Qs such that (p, (a,b),q1,q2) € 6.
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® The dlfflCUlty of eqUiValence of MTA and 525 IiQSABSTRACT. In 1969 Rabin introduced iree automata

K. Tanaka and proved one of the deepest decidability results.

in proving the class of languages accepted by If you vorked on decision problems you did most
. probably use Rabin's result. But did you make your
MTA IS Closed Under Comp|ement. way through Rabin's cumbersome proof with its

induction on countable ordinals? Building on ideas
of our predecessors--and especially those of

[ ] Since MTA is different from DTA and DRA, |t iS Biichi--we give here an alternative and transparent

proof of Rabin's result. Generalizations and

even more difficult to prove its closure under further results will be published elsewnere.
Complement than the w—language case. The idea to use games is not new. It was

aired by McNaughton and exploited in Landweber
1967, Buchi & Landweber 1969 and especially in
Biichi 1977 where the complementation problem was

® To simplify the original argument of Rabin Teduced (for an able reader) to a certain
. . det i 1t. O §2 gi ch duc-
(1969), Y. Gurevich and L. Harrington (1982)  &ion too. Our 83 provides tae necessary

. . . - determinancy result. When this solution had been

brought in the idea of infinite games and gave an reported in several places including Purdue Bichi
kindly sent us a manuscript, Blchi 1981. To be

e|ega nt prOOf. sure Biichi proved the determinancy result, and he
certainly was the first to do so. His proof still
is, however, a very complicated induction on

° They Ca” a Strategy that haS Only bOUnded countable ordinals, much more difficult than our
§3.
memory a forgetful strategy, and use the fact Our games form a special case of games

. . . . studied in set theory. The most relevant set-
that certain games have such winning strategies theoretic peper s Davis 1964. However the

determinancy results of Davis 1964 and other set-

Introducing tree
automata

to Slmpllfy the treatment of com plements theoretic papers do not suffice for our purposes
. e because we are interested only in very special
S|gn|f|ca ntly memory-restricted strategies.

12/19
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® Subsequently, Emerson and Jutla (1988), McNoughton (1993), Zielonka (1998) and
others further simplified the proof by discovering and utilizing the relation between
parity tree automata and memoryless (positional) strategies of parity games.

Parity trees

e A function 7 : @Q — {0,1,...,k} is called a priority function. A parity tree
automaton (PTA) is equipped with a priority function as its accepting condition.
An input tree is accepted by a PTA, if there exists a run-tree where in each path, the
smallest priority of the states appearing infinitely many times is even.

Theorem
PTA and MTA accept the same languages.

Proof.
It is easy to see that the languages accepted by a PTA can be accepted by a MTA such
that F' € F iff F' is a set of states whose smallest priority is even.

13/19



Logic and
Computation

e Conversely, given an MTA M = (Q, 9,6, Qo, F), we want to construct a PTA
M =(Q,Q,d,Q[, ™) which accepts the same language.

® Let @ be the set of permutations of Q U {f} (where j ¢ Q). So, the rightmost ¢
corresponds to the current state of M, and f represents the place where such ¢ was
iy placed just before now (Last Appearing Record).

K. Tanaka

® Thus, if §(p,a,r1,r2) in M and q1 ... gmbgm+1 - - qn € Q' and
qn = D,4qi = T1,45 = T2,

5’((11 T[S WO A S RO/ G 14 RIS 7' O s RO Qj—lﬂ(IjH e Qan)-
® Also, the definition of a priority function 7 is as follows. For ufv € Q" ,
2|ul, € @ : v contains q} € F
m(ufv) = [ul le€Q:v I ¢}
2lul+1, {q€ @ :vcontains q} ¢ F

® Then, 7: Q" — {0,1,...,2|Q| + 1}.
Q) can be @', but a more efficient choice is @’ with the rightmost belonging to Q.

14 /19
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We compare the run-trees of MTA M and PTA M’ for the same input tree.

A state ¢ that appears finitely (infinitely) many times in a path of the run-tree of M
also occurs finitely (infinitely) many times to the right of f in the corresponding path
of the run-tree of M’.

Therefore, from a certain time onwards, the states that appear finitely are fixed in a
sequence u on the left side of fj, and the states that appears infinitely and f are
permuted repeatedly.

If § comes to the left most in the sequence, that is, if it comes immediately after u, it
has the lowest priority.

Such cases always occur infinitely. And if the set V' of states to the right of fj belongs
to F, then such a path satisfies the acceptance of M, and so the lowest priority of M’
is even.

Finally, since ufjv occurs an infinite number of times for a sequence v with V, the
acceptance condition for M’ is also satisfied.

Conversely, it is clear that the path of M corresponding to the path satisfying the
acceptance condition of M’ also satisfies F.

Therefore, the accepted tree languages of M and M’ are the same. 0

1519
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Parity games

A parity game G = (W}, Vj, E, ) is a game on a directed graph (Vi U Vj;, E) with a priority
function 7 : VUV, — {0,1,--- | k}:

The set of vertices is partitioned into Vi and Vj; (Vi NV} = @).

Two players, player | and Il, move a token along the edges of the graph, which results
in a path p = vovy - - -, called a play.

At a vertex v € Vi (V3)), it is player | (II)'s turn to choose some v’ such that

(v,v") € E.

A strategy for player | is a mapping o : (VU V}))<“V] = VU W,.

A strategy for player Il is a mapping 7: (ViU V))<“V}; = ViU W.

The winner of a finite play is the player whose opponent is unable to move.

Parity winning condition: Player | wins with an infinite play if the smallest parity that
occurs infinitely often in the play is even. Il wins otherwise

o is a winning strategy for player | if whenever he follows o the resulting play satisfies
the parity condition.

16 /19
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~ Example ~
Consider the following parity game G = (Wi, i, E, ), where Vi = {¢2,q3} and W} =
{1}, 7(q;) =i fori=1,2,3.
\/ \_/
q2 a1 a3
Assume the game starts from ¢, player Il has a winning strategy.
o J
[ ]

A game G is determined if one of the two players has a winning strategy.

® A game G is positionally determined if one of the two players has a memoryless

winning strategy.

A memoryless strategy for player | is a mapping o : Vi = VU V.
A memoryless strategy for player Il is a mapping 7 : Vjj = ViU V.

As we'll introduce later, parity games are positionally determined.

17 /19
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® Given a PTA M = (Q,Q,9,Qo, ) and an input tree ¢, we construct an

infinite game G(M,t) in which two players alternately move as follows: D
(1) Player | (Automaton) chooses next pair of states (g1, g2) from } \QA
d(p; a). Q a2
compiment. (2) Player Il (Path Finder) chooses either 0 or 1 for the next direction.

® The goal of the Path Finder is to find a path « € {0,1}* in the run-tree s that does
not satisfy the acceptance condition, whereas the goal of the Automaton is to find
the @ labels of the run-tree so that the label sequence satisfies the acceptance
conditions.
® Player | (automaton) wins in G(M,t) if the label string s(«) produced by the two
players satisfies the acceptance condition of M.
® Thus "M accepts ¢t < The automaton has a winning strategy in G(M,t)."
® Assume the determinacy of this game (either player has a winning strategy),
“M does not accept t < The path finder has a winning strategy in G(M,t)."
® For the moment, we also assume the following (which we will prove in next week).
“The parity game has a memoryless winning strategy.” 18/ 19



Thank you for your attention!
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