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Logic and Computation II� �
• Part 4. Formal arithmetic and Gödel’s incompleteness theorems

• Part 5. Automata on infinite objects

• Part 6. Recursion-theoretic hierarchies

• Part 7. Admissible ordinals and second order arithmetic� �
Part 4. Schedule� �
• Mar.28, (1) Automata on infinite strings

• Mar.30, (2) ω-automata and S1S

• Apr.04, (3) Tree automata and S2S (1)

• Apr.04, (4) Tree automata and S2S (2)

• Apr.11, (5) Finite model theory

• Apr.13, (6) Parity games� �
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Recap
• Let Ω be a finite set (alphabet) and Ωω be the set of ω-words a0a1a2 · · · on Ω.

• A run of a nondeterministic automaton M = (Q,Ω, δ, Q0,Acc) on an input
α = a0a1a2 · · · ∈ Ωω is an infinite sequence of states q0q1q2 · · · ∈ Qω satisfying:

q0 ∈ Q0, (qi, ai, qi+1) ∈ δ (i ≥ 0).

• By Inf(σ), we denote the set of states that appear infinitely in σ.

• An infinite run σ is accepted with a Büchi condition (F ⊆ Q) if Inf(σ) ∩ F ̸= ∅.

• An infinite run σ is accepted with a Muller condition (F ⊆ P(Q)) if Inf(σ) ∈ F .

• An infinite run σ is accepted with a Rabin condition (F =
{
(Gi, Ri) | (1 ≤ i ≤ k)

}
,

Gi, Ri ⊂ Q), if there exists i such that Inf(σ) ∩Gi ̸= ∅ and Inf(σ) ∩Ri = ∅.

• An input word α is accepted by NBA/NMA/NRA M if there is an accepted run with
a Büchi/Muller/Rabin condition on α.

• A deterministic automaton with a Büchi/Muller/Rabin condition is called
DBA/DMA/DRA.
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• b○ and e○ are obvious. c○ and d○ are also easy to show.
• To show f○. For an NMA M with an accepting set F ,
construct an NBA N to simulate M .
N nondeterministically predicts that all states of M not
in Inf(σ) have appeared at some point, and then guesses
Inf(σ) is a certain set A ∈ F . And check if A is indeed
Inf(σ).
• a○ is the most difficult to prove. It was first prove by
McNaughton in 1966, but later shown more efficiently by
Safra in 1988.

Summary� �
• S1S is the MSO theory of (N ∪ P(N), x+ 1,∈).

• We proved that S1S and NBA have equivalent
expressive power. The decision problem of S1S
can be reduced to the emptiness problem of NBA.� �

NMA

NRA DMA

DRA

NBA

a

b c

d e

f

DBA

g

“automaton M1 → automaton
M2” means L(M1) ⊂ L(M2).
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Introducing tree automata

• Fix a finite set of symbols (or labels) Ω.

• An (Ω-)labelled tree is an infinite complete binary tree {0, 1}∗ with each vertex
labelled by a symbol in Ω. It can be viewed as a function t : {0, 1}∗ → Ω.

Definition

The tree automaton M = (Q,Ω, δ, Q0, Acc):
• Q: a set of states,

• δ ⊆ Q× Ω×Q2: a transition relation,

• Q0 ⊆ Q: a set of initial states, and

• Acc: an acceptance conditions, such as Büchi ,
Rabin, Muller.

q

q1q2

aa

(q, a, q1, q2) ∈ δ means that
by reading a, the state changes
from q to q1 and q2 simultane-
ously.

M is deterministic if δ is a function (δ : Q× Ω → Q2) and Q0 is a singleton set.
However, for tree automata, deterministic ones are rarely used.
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Run-trees of tree automata

• To determine the acceptance of the input tree, we define a
run-tree representing the state transitions.

• For an input Ω-labelled tree t : {0, 1}∗ → Ω, a run-tree of
M is a Q-labelled tree s : {0, 1}∗ → Q such that
• s(ϵ) ∈ Q0, where ϵ is empty and represents the root
of the binary tree.

• for any u ∈ {0, 1}∗, (s(u), t(u), s(u0), s(u1)) ∈ δ.

• If M is deterministic then there is only one run-tree for any
input tree.

• To simplify the discussion, assume that for any input, a
run-tree can be constructed. (Such an automaton is said
to be complete). This modification is easily done by
adding new meaningless states.

… …

𝒂𝒂𝟏𝟏
= 𝑡𝑡(𝜖𝜖)

𝒂𝒂𝟐𝟐
= 𝑡𝑡(0)

𝒂𝒂𝟐𝟐
= 𝑡𝑡(1)

𝒂𝒂𝟑𝟑
= 𝑡𝑡(00)

𝒂𝒂𝟒𝟒
= 𝑡𝑡(01)

𝒂𝒂𝟓𝟓
= 𝑡𝑡(10)

𝒂𝒂𝟔𝟔
= 𝑡𝑡(11)

… …

𝒒𝒒𝟎𝟎
= s(𝜖𝜖)

𝒒𝒒𝟏𝟏
= s(0)

𝒒𝒒𝟐𝟐
= s(1)

𝒒𝒒𝟑𝟑
= s(00)

𝒒𝒒𝟒𝟒
= s(01)

𝒒𝒒𝟓𝟓
= s(10)

𝒒𝒒𝟔𝟔
= s(11)

An Ω label 
input tree

A 𝑄𝑄 label 
run of the input tree
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• A (infinite) path through the binary tree {0, 1}∗ is a function f : N → {0, 1}∗ such
that f(0) = ϵ and f(n+ 1) is a child (an immediate successor) of f(n) for all n.

• For a Q-labelled tree s and an infinite path α, s(α) denotes the ω-sequence of states
(labels) on path α in s.

• An input tree t is accepted by a tree automaton M if there is a run-tree s in which all
of the paths s(α) satisfy (one of ) the following acceptance conditions.

• If M is a Büchi tree automaton (BTA), then the acceptance condition Acc is
F (⊆ Q): an input tree t ∈ L(M) if there is a run-tree s in which all its infinite
paths s(α) satisfying Inf(s(α)) ∩ F ̸= ∅.

• If M is a Muller tree automaton (MTA), Acc is F(⊆ P(Q)): an input tree
t ∈ L(M) if there is a run-tree s in which all its infinite paths s(α) satisfying that
Inf(s(α)) ∈ F .

• If M is a Rabin tree automata(RTA), Acc is F =
{
(Gi, Ri) | 1 ≤ i ≤ k

}
, where

Gi, Ri ⊂ Q: an input tree t ∈ L(M) if there is a run-tree s s.t in all its infinite
paths s(α) there exists i satisfying Inf(s(α)) ∩Gi ̸= ∅ and Inf(s(α)) ∩Ri = ∅.
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Example� �
• Let Ω = {a, b}. Let T1 be the set of Ω-labelled trees with at

least one path in which a appears infinitely many times.

• A BTA M = (Q,Ω, δ, Q0, F ) is defined as follows.

Q = {qa, qb, q∞}, Q0 = {qa}, F = {qa, q∞},

δ(qy, x) = {(qx, q∞), (q∞, qx)}, δ(q∞, x) = {(q∞, q∞)}
• Therefore, the acceptance of the input tree t is determined by
whether or not qa appears infinitely in a nondeterministically
selected path.

• Thus M accepts language T1.� �
Remarks from the viewpoint of analytical hierarchy� �
The accepting language of any deterministic tree automaton can be
expressed as a Π1

1 statement (∵ Its run-tree is uniquely determined).
Since T1 is (fnc-)Σ1

1 and cannot be simplified any further, it cannot
be accepted by any deterministic tree automaton.� �

q∗

qaq∞

aa

q∗

q∞qa

aa

q∗

qbq∞

bb

q∗

q∞qb

bb

q∞

q∞q∞
∗∗

∗ = a, or b9 / 19
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• We will prove the decidability of S2S, a monadic second-order theory of 2 successors,
by using the expressive equivalence between S2S and MTA.

• The standard model of S2S is

({0, 1}∗ ∪ P({0, 1}∗), S0(x), S1(x),∈),

where Si(x) is a kind of successor function, i.e., Si(w) is wˆi for any w ∈ {0, 1}∗
(i = 0, 1). (Note: wˆi is also written as w · i or simply w i.)

• Let Pa be the set of nodes with label a ∈ Ω, i.e., Pa = t−1(a). If an S2S formula φ
(in an extended language with {Pa : a ∈ Ω}) holds in the structure
({0, 1}∗ ∪ P({0, 1}∗), S0(x), S1(x),∈, Pa)a∈Ω, we say that the formula φ holds for t.

• Then there is a two-way translation between an MTA M and an S2S formula φ, and
for any Ω-labeled tree t,

“M accepts t” is equivalent to “φ satisfies t”.

10 / 19
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Lemma

The class of languages accepted by MTA is closed under set union and projections.

Proof

• Let M1 = (Q1,Ω, δ1, Q
1
0,F1) and M2 = (Q2,Ω, δ2, Q

2
0,F2) be MTA’s. We may

assume Q1 ∩Q2 = ∅.
Then, an MTA that accepts L(M1) ∪ L(M2) is

N = (Q1 ∪Q2,Ω, δ1 ∪ δ2, Q
1
0 ∪Q2

0,F1 ∪ F2).

• Suppose that a set L of Ω1 × Ω2-labeled trees is accepted by an MTA
M = (Q,Ω1 × Ω2, δ, Q0,F). An MTA N = (Q,Ω1, δ

′, Q0,F) that accepts the
projection of L onto Ω1 is defined as,

(p, a, q1, q2) ∈ δ′ ⇔ there exists b ∈ Ω2 such that (p, (a, b), q1, q2) ∈ δ.

□
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• The difficulty of equivalence of MTA and S2S lies
in proving the class of languages accepted by
MTA is closed under complement.

• Since MTA is different from DTA and DRA, it is
even more difficult to prove its closure under
complement than the ω-language case.

• To simplify the original argument of Rabin
(1969), Y. Gurevich and L. Harrington (1982)
brought in the idea of infinite games and gave an
elegant proof.

• They call a strategy that has only bounded
memory a forgetful strategy, and use the fact
that certain games have such winning strategies
to simplify the treatment of complements
significantly.

TREES, AUTOMATA, AND GAMES 

Yuri Gurevich and Leo Harrington 

ABSTRACT. In 1969 Rabin introduced tree automata 
and proved one of the deepest decidability results. 
If you worked on decision problems you did most 
probably use Rabin's result. But did you make your 
way through Rabin's cumbersome proof with its 
induction on countable ordinals? Building on ideas 
of our predecessors--and especially those of 
Buchi--we give here an alternative and transparent 
proof of Rabin's result. Generalizations and 
further results will be published elsewhere. 

§1. INTRODUCTION. Here E is an alphabet. All
our alphabets are finite and not empty. Recall
that a non-deterministic E-automaton is a quad
ruple (S,T,sin'F) where S is an alphabet (of

states), T S S x E x S is the t.ransi tion table, 
sin E. S is the initial state, and F ,; S is the

set of final states. The automaton is said to 
accept a string a

1 
... an of letters in E if

there is a string s0s
1 

... sn of states such that

s0 = 
sin and every (si,ai+l'si+l) ET and

sn E. F. The theory of automata working on finite

strings is well-known. It was generalized in the 
1960s for a theory of automata on finite trees; an 
algebraic treatment of automata on finite trees, a 
survey of results and further references can be 
found in Thatcher & Wright 1968. (The game 
technique, developed in this paper, gives an 
alternative and simple way to handle automata on 
finite trees.) 

The idea to use automata for recognizing 
infinite sequences is due to BUchi 1962. A Buchi 
E-automaton is a usual non-deterministic E-auto
maton (S,T,sin'F) working on infinite sequences
of letters of E. It accepts a sequence a1a2 ... 

if there is a sequence s0s1s2 ... of states such

that every 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

© 1982 ACM 0-89791-067-2/82/005/0060 $00.75 

E.O 

{n: s E F} is infinite.n 
Buchi used sequential automata to prove 

decidability of the monadic second-order theory of 
natural numbers with the successor relation which 
is called, for short, the second-order theory of 
one successor, or SlS. The variables of SlS range 
over sets of natural numbers. SlS atomic formulas 
have a form X �y or Suc(X,Y). The latter means 
that there is a natural number n with X = {n}, 
Y = {n + l}. Other SlS formulas are built from 
SIS atomic formulas using conjunction, disjunction, 
negation and the existential quantifier. Every 
set X of natural numbers can be identified with 
its characteristic function, i.e. X(n) = 1 if 
n EX, and X(n) = 0 otherwise. For any natural 
number m, let Em be the direct product of m

copies of the set {0,1}. 

THEOREM 1 ( Buchi 1962). For every S1S 
formuTa-¢-wi:th m variables there is a Buchi 
rm-automaton M such that for alZ sets x1, .... ,Xm
of natural numbers, ¢(X1, ... ,Xm) holds iff M

accepts the r
m

-sequence

X 1 ( o) . . .  Xm ( o), x 1 ( 1) . . .  xm ( 1), x /2J . . .  xm ( 2), . . . . 

The desired automaton M is constructed by 
induction on ¢. The atomic case and the cases of 
conjunction, disjunction and the existential 
quantifier are easy. A natural way to handle the 
negation case would be to show that every Btichi 
automaton is equivalent to a deterministic Buchi 
automaton. This is not true however, and Blichi 
used Ramsey's theorem to solve the complementation 
problem. 

THEOREM 2 (Buchi 1962). The emptiness problem 
for Buch� automata is decidable. 

Theorem 2 is easy. Theorems 1 and 2 give 
decidability of SlS. 

Muller 1969 entered the field through study
ing a problem in asynchronous switching theory. 
A deterministic Muller automaton is a quadruple 
(S,T,sin'F) where S is the alphabet of states,

T: S x E � S, sin€ S, and F is a set of sub

sets of S. It accepts a E-sequence a1a2 ... if

F contains the set of states appearing infinitely 
often in the sequence 

so = sin' sl = T(sO,al), s2 = T(sl,a2), ... .

Given a deterministic Muller Z-automaton, it 
is easy to construct a B~chi Z-automaton accepting 
the same Z-sequences. 

THEOREM 3 (McNaughton 1966). For every B~chi 
Z-automaton there is a deterministic Muller 
Z-automaton accepting the same Z-sequences. 

McNaughton's proof is constructive and 
sophisticated. Theorem 3 gives another solution 
for the complementation problem for B~chl auto- 
mata. 

Then Rabin 1969 introduced automata working 
on infinite trees and proved decidability of the 
monadic second-order theory of the infinite binary 
tree which is called, for short, the second-order 
theory of two successors, or $2S. The second- 
order theories of 3,4 and even ~ successors 
reduce easily to $2S. 

The infinite binary tree can be seen as the 
set {~,r} ~ of all strings in the alphabet {~,r}. 
Variables of $2S range over subsets of the 
infinite binary tree. 82S formulas are defined in 
the same way as SiS formulas but instead of 
Suc(X,Y), atomic formulas Suc~(X,Y), SUCr(X,Y) 

are used. They mean that there is a string 
w ~ {~,r}* such that X = {w} and, Y = {w~} or 
Y = {wr} respectively. 

Rabin proved the analogues of Theorems i and 
2 for $2S. Once again the atomic case and the 
cases of conjunction, disjunctipn and existential 
quantifier were easy. The difficult parts of 
Rabin 1969 were the complementation and--to a 
lesser extent--the emptiness problem. Rackoff 
1972 found a simple reduction of the emptiness 
problem for Rabln automata to the emptiness 
problem for automata on finite trees. Also he 
simplified to an extent Rabin's solution for the 
complementation problem. Using games we give in 
the sequel a transparent solution for all these 
problems. Our exposition is essentially self- 
contained. 

The idea to use games is not new. It was 
aired by McNaughton and exploited in Landweber 
1967, BHchi & Landweber 1969 and especially in 
B~chi 1977 where the complementation problem was 
reduced (for an able reader) to a certain 
determinancy result. Our §2 gives such a reduc- 
tion too. Our §3 provides the necessary 
determinancy result. When this solution had been 
reported in several places including Purdue B~chi 
kindly sent us a manuscript, B[chi 1981. To be 
sure BHchi proved the determinancy result, and he 
certainly was the first to do so. His proof still 
is, however, a very complicated induction on 
countable ordinals, much more difficult than our 

Our games form a special case of games 
studied in set theory. The most relevant set- 
theoretic paper is Davis 1964. However the 
determinancy results of Davis 1964 and other set- 
theoretic papers do not suffice for our purposes 
because we are interested only in very special 
memory-restricted strategies. 

Let us mention that David E. Muller and 
Paul E. Schupp are developing an alternative 
approach to handle $2S. 

An impressive generalization of Rabin's 
decidability result was formulated in Shelah 1975 
and proved in details in Stupp 1975. The proof 
used Rabin's technique. The game technique, 

developed in the sequel, gives the generalized 
result fairly easily. 

A few words on negative results. Solving 
Rabin's uniformization problem, Gurevich & 
Shelah 198? prove that no tree automaton picks a 
unique element from any nonempty subset of the 
infinite binary tree. Using automata B[chi 1973 
proved decidability of monadic second-order theory 
of 91 . Gurevich & Magidor & Shelah 1987 prove 

that the corresponding theory of ~2 can be of 

any given Turing degree (in different set-theo- 
retic worlds). 

We thank ~enachem ~gidor and Saharon Shelah 
for useful discussions, and J. Richard Buchi for 
sending us his manuscript, and Anil Nerode and 
Andrew Glass for terms Pathfinder and Exposure 
respectively. 

~2. TREE AUTOMATA. The infinite binary tree is 
here the set 9~,r}* of words in the alphabet 
{Z,r}. Its root is the empty word e. The nodes 
xZ and xr are respectively the left and the 
right successors of a node x E {Z,r}*. A mapping 
V from the infinite binary tree to an alphabet Z 
will be called a Z-valuation or a Z-tree. 

Rabin 1969 defined automata working on 
Z-trees. They are somewhat ~nconvenient to play 
our games. Here is an alternative definition of 
tree automata. 

A tree Z-automaton is a quadruple 
(S,T,Tin,F) where S is an alphabet (of states), 

and T ~S x (Z,r} x Z x S is the transition 
table, and T. ~ Z x S is the initial state im 

table, and F is a family of subsets of S. 
Given a tree z-automaton M = (S,T,Tin,F) 

and a Z-tree V consider the followimg game 
r(M,V) between the automaton M and another 
player called Pathfinder: 

The automaton chooses: Pathfinder chooses: 

s O 
d I 

s I 
d 2 

s 2 
d 3 

s 3 

Here (V(e),s O) E Tdn, and every d n £ {~,r}, 

and every (Sn,dn+l,V(dl...dn+l),Sn+ I) ~ T. 

The automaton wins a play SodlSld2... if F 

contains {s 6 S: s = s for infinitely many m}, 
n 

otherwise Pathfinder wins the play. The automaton 
accepts V if it has a winning strategy in the 
game r(M,V). 

We clarify the notion of a strategy. Any 
finite prefix of any play S0dlSld2... will be 

called a position. Note that the automaton makes 
a move in a position p iff the length Ipl is 
even. A (deterministic) 

61 
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Parity condition of PTA

• Subsequently, Emerson and Jutla (1988), McNoughton (1993), Zielonka (1998) and
others further simplified the proof by discovering and utilizing the relation between
parity tree automata and memoryless (positional) strategies of parity games.

• A function π : Q → {0, 1, . . . , k} is called a priority function. A parity tree
automaton (PTA) is equipped with a priority function as its accepting condition.
An input tree is accepted by a PTA, if there exists a run-tree where in each path, the
smallest priority of the states appearing infinitely many times is even.

Theorem

PTA and MTA accept the same languages.

Proof.
It is easy to see that the languages accepted by a PTA can be accepted by a MTA such
that F ∈ F iff F is a set of states whose smallest priority is even.

13 / 19
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• Conversely, given an MTA M = (Q,Ω, δ, Q0,F), we want to construct a PTA
M ′ = (Q′,Ω, δ′, Q′

0, π) which accepts the same language.

• Let Q′ be the set of permutations of Q ∪ {♮} (where ♮ /∈ Q). So, the rightmost q
corresponds to the current state of M , and ♮ represents the place where such q was
placed just before now (Last Appearing Record).

• Thus, if δ(p, a, r1, r2) in M and q1 . . . qm♮qm+1 . . . qn ∈ Q′ and
qn = p, qi = r1, qj = r2,

δ′(q1 . . . qm♮qm+1 . . . qn, a, q1 . . . qi−1♮qi+1 . . . qnqi, q1 . . . qj−1♮qj+1 . . . qnqj).

• Also, the definition of a priority function π is as follows. For u♮v ∈ Q′ ,

π(u♮v) =

{
2|u|, {q ∈ Q : v contains q} ∈ F
2|u|+ 1, {q ∈ Q : v contains q} /∈ F

• Then, π : Q′ → {0, 1, . . . , 2|Q|+ 1}.
• Q′

0 can be Q′, but a more efficient choice is Q′ with the rightmost belonging to Q0.

14 / 19
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• We compare the run-trees of MTA M and PTA M ′ for the same input tree.

• A state q that appears finitely (infinitely) many times in a path of the run-tree of M
also occurs finitely (infinitely) many times to the right of ♮ in the corresponding path
of the run-tree of M ′.

• Therefore, from a certain time onwards, the states that appear finitely are fixed in a
sequence u on the left side of ♮, and the states that appears infinitely and ♮ are
permuted repeatedly.

• If ♮ comes to the left most in the sequence, that is, if it comes immediately after u, it
has the lowest priority.

• Such cases always occur infinitely. And if the set V of states to the right of ♮ belongs
to F , then such a path satisfies the acceptance of M , and so the lowest priority of M ′

is even.

• Finally, since u♮v occurs an infinite number of times for a sequence v with V , the
acceptance condition for M ′ is also satisfied.

• Conversely, it is clear that the path of M corresponding to the path satisfying the
acceptance condition of M ′ also satisfies F .

• Therefore, the accepted tree languages of M and M ′ are the same. □

15 / 19
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Parity games
A parity game G = (VI, VII, E, π) is a game on a directed graph (VI ∪ VII, E) with a priority
function π : VI ∪ VII → {0, 1, · · · , k}:
• The set of vertices is partitioned into VI and VII (VI ∩ VII = ∅).

• Two players, player I and II, move a token along the edges of the graph, which results
in a path ρ = v0v1 · · · , called a play.

• At a vertex v ∈ VI (VII), it is player I (II)’s turn to choose some v′ such that
(v, v′) ∈ E.

• A strategy for player I is a mapping σ : (VI ∪ VII)
<ωVI → VI ∪ VII.

A strategy for player II is a mapping τ : (VI ∪ VII)
<ωVII → VI ∪ VII.

• The winner of a finite play is the player whose opponent is unable to move.

• Parity winning condition: Player I wins with an infinite play if the smallest parity that
occurs infinitely often in the play is even. II wins otherwise

• σ is a winning strategy for player I if whenever he follows σ the resulting play satisfies
the parity condition.
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Example� �
Consider the following parity game G = (VI, VII, E, π), where VI = {q2, q3} and VII =
{q1}, π(qi) = i for i = 1, 2, 3.

2 1 3

q2 q1 q3

Assume the game starts from q1, player II has a winning strategy.� �
• A game G is determined if one of the two players has a winning strategy.

• A game G is positionally determined if one of the two players has a memoryless
winning strategy.

• A memoryless strategy for player I is a mapping σ : VI → VI ∪ VII.
A memoryless strategy for player II is a mapping τ : VII → VI ∪ VII.

• As we’ll introduce later, parity games are positionally determined.
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Characterize acceptance a tree as an infinite game
• Given a PTA M = (Q,Ω, δ, Q0, π) and an input tree t, we construct an
infinite game G(M, t) in which two players alternately move as follows:

(1) Player I (Automaton) chooses next pair of states (q1, q2) from
δ(p, a).

(2) Player II (Path Finder) chooses either 0 or 1 for the next direction.

p

q2q1

aa

• The goal of the Path Finder is to find a path α ∈ {0, 1}∗ in the run-tree s that does
not satisfy the acceptance condition, whereas the goal of the Automaton is to find
the Q labels of the run-tree so that the label sequence satisfies the acceptance
conditions.

• Player I (automaton) wins in G(M, t) if the label string s(α) produced by the two
players satisfies the acceptance condition of M .

• Thus “M accepts t ⇔ The automaton has a winning strategy in G(M, t).”
• Assume the determinacy of this game (either player has a winning strategy),

“M does not accept t ⇔ The path finder has a winning strategy in G(M, t).”
• For the moment, we also assume the following (which we will prove in next week).

“The parity game has a memoryless winning strategy.” 18 / 19
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