K. Tanaka

[Recap](#page-3-0)

Introducing [second-order](#page-4-0) arithmetic

[Analytical](#page-6-0) hierarchy

[Hierarchy by](#page-11-0) function quantifiers

[Normal form](#page-14-0)

[Summary](#page-16-0)

Logic and Computation II

Part 4. Formal arithmetic and Gödel's incompleteness theorems

Kazuyuki Tanaka

BIMSA

March 25, 2023

 $1/17$

 B OQC

メロトメ 伊 トメ 君 トメ 君 ト

K. Tanaka

[Recap](#page-3-0)

Introducing

[Analytical](#page-6-0) hierarchy

[Hierarchy by](#page-11-0)

[Normal form](#page-14-0)

[Summary](#page-16-0)

Logic and Computation II -

• Part 4. Formal arithmetic and Gödel's incompleteness theorems

✒ ✑

✒ ✑

 $2/17$

- Part 5. Automata on infinite objects
- Part 6. Recursion-theoretic hierarchies
- Part 7. Admissible ordinals and second order arithmetic

Part 4. Schedule

- Mar. 7, (1) First-order logic
- Mar. 9, (2) Arithmetical formulas
- Mar.14, (3) Gödel's first incompleteness theorem
- Mar.16, (4) Gödel's second incompleteness theorem
- Mar.21, (5) Second-order logic
- Mar.23, (6) Analytical formulas

K. Tanaka

[Recap](#page-3-0)

Introducing arithmetic

[Analytical](#page-6-0) hierarchy

[Hierarchy by](#page-11-0) quantifiers

[Normal form](#page-14-0) [Summary](#page-16-0)

1 [Recap](#page-3-0)

3 [Analytical hierarchy](#page-6-0)

- **4** [Hierarchy by function quantifiers](#page-11-0)
- **6** [Normal form](#page-14-0)

Today's topics

K. Tanaka

[Recap](#page-3-0)

Introducing arithmetic

- [Analytical](#page-6-0) hierarchy
- [Hierarchy by](#page-11-0)
- [Normal form](#page-14-0)
- [Summary](#page-16-0)
- • In first-order logic (FO), quantifiers \forall and \exists range over the elements of a structure.
- Second-order logic (SO) allows quantifiers over relations and functions on the elements.
- Thus, a structure of SO is a pair of a first-order structure and a second-order domain. The standard structure of SO equips its second-order domain with all relations and functions (in the naïve sense).
- Theorem (Gödel): The validity of SO in terms of standard structures is not axiomatizable (CE).
- A general structure of SO has a second-order domain of relations and functions which satisfies some conditions (comprehension, choice, etc.).
- Monadic second-order logic (MSO) uses quantification over the sets of elements. The theory of (i.e., the set of sentences true in) a certain MSO (general) structure is computable, e.g., $S1S = MSO(N, S(x))$, $S2S = MSO(2^{\omega}, x^{\cap}0, x^{\cap}1)$.
- Lindström theorem: FO is the strongest logic that satisfies both the compactness theorem and the downward LS theorem. **KORK EXTERNS ORA**

 $4/17$

Recap

K. Tanaka

[Recap](#page-3-0)

Introducing [second-order](#page-4-0) arithmetic

- [Analytical](#page-6-0) hierarchy
- [Hierarchy by](#page-11-0)
- [Normal form](#page-14-0)
- **[Summary](#page-16-0)**

Second-order arithmetic

5 / 17

KORK EXTERNS ORA

- Second-order arithmetic Z_2 is a monadic second-order theory, or a two-sorted first-order theory dealing with natural numbers and sets of natural numbers under the condition of full comprehension.
- We denote numeric variables by lowercase x, y, \ldots and set variables by uppercase X, Y, \ldots and also use the relation symbol \in .
- When Z_2 is used as the base system of mathematics, it is common to formalize the first-order arithmetical part in the language \mathcal{L}_{OR} , which includes addition and multiplication, similar to Peano arithmetic.
- Since multiplication can be defined from addition in monadic second-order logic (exercise), it is not necessary to include multiplication in the axiom. However, it is common to formalize the first-order part of Z_2 in the language \mathcal{L}_{OR} as in Peano arithmetic.

K. Tanaka

[Recap](#page-3-0)

Introducing [second-order](#page-4-0) arithmetic

[Analytical](#page-6-0) hierarchy

[Hierarchy by](#page-11-0)

[Normal form](#page-14-0)

[Summary](#page-16-0)

The formulas of second-order arithmetic

- $\bullet\,$ The language \mathcal{L}_OR^2 of second-order arithmetic is the language of first-order arithmetic \mathcal{L}_{OR} plus the membership relation symbol \in .
- The formulas of second-order arithmetic are constructed from atomic formulas $(t_1 = t_2, t_1 < t_2, t \in X)$ by propositional operators, numerical quantifiers $\forall x$, $\exists x$ and set quantifiers $\forall X, \exists X$.
- A formula can be rewritten in the prenex normal form by shifting quantifiers to the head of formula like in first-order.
- Moreover, all second-order quantifiers can be placed outside of the scopes of any first-order quantifier. For instance, in a very weak theory, the following transformation is possible.

 $\forall x \exists Y \varphi(x, Y) \Leftrightarrow \forall X \exists Y (\exists! x (x \in X) \rightarrow \forall x (x \in X \rightarrow \varphi(x, Y))).$

• However, in a stronger theory, the axiom of choice is often used to exchange the places of quantifiers, e.g.,

$$
\forall x \exists Y \varphi(x, Y) \Leftrightarrow \exists Y' \forall x \varphi(x, Y'_x),
$$

where Y' Y' is a set-valued choice function such that $Y'_x=Y'(x)=\{y: (x,y)\in Y'\}.$ $Y'_x=Y'(x)=\{y: (x,y)\in Y'\}.$

 $6/17$

K. Tanaka

[Recap](#page-3-0)

Introducing

[Analytical](#page-6-0) hierarchy

[Hierarchy by](#page-11-0)

[Normal form](#page-14-0) [Summary](#page-16-0)

We inductively define the **analytical hierarchy** of $\mathcal{L}^2_{\rm OR}$ -formulas, Σ^i_j and Π^i_j $(i = 0, 1, i \in \mathbb{N}).$

Definition

- The **Bounded** formulas are constructed from atomic formulas $(t_1 = t_2, t_1 < t_2,$ $t \in X$) by propositional operators and bounded quantifiers $\forall x \leq t$, $\exists x \leq t$. The class of such formulas is written as Π^0_0 or $\Sigma^0_0.$
- $\bullet\,$ For each $j\geq 0$, if $\varphi\in\Sigma^0_j$, then $\forall x_1\cdots\forall x_k\varphi\in\Pi^0_{j+1};$ if $\varphi \in \Pi_j^0$, then $\exists x_1 \cdots \exists x_k \varphi \in \Sigma_{j+1}^0$.
- $\bullet\,$ All formulas in Σ^0_j and Π^0_j are called $\,$ arithmetical. The class of arithmetical formulas is denoted as Π^1_0 or $\Sigma^1_0.$
- $\bullet\,$ For each $j\geq 0$, if $\varphi\in\Sigma^1_j$, then $\forall X_1\cdots\forall X_k\varphi\in\Pi^1_{j+1};$ if $\varphi \in \Pi_j^1$ then $\exists X_1 \cdots \exists X_k \varphi \in \Sigma_{j+1}^1$.

Analytical Hierarchy

 $7/17$

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (º

K. Tanaka

- [Recap](#page-3-0)
- Introducing
- [Analytical](#page-6-0) hierarchy
- [Hierarchy by](#page-11-0)
- [Normal form](#page-14-0) [Summary](#page-16-0)
- $\bullet~~ \Sigma^0_i(\Pi^0_i)$ formulas without set variables are nothing but $\Sigma_i(\Pi_i)$ formulas of first-order arithmetic.
- $\bullet\,$ A formula that is equivalent to a Σ^i_j (or $\Pi^i_j)$ formula on a given basic system is often called Σ^i_j (or $\Pi^i_j).$
- $\bullet\,$ Furthermore, if a Σ^i_j formula is equivalent to a Π^i_j formula, each of them is called a Δ^i_j formula. Since the equivalence of formulas depends on a base theory T , Δ^i_j is strictly expressed as $(\Delta^i_j)^T.$
- $\bullet\,$ When dealing with arithmetical hierarchies Σ^0_i Π^0_i , a system of second-order arithmetic $RCA₀$ is often used as a base theory. When dealing with analytical hierarchies, a stronger system ACA_0 is often assumed.
- These two systems are also suitable for the foundation of a wide range of mathematical discussions, and thus are important subsystems of Z_2 in the foundational program, so-called Reverse Mathematics.

K. Tanaka

[Recap](#page-3-0)

Introducing arithmetic

[Analytical](#page-6-0) hierarchy

[Hierarchy by](#page-11-0)

[Normal form](#page-14-0) **[Summary](#page-16-0)**

First, we define the system $RCA₀$ of recursive comprehension axioms.

Definition (System of recursive comprehension axioms)

The system of second-order arithmetic $RCA₀$ consists of the following axioms. (1) Basic Axioms of Arithmetic: Same as Q_{\leq} . (2) Δ_1^0 comprehension axiom (Δ_1^0 -CA):

$$
\forall x(\varphi(x) \leftrightarrow \psi(x)) \rightarrow \exists X \forall x(x \in X \leftrightarrow \varphi(x)),
$$

where $\varphi(x)$ is Σ_1^0 , $\psi(x)$ is Π_1^0 , and X is not included as a free variable. This axiom roughly guarantees the existence of the set $X = \{n : \varphi(n)\}.$ (3) Σ_1^0 induction: For any Σ_1^0 formula $\varphi(x)$,

$$
\varphi(0) \land \forall x (\varphi(x) \to \varphi(x+1)) \to \forall x \varphi(x).
$$

 $9/17$

KOD KARD KED KED BI YOUN

K. Tanaka

- [Recap](#page-3-0)
- Introducing
- [Analytical](#page-6-0) hierarchy
- [Hierarchy by](#page-11-0)
- [Normal form](#page-14-0) **[Summary](#page-16-0)**
- \bullet Since the Δ^0_1 comprehension axiom asserts the existence of recursive sets (=computable sets) in the standard model $\mathbb N$, it is called the **recursive** comprehension axiom.
- More precisely, since $\psi(x)$ and $\varphi(x)$ in the axiom may include set variables (other than X) as parameters, this axiom indeed asserts that there exists a set that can be computed in a parameter set as an oracle. But notice that it does not assert the non-existence of a non-recursive set.
- RCA₀ is a conservative extension of first-order arithmetic \sum_1 . That is, a sentence of \mathcal{L}_{OR} that is provable in RCA₀ is already provable in \mathcal{L}_{1} .

Definition (System of arithmetical comprehension axioms)

The system of arithmetical comprehension axioms ACA_0 is obtained from RCA_0 by replacing the Δ^0_1 comprehension with the Σ^0_1 comprehension 1 .

• $ACA₀$ is a conservative extension of first-order arithmetic PA.

 1 1 Arithmetical comprehension can be achieved by repeatedly applying the Σ_1^0 comprehension axiom to the parameters. **KOD KARD KED KED BI YOUN**

K. Tanaka

[Recap](#page-3-0)

Introducing

[Analytical](#page-6-0) hierarchy

[Hierarchy by](#page-11-0)

[Normal form](#page-14-0) [Summary](#page-16-0)

- • In RCA₀, we encode the ordered pair of natural numbers (m, n) by $\frac{(m+n)(m+n+1)}{2} + m.$
- The Cartesian product $X \times Y$ is the set of all (codes of) pairs of an element of X and an element of Y^+

$$
n \in X \times Y \leftrightarrow \underbrace{\exists x \leq n \exists y \leq n (x \in X \land y \in Y \land (x, y) = n)}_{\Sigma_0^0}.
$$

So the existence of $X \times Y$ is guaranteed by RCA₀.

• A function $f: X \to Y$ is a unique set $F \subset X \times Y$ such that

 $\forall x \forall y_0 \forall y_1((x, y_0) \in F \land (x, y_1) \in F \rightarrow y_0 = y_1)$ and $\forall x \in X \exists y \in Y(x, y) \in F$.

11 / 17

If $(x, y) \in F$, we write $f(x) = y$.

- A function is called a total function if its domain is N.
- \bullet In RCA₀, we can prove that the total functions are closed by primitive recursion ².

 2 For more details, please refer to section 7.1 in my book <https://www.shokabo.co.jp/mybooks/ISBN978-4-7853-1575-7.htm>.

K. Tanaka

[Recap](#page-3-0)

Introducing arithmetic

[Analytical](#page-6-0) hierarchy

[Hierarchy by](#page-11-0) function quantifiers

[Normal form](#page-14-0)

[Summary](#page-16-0)

In RCA₀, we can not only handle functions, but also use the function quantifiers $\exists f, \forall f$ for a unary function f. These quantifiers can be regarded as special set quantifiers $\exists X_f, \forall X_f$, which presuppose that X_f denotes a function, namely, $\forall x \exists! y \ (x, y) \in X_f$. Now, we consider the hierarchy of formulas only with function quantifiers.

Definition (Analytical hierarchy ${\rm frac-}\Sigma_n^1$, ${\rm Inc-}\Pi_n^1$, by function quantifiers)

Arithmetical formulas are ${\rm frac}\text{-}\Sigma^1_0$ and ${\rm Inc-}\Pi^1_0.$ For each $i\geq 0$, if a formula φ is ${\rm Inc-}\Pi^1_i$, then $\exists f \varphi$ is ${\rm frac-}\Sigma_{i+1}^1.$ If a formula φ is ${\rm frac-}\Sigma_i^1.$ then $\forall f \varphi$ is ${\rm frac-}\Pi_{i+1}^1.$

In the following lemma, we show ${\rm Inc}\text{-}\Sigma_i^1$ (or ${\rm Inc}\text{-}\Pi_i^1$) and Σ_i^1 (or Π_i^1) are equivalent. Thus "fnc-" may be omitted.

12 / 17

KORK EXTERNS ORA

Lemma

For each $i\geq 1$, for any Σ^1_i formula (or Π^1_i formula), there exists an equivalent ${\rm Inc.}\Sigma^1_i$ formula (or ${\rm Inc-}\Pi^1_i$ formula). The converse also holds.

K. Tanaka

[Recap](#page-3-0)

- Introducing arithmetic
- [Analytical](#page-6-0) hierarchy

[Hierarchy by](#page-11-0) function quantifiers

[Normal form](#page-14-0)

[Summary](#page-16-0)

Proof

 $\bullet\,$ First, we show that in a Σ^1_i formula (or a Π^1_i formula), a block of set quantifiers of the same kind can be unified into one. That is, in $RCA₀$, the following holds.

$$
\exists X_0 \cdots \exists X_{n-1} \varphi \Leftrightarrow \exists X \varphi',
$$

where φ' is obtained from φ by replacing each atomic formula $t\in X_k$ $(k< n)$ in it with $(t, k) \in X$. The equivalence should be clear. Similarly for universal quantifiers $\forall X_k$.

• Next, we replace each set quantifier $\exists X (\forall X)$ with a function quantifier $\exists f_X (\forall f_X)$, and an atomic formula $t \in X$ with $f_X(t) > 0$. Thus, we obtain an equivalent formula with only functional quantifiers.

13 / 17

KOD KAD KED KED E VOOR

 \bullet Therefore, a Σ^1_i (or $\Pi^1_i)$ formula can be expressed as fnc- Σ^1_i (or fnc- Π^1_i).

K. Tanaka

[Recap](#page-3-0)

Introducing

[Analytical](#page-6-0) hierarchy

[Hierarchy by](#page-11-0) function quantifiers

[Normal form](#page-14-0)

[Summary](#page-16-0)

- \bullet Conversely, suppose fnc- Σ^1_i or fnc- Π^1_i formula φ are given.
- First, we replace the functional quantifier $\exists f$ ($\forall f$) of φ with the set quantifier $\exists X_f$ $(\forall X_f)$ and denote the resulting formula as $\varphi'.$
- $\bullet\,$ Next, consider how to eliminate f using X_f in the arithmetical part θ of $\varphi'.$ For example, an atomic formula $s = t$ where t is expressed as $u(f(v))$ can be rewritten as $\exists y((v, y) \in X_f \land s = u(y))$. If t contains multiple occurrences of f, eliminate them from the inner. Similarly for $s < t$.
- Let θ' be an arithmetical formula obtained by repeating this process and eliminating all function quantifiers.
- For each f, let $\Psi(f)$ be $\forall x \exists! y \ (x, y) \in X_f$, to express the condition " X_f represents a function". Finally, we define an arithmetical formula θ'' as follows.

$$
\theta''\equiv \bigwedge_{f\text{ s.t. }\varphi\text{ contains ``\forall f''} }\Psi(f)\to (\theta'\land \bigwedge_{f\text{ s.t. }\varphi\text{ contains ``\exists f''} }\Psi(f))
$$

14 / 17

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ │ ヨ │ めぬ◎

 $\bullet\,$ By replacing the arithmetical part θ of φ' with θ'' , we obtain a Σ^1_i or Π^1_i formula which is equivalent to φ .

K. Tanaka

[Recap](#page-3-0)

Introducing

[Analytical](#page-6-0) hierarchy

[Hierarchy by](#page-11-0)

[Normal form](#page-14-0)

[Summary](#page-16-0)

The above lemma can also be proved in $RCA₀$, but the following normal form theorem requires $ACA₀$.

Theorem (Normal form theorem for analytical formulas)

For each $i\geq 1$, for any Σ^1_i formula (or Π^1_i formula), there exists an equivalent ${\rm Inc}\text{-}\Sigma^1_i$ formula (or ${\rm Inc.}\Pi^1_i$ formula) whose arithmetical part is Σ^0_1 or $\Pi^0_1.$

Proof.

- \bullet Any Σ^1_i formula (or Π^1_i formula) must have an equivalent fnc- Σ^1_i formula (or fnc- Π^1_i formula) as shown in the above lemma.
- To begin with, we will observe that consecutive quantifiers of the same type can be unified as one of such. First note that if x encodes a pair $\left(x_{0},x_{1}\right)$, x_{i} is obtained from x as a primitive recursive function $\pi_i(x)$ $(i = 0, 1)$. Then $\exists x_0 \exists x_1 \varphi(x_0, x_1)$ can be rewritten as $\exists x \varphi(\pi_0(x), \pi_1(x))$. Also $\exists f_0 \exists f_1 \varphi(f_0, f_1)$ can be rewritten as $\exists f \varphi(\pi_0 \circ f, \pi_1 \circ f)$. Similar for universal quantifiers $\forall x_0 \forall x_1$ and $\forall f_0 \forall f_1$. We remark that the graph of a primitive recursive function can be expressed as a Δ^0_1 formula in $RCA₀$ essentially by the strong representation lemma.

15 / 17

KORK EXTERNS ORA

K. Tanaka

[Recap](#page-3-0)

Introducing

[Analytical](#page-6-0) hierarchy

[Hierarchy by](#page-11-0)

[Normal form](#page-14-0)

[Summary](#page-16-0)

- $\bullet\,$ Let φ be a fnc- Σ^1_i (or fnc- Π^1_i) formula. Suppose that its last function quantifier is $\exists f.$
- First, consider the case that the first quantifier of the arithmetical part of φ is $\exists x$. Then we change $\exists x$ by a function quantifier $\exists f_x$, and replace x inside with $f_x(0)$. Finally, merge the two function quantifiers $\exists f \exists f_x$ into one.
- Next, consider the case that the first arithmetical quantifier is $\forall x$. If the arithmetical part is Π^0_1 , we are done.
- Otherwise, the arithmetical part is of the form $\forall x \exists y \theta(x, y)$.
- If $\forall x \exists y \theta(x, y)$ holds, there exists an arithmetical function $g(x) = y$ that takes the smallest y that satisfies $\varphi(x, y)$ for x. So, it can be rewritten as $\exists g \forall x \varphi(x, g(x))$ (in ACA₀). Finally, merge the two function quantifiers $\exists f \exists q$ into one.

16 / 17

KO KA KO KE KE KE KA KA KA KA KA KA KA A

- The same is true if the last function quantifier is $\forall f$.
- $\bullet\,$ By repeating the above procedure, the arithmetical part becomes Σ_1^0 or Π_1^0 . □

K. Tanaka

[Recap](#page-3-0)

Introducing

- [Analytical](#page-6-0) hierarchy
- [Hierarchy by](#page-11-0)
- [Normal form](#page-14-0)
- [Summary](#page-16-0)

• Second-order arithmetic Z_2 is a monadic second-order theory, or a two-sorted first-order theory dealing with natural numbers and sets of natural numbers under the condition of full comprehension.

Summary

- $\bullet\,$ The language \mathcal{L}_OR^2 of second-order arithmetic is the language of first-order arithmetic \mathcal{L}_{OR} plus the membership relation symbol \in .
- \bullet The analytical hierarchy of $\mathcal{L}^2_{\rm OR}$ -formulas, Σ^i_j and Π^i_j : For each $j\geq 0$, if $\varphi\in \Sigma^1_j,$ then $\forall X_1 \cdots \forall X_k \varphi \in \Pi_{j+1}^1;$ if $\varphi \in \Pi_{j}^1$ then $\exists X_1 \cdots \exists X_k \varphi \in \Sigma_{j+1}^1.$
- Analytical hierarchy ${\rm finc}\text{-}\Sigma^1_n$, ${\rm finc}\text{-}\Pi^1_n$, by function quantifiers: For each $i\geq 0$, if φ is ${\rm Inc-}\Pi_i^1$, then $\exists f\varphi$ is ${\rm Inc-}\Sigma_{i+1}^1.$ If φ is ${\rm Inc-}\Sigma_i^1$, then $\forall f\varphi$ is ${\rm Inc-}\Pi_{i+1}^1.$
- $\bullet\,$ For any Σ^1_i (or $\Pi^1_i)$ formula , there exists a ${\rm Inc-}\Sigma^1_i$ (or ${\rm Inc-}\Pi^1_i)$ formula and vice versa.
- Normal form theorem for analytical formulas: For each $i\geq 1$, for any Σ^1_i (or Π^1_i) formula , there exists an equivalent ${\rm Inc}\text{-}\Sigma_i^1$ (or ${\rm Inc}\text{-}\Pi_i^1$) formula whose arithmetical part is Σ^0_1 or $\Pi^0_1.$

Thank you for your at[te](#page-15-0)[nti](#page-16-0)[o](#page-15-0)[n](#page-16-0)[!](#page-15-0) 17 / 17