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e ¢ Part 4. Formal arithmetic and Godel’s incompleteness theorems
® Part 5. Automata on infinite objects

® Part 6. Recursion-theoretic hierarchies

® Part 7. Admissible ordinals and second order arithmetic

-~ Part 4. Schedule ~
® Mar.28, (1) Automata on infinite strings
® Mar.30, (2) w-automata and S1S
® Apr.04, (3) Tree automata
e Apr.06, (4) S2S
e Apr.11, (5) Finite model theory
(6) Parity games
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Recap Biichi automata

® For an infinite run o, the set of states that appear infinitely in o is denoted by Inf(o).
In other words, if 0 = qoq1q2 - - -,

Inf(o) = ﬂ {¢; | i > n}.

n>0

An infinite run o is said to be accepted by NBA if Inf(o) N F' # &, that is, if a state
of F' occurs infinitely many times in o.

® An input word « is accepted by NBA M if there is an accepted run on a.

Thus, the w-language L(M) C Q¥ accepted by M is defined as

L(M) ={a € Q¥ | thereis a run o of M on « such that Inf(c) N F' # @}.
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ST The following NBA accepts the set (04 1)*0“, where “1"appears finitely times.

0.1 0

start *>

where Q = {qo, 1}, 2 ={0,1}, F' = {q1 }.

® Note that non-determinism of the Biichi automaton is necessary to guess when
the last “1"” appears so that the automaton can move to loop in ¢; with input

always 0.

® |n fact, this language cannot accepted by any DBA.
- J
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Muller condition

® The acceptance condition of a Muller automaton is given by 7 C P(Q), and a run is

accepted iff Inf(c) € F.

e Biichi condition (Inf(o) N F # &) can be expressed in terms of the Muller condition

F={ACQ|ANF # a}.

® Non-deterministic / deterministic Muller automata are abbreviated as NMA / DMA.

-~ An DMA accepting L = (04 1)*0 Y An equivalent NBA ~
1 0 0,1
0
() ()=
start — 1 start —
where F = {{q:1}}. where F = {q1}.
N )
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The acceptance condition of a Rabin automaton is given by

F={(CLR)|1<i<k},

Recap

where G, R; C Q.
® A run o is accepted, if there exists i such that Inf(c) N (7, # @ and Inf(c) N R; = @.

® Non-deterministic / deterministic Rabin automata are abbreviated as NRA / DRA.

When a G;/R; state is visited, we say that the i-th green/red signal is on. A green
signal is expected to turn on infinitely many times but a red signal only finitely many.

A Biichi automaton can be simulated by a Rabin automaton with
k=1, Gi=F, R =0.
® A Rabin automaton turns into a Muller automaton if
F={ACQ|\/(ANGi#@NANR; = 2)}
7/32



Logic and
Computation

K. Tanaka

Recap

(b) and (e) are obvious. () and (d) have been explained

above.
To show (f). Please refer to the examples in Page 6. .. NMA

® Let M be an NMA with an accepting set F. Goal:
construct an NBA N to simulate M.

® For input , N mimics M by nondeterministically
guessing a run o of M on z.

® At some point, N nondeterministically predicts that
all states of M not in Inf(c) have appeared and also
guesses that Inf(o) is a certain set A € F.

® Then check if A is indeed Inf(o) as follows:
® Any state of o (from that point) is in A, and

® | et s be the state of N representing that every  “automaton M; — automaton
state of A appeared at least once. Then N Ms" means L(M;) C L(Ms).
accepts the input if s appears infinite many times.
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® (a): NBA— DRA is the most difficult to prove.

Recap

® |t was first prove by McNaughton in 1966, but his construction was doubly
exponential. Safra proposed a more efficient exponential construction in 1988.

s NBA ~

Given B = (Q,9,6,Qo, F) with | Q |=n
N J
- DRA ~N
We want to construct a deterministic Rabin automaton
R= (57 Qa 6/3 SO7 {(Gla Rl)v (G27 RQ) e (Gna Rn)})
that accepts the same language.
- J
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~ An NBA accepting L

o

~N~ An DRA accepting L ~
0,1 0 1 0
0
O (3 1)
start — start
L cannot accepted by any DBA. where F = {(C1, R1)} = {( Ha})}
A J

Consider L = (04 1)*0%, where 1 appears finitely times.
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Strategy 1: Determinizing the non-determinism.

We consider the state transition of NBA B as a graph. Their vertices representing the
states are also called positions where a token is placed. All the tokens move from
one position to another simultaneously, and some are removed.

A board with a token on some positions is a state of the new deterministic automaton.
The simulation starts with a board with a token at each initial state of NBA B.

Suppose the next input symbol is a. Erase the token at each position ¢ and put (a
copy of) the token at each p € §(g,a). If multiple tokens are put in p, choose one.

At time ¢, the state of the new automaton represents the possible states of B at time
t as its tokens.

For a finite automaton, by defining a final state of the new automata as a graph with
at least one token in a final state of B, they accept the same language.

This does not work for the Biichi condition. For instance, as for the above example of
NBA on (01)¥, a token is placed on ¢ infinitely many times, but (01)“ is not in L.
For the correct simulation, the same token must be placed on a final state infinitely
many times.
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Strategy 2: Last visiting record

Each token should have some partial history of visiting final positions. Indeed, such a
token is expressed as a pile of colored tokens, which we call a stack.

A stack is not ony moved according to the transition of B, but it may get another
colored token on the top (at a final state position). Also, an upper part of a stack may
be removed by a certain rule explained below.

A token or its color on the board at time ¢ is said to be in play at time ¢.

The colors in play at time t are ordered by their age, namely the last time they
appeared in play. Tokens of the same color in play come into play at the same time. In
each stack at any time, the tokens are ordered from bottom to top as oldest to
youngest. A color is visible if it is the color of the token on top of some stack.

On the stacks, we define a reverse lexicographic linear order o <; 7 as follows.
® o is a proper extension of 7 (7 is obtained by removing the top of o), or

® Neither o nor 7 is an extension of the other, and at the lowest position where o
and 7 differ in color, the color of o is older.
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Recap

A stack (or pile) of colored tokens is placed on some positions. A stack moves from
one position to another, sometimes changes its contents, and sometimes gets removed.

A board with some stacks on some positions is a state of the automaton R.

The board is connected to different bells and buzzers for each color.

The height of the stack ¢ is written as |o].

Buzzer and bell for each color
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® The simulation starts with a board with one white token at each initial state position.
® At each time, the three steps are all executed in this order: Move, Cover, Remove

Move
e I
® Suppose the next input symbol is a. Erase the stack at each position ¢ and put
(a copy of) the stack that was at ¢ at each p € §(q, a).
® |f there are multiple stacks to put in p, put the smallest stack with respect to <.
® |f a certain color disappears in this process, sound the buzzer for that color.
- J
Cover
e )
® For each final state ¢ € F', put a token of a color not in play on the top of the
stack at that position.
® Stacks with the same visible color are then covered with tokens of the same new
color.
® Thus, if color ¢ is placed directly above color d in a stack, then all tokens of color
c in play are placed directly above tokens of color d.
o J
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® For any invisible color c in play, remove all tokens above tokens of color ¢, sound
the buzzer of the removed color, and ring the bell of the visible color c.

Recap

® Note that when a token is removed in this process, all tokens of that color are
removed. The order of removal is not important.

After performing these three steps, there are at most n (= the number of the states) colors
left in play. Otherwise, there must be at least one invisible color, then repeat the remove
step.

Lemma
The following are equivalent
(1) B accepts z.

(2) There is a color that rings the bell infinitely many times but sounds the buzzer only
finitely many times.
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Decidability of
S1S)

Introduction to
SIS

S1S vs. NBA

Safra ‘s Construction
@» finite times \b’\
0

CO==00

L Infinite tim
Only finite times te times

‘1 infinite times

1

Remove

= =
9o -~ 1 90

N

Only move / buzzer for yellow @

Cover

Move

q1 90 q1

J the sarf/
Ll i
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To show (2) = (1)
® Suppose that there exists a color, say yellow, that rings the bell infinitely many times
but the buzzer a finitely many times.

Recap

® |et tg,t1,... be the time when the yellow bell rings after the last buzzer.
® From time tg, yellow continues to be in play. Otherwise the buzzer will sound.

® To get a yellow bell at each time t;, all yellow tokens must be covered immediately. In
other words, no matter how to move from a state with a yellow token at t; to a state
with a yellow token at ¢;1, it visits some state of F.

® Therefore, there exists a run where the state of F' appears infinitely.
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Proof.
To show (1) = (2)

Conversely, suppose that there is an accepted run p of B for z.

Let o; be the stack following p at time ¢. So, set m = liminf |oy|.

In other words, after a certain time tg, the minimum stack height is m, and it reaches
the height m infinitely many times.

White (the oldest color) is always in play, so m > 1, and there are at most n colors in
play, so m < n.

After time tg, colors in stacks at heights at most m may be replaced by smaller stacks
on < by translations, which only happens finite times by the definition of <.
Therefore, the colors in the stack below m from a certain time ¢; can be assumed to
remain unchanged.

At this time, the color attached to the height m is assumed to be black.

Since this sequence of actions is an accepted run, the state of F' is visited infinitely
many times from now on, and the stack gets a new token each time.

Then the stack height returns to m again, but a black bell rings again.
Therefore, the black bell rings infinite times and the buzzer rings only finite times. [
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Recap A state of the simulating Rabin automaton R consists of the state of B and the stack
(which may be empty). The number of combinations of stacks is roughly n™. The
treatment of bells and buzzers and auxiliary machineries needs n™ at most. So, the states
of R roughly n*" = 20(n1ogn)  The acceptance condition consists of n pairs, one for each
color.

Therefore, we have

Theorem (Safra)

Any NBA with n states can be simulated with a DRA consisting of 29("1°87) states and n
pairs of acceptance conditions. Therefore, it can also be simulated with a DMA with the
same number of states.
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The class of w-regular languages is closed with Boolean operations.

Proof.

® We already known that the class of languages accepted by NBA is closed with U and
n.

® The closure of complement follows from the above theorem, classes of languages
accepted by NBA and DMA are the same.

® In fact, a DMA that accepts the complement of the language of a DMA
M =(Q,Q,9,q0,F) by replacing the acceptance condition F of M with P(Q) — F.

O

Homework
Prove that L = {u® : uw € {0,1}"} is not an w-regular language. j
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Decidability of

® We showed in Lecture-03-05 that the FO theory of (N, +,0) is decidable, but the
MSO theory of (N, +,0) is undecidable since multiplication is definable there.

® Then, how far should the first-order part be weakened to make the MSO theory
decidable?

® One of the answers is (N, z + 1,0), and this MSO theory is S1S*.

® Today we show that S1S and NBA (Nondeterministic Buchi Automata) have
equivalent expressive power.

® Thus, the decision problem of S1S can be reduced to the emptiness problem of NBA.

1The first ”S" stands for "second-order”, and the next "1S” stands for " One Successor”. Since it is
different from the general second-order theory dealt with in the last homework of lecture04-05, it is more
suitable to call it MS1S, but by convention it is called S1S .
21/32
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The original S1S is the MSO theory (or all the true MSO formulas) of the standard
structure (NUP(N),z + 1, €).

To show the decidability of S1S is to show its axiomatizability.

In the following, S1S is treated as a two-sorted first-order theory, where numerical
variables are represented by lower case letters x,y, ..., and set variables are
represented by upper case letters X,V .. ..

It should be noted that a S1S formula holds iff it is true with the ordinary
mathematical sense.
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Sl In S1S, the equality symbol =, the inequality symbol <, and the constant O are defined as
K Tenaka follows, and they have their usual meanings.

o ‘r=y" VX(zeX - yeX).
Introduction to
- e ‘XCVY" : Va(xeX —szcY).
e ‘X=Y": XCYAYCX.

o “x=0": VYy-(x =y+1); z has no predecessor.

e “r=1":x =0+ 1. Since 0 is defined above, 0 is treated like a given symbol. In
terms of the original symbols, we can write Jy(z =y + 1 AVz=(y = z + 1)).

o ‘v <y VX(zreXAVz(zeX >2+1€ X)) »ye X. Thatis, any set X that
contains x and is closed under successor also contains y.

® “X is finite”" : JaVy(y e X —»y < x).
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~ Homework ~N

Introduction to
SIS

(1) Express the following predicates with S1S formulas.
(a) X is the set of even numbers.
(b) X is finite with even number of elements.

(2) Explain why “X and Y have the same cardinality” cannot be expressed by an S1S
formula.

/
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For a set A C N, the infinite sequence « € {0, 1} such that a(i) = 1 & i € A is called
the characteristic function of A.

K. Tanaka

In the following, a number a € N is identified with the singleton set {a}. Then the

o characteristic function of a tuple (a1,...,a,, 41,...,Apn) € N* x (P(N))™ can be
expressed as an infinite sequence (called a characteristic sequence) over the alphabet
Q ={0,1}™*" This sequence is divided into m + n tracks, where each track is the
characteristic function of a; or A;.

Example 7 The characteristic sequence of (3,5, {even numbers}, {prime numbers}) is
described as follows.

(< 3)
g 5) e ({0.1}%)"
(

< even numbers)
< prime numbers)

O OO
O O O o
——_ 00
= O O =
o= OO
= O RO
O = OO
= O OO
O = OO
o O O o
O = OO
= O O O
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K. Tanaka proof, the equivalence of NBA, NMA, and DMA is used freely .

Theorem (The equivalence of S1S and NBA)
The following holds.

e (1) Let o(Z, X) be an S1S formula with free numerical variables # = (z1,. .., z,,) and
free set variables X = (X7,..., X,,). Then there exists an equivalent NBA M, on
Q = {0,1}™*™ such that

-, —.

L(M,) = {the characteristic sequence of (@, A) : ¢(a@, A) is true},
where @ = (a1,...,am), A= (A1,..., Ay).
(2) Let M be a NBA on 2 = {0,1}. There is a S1S formula ¢/ (X) such that

L(M) = {the characteristic sequence of A : ¢ (A) is true}.
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S1S vs. NBA

Proof. We show (1) by induction on the construction of the formula ¢.
() The atomic formula is in the form of

k
—
SS---Sz e X.
An NBA that accepts a characteristic sequence of (a, A) should check that there is a
unique 1, say in the a-th position in the track for x, and there is a 1 in the a + k-th

position of the track for X.
For example, the figure below is an NBA (possibly, a DBA) for k = 3.

(0.-) (0.-)

The edge label (b, ¢) represents the input ﬁ } , where b and ¢ are 0 or 1 on the track for

x and X, respectively. Also, - indicates both of 0 and 1 at the same time.
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@) Next, consider a formula of the form ¢ (Z, X) A (&, X). We may assume that there
isa DMA M; = (Ql,E i, (qo)l,]-') for each ;.

DMA Mj for o1 (&, X) A o(Z, X) (Qs3,%, 83, (q0)3, F3) is constructed as follows.

Q3 = Q1xQ
03((q1,92), a) (01(q1,a), 62(q2,a))
(q0)3 ((0)1, (90)2)
F3 = {AC Q3|7 (A) € Fi and ma(A) € Fo}

where m; and 7o are the projections from Q1 X @2 to Q1 and @2, respectively.

R IfM=(Q,%,0,q0,F) is a DMA for o(Z, X), then a DMA for = can be constructed
) —

)
by taking the acceptance condition as P(Q) — F.

(4) Automata for \V, — cases are constructed similarly.
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(® For 3X1¢(Z, X1,...,X,,), suppose a DMA M, for o(Z, X1,..., X,).
A NMA M of 3X;¢ takes ay,...,a,, As, ..., A, together with a nondeterministic guess
Ay as input and mimic M, on a1, -+ ,an, A1, As, ..., Ap.

(6) An automaton for VX ¢ can be constructed as =3X —¢.

Thus, we can construct an NBA M, that accepts the set of characteristic sequences of
a, A satisfying .

(Note: The NBA's above may use some working tracks in addition to the input trucks.

Especially when ¢ is a sentence, it is appropriate to arrange for a meaningless track. See
the proof of decidability of S1S below. )
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e e We show (2). Let M = (Q,{0,1},6,qo, F) be a DMA. Let X be a set variable of the

Computation =
’ input sequence, and Y, be the set of times when ¢ is visited. A run Y = {Y,} on input X
is defined as follows.

run(X,Y) = 0¢ Yo
A \(n € Yy An & X — S(n) € Yig0)

q

K. Tanaka

S1S vs. NBA

AVn /\(n eY,AneX —S(n)e }/(S(q,l))
q

/\Vn/\—\(nEYp/\nEYq)
P#4q

Furthermore, “a run Y is accepted” can be defined:
accept(Y) = \/ (/\ Yy is infinite A /\ Y is finite)
FEF qeF q¢F
Finally, the desired formula is
o (X) = 3Y (run(X, Y) A accept(Y))
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S1S is decidable.

Proof
Let o a S1S sentence. Its truth can be determined by the emptiness of an NBA that is
SIS vs. NBA equivalent to o A (X = X), which is decidable by the above theorem. O

® \We have treated Pressburger arithmetic on the natural numbers as a regular language.

® Then we can expect that addition of real numbers as infinite decimals can be handled
in the w regular language, and indeed it is possible.

® Represent real numbers as infinite binary decimals. Treat the decimal point as x as an
infinite sequence over the language {0, 1, *}.

® Furthermore, the first bit represents the =+ sign, i.e., 0 is positive and 1 is negative.
® For example, 3.5 can be represented by the infinite sequence 011 x 10« or 011 x 01¢.

® Note that we can also define the equality = between these two notations.
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~ Further readings ~

® Infinite Words. Automata, Semigroups, Logic and Games. Dominique Perrin and
Jean-Eric Pin. Pure and Applied Mathematics Vol 141. Elsevier, 2004.

S1S vs. NBA
® Automata, Logics, and Infinite Games: A Guide to Current Research. Editors:
Erich Gradel, Wolfgang Thomas, Thomas Wilke. Lecture Notes in Computer

Science (LNCS, volume 2500), Springer Berlin, Heidelberg, 2002.
\_ J

Thank you for your attention!
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