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Logic and Computation II� �
• Part 4. Formal arithmetic and Gödel’s incompleteness theorems

• Part 5. Automata on infinite objects

• Part 6. Recursion-theoretic hierarchies

• Part 7. Admissible ordinals and second order arithmetic� �
Part 4. Schedule� �
• Mar. 7, (1) First-order logic

• Mar. 9, (2) Arithmetical formulas

• Mar.14, (3) Gödel’s first incompleteness theorem

• Mar.16, (4) Gödel’s second incompleteness theorem

• Mar.21, (5) Second-order logic

• Mar.23, (6) Analytical formulas� �
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Recap: Peano Arithmetic

Peano arithmetic is a first-order theory in the language of ordered rings
LOR = {+, ·, 0, 1, <}.

Definition

Peano arithmetic (PA) consists of the following axioms.

Successor: ¬(x+ 1 = 0), x+ 1 = y + 1 → x = y.
Addition: x+ 0 = x, x+ (y + 1) = (x+ y) + 1.
Multiplication: x · 0 = 0, x · (y + 1) = x · y + x.
Inequality ¬(x < 0), x < y + 1 ↔ x < y ∨ x = y.

Induction: φ(0) ∧ ∀x(φ(x) → φ(x+ 1)) → ∀xφ(x).

• Induction is not a single formula, but an axiom schema that collects the formulas for
all the φ(x) in LOR. Note that φ(x) may include free variables other than x.
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Arithmetical Hierarchy

• We inductively define hierarchical classes of formulas Σi and Πi (i ∈ N).

Definition

• The bounded formulas are constructed from atomic formulas by using propositional
connectives and bounded quantifiers ∀x < t and ∃x < t, where ∀x < t and ∃x < t are
abbreviations for ∀x(x < t→ · · · ) and ∃x(x < t ∧ · · · ), respectively, and t is a term
that does not include x. A bounded formula is also called a Σ0 (=Π0) formula.

• For any i, k ∈ N:
▶ if φ is a Σi formula, ∀x1 · · · ∀xkφ is a Πi+1 formula,

▶ if φ is a Πi formula, ∃x1 · · · ∃xkφ is a Σi+1 formula.

• If a Πi formula is equivalent to some Σi formula or a Σi formula equivalent to some
Πi formula, such a formula is called a ∆i formula.
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Let us define subsystems of Peano arithmetic PA by restricting its induction axiom.

Definition

Let Γ be a class of formulas in LOR. By IΓ, we denote a subsystem of PA obtained by
restricting (φ(x) of) induction to the class Γ.

• The main subsystems of PA are IΣ1 ⊃ IΣ0 ⊃ IOpen, where Open is the set of
formulas without quantifiers.

Another system weaker than IOpen is the system Q defined by R. Robinson.

Definition

Robinson’s system Q is obtained from PA by removing the axioms of inequality and
induction, and instead adding the following axiom:
Predecessor: ∀x(x ̸= 0 → ∃y(y + 1 = x)).

So, it is a theory in the language of ring LR = {+, ·, 0, 1}.

Let Q< be the system Q plus the definition of the inequality symbol.
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Lemma

In IOpen, all axioms of theory of discrete ordered semirings PA− can be proved.
(1) Semiring axiom ( excluding the existence of additive inverses from the commutative

ring axiom ).
(2) difference axiom x < y → ∃z(z + (x+ 1) = y).
(3) 0 as the minimum element in linear order and discrete (0 < x↔ 1 ≤ x) .
(4) Order preservation x < y → x+ z < y + z ∧ (x · z < y · z ∨ z = 0).

Corollary

Q< ⊂ PA− ⊂ IOpen ⊂ IΣ0 ⊂ IΣ1 ⊂ PA.

• In Q<, an atomic formula s = t or s < t without variables can be proved if true, and
its negation can be proved if false (by meta-induction on the composition of terms).

• Furthermore, a bounded formula without free variables can be proved/disproved in Q<

if it is true/false.

• A system is said to be Σ1-complete if it proves all true Σ1 sentences.
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Theorem (Σ1-completeness of Q<)

Q< proves all true Σ1 sentences.

Proof

• If a Σ1 sentence ∃x1∃x2 . . . ∃xkφ(x1, x2, . . . , xk) is true, there exist concrete numbers

n1, n2, . . . , nk such that φ(n1, n2, . . . , nk) holds, where n =

n times︷ ︸︸ ︷
1 + · · ·+ 1 and n = 0.

• Since φ(n1, n2, . . . , nk) is a bounded formula, it is provable if it is true. From the rule
of first-order logic, ∃x1∃x2 . . . ∃xkφ(x1, x2, . . . , xk) is also provable. □

• All the arithmetic systems we will discuss are extensions of Q<, and thus Σ1-complete.

• Another condition for a theory to induce the first incompleteness theorem is
1-consistency, also known as Σ1-soundness. A theory is said to be Σn-sound if all
provable Σn statements are true.

• Gödel’s original condition, called ω-consistency is strictly stronger than Σ1-soundness.
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• We first look at the first incompleteness theorem from the viewpoint of computability
theory. Then, we will reexamine the proof more syntactically.

• Recall that X ⊆ Nn is called CE (computably enumerable) if it is the domain (or
range) of some partial recursive function. Then, from the lemma below, any CE
relation R(x⃗) can be expressed by ∃yS(x⃗, y) for some primitive recursive relation S.

Recall, Lemma in Lecture-01-05 of this course� �
For the relation R ⊂ Nn, the following conditions are equivalent.

(1) R is recursively enumerable (CE).

(6) There exists a primitive recursive relation S such that
R(x1, · · · , xn) ⇔ ∃yS(x1, · · · , xn, y).

(7) There exists a recursive relation S such that
R(x1, · · · , xn) ⇔ ∃yS(x1, · · · , xn, y).� �
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Definition

Let N = (N,+, ·, 0, 1, <) be a standard model of PA.

• A set A ⊆ Nl is said to be Σi if there exists a Σi formula φ(x1, . . . , xl) satisfying

(m1, . . . ,ml) ∈ A⇔ N |= φ(m1, . . . ,ml).

• Here, m is a term expressing number m, that is, m =

m︷ ︸︸ ︷
(1 + 1 + · · ·+ 1)(m > 0),

0 = 0.

• Similarly, Πi sets can be defined by Πi formulas.

• A set that is both Σi and Πi is called ∆i.

• By Lemma (2) later, we will show that the Σ1 sets are the CE sets.
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Lemma (1)

The graph {(x⃗, y) : f(x⃗) = y} of a primitive recursive function f is a ∆1 set.

Proof

• By induction on the construction of primitive recursive functions. The main part is to
treat the definition by primitive recursion.

• For simplicity, we omit parameter variables x1, . . . , xl, and consider the definition of a
unary function f from a constant c and binary function h as follows:

f(0) = c, f(y + 1) = h(y, f(y)).

• From the induction hypothesis, h can be expressed in both Σ1 and Π1 formulas.

• First, let γ(x,m, n) be a Σ0 formula expressing “m(x+ 1) + 1 is a divisor of n”, that
is, ∃d < n (m(x+ 1) + 1) · d = n. Then, for any finite set A (with maxA < u), there
exist m,n such that ∀x < u(x ∈ A⇔ γ(x,m, n)).

• In fact, assume (u− 1)! | m. Then, (m(i+ 1) + 1) and (m(j + 1) + 1) are mutually
prime for any i < j < u. Thus, n = Πi∈A(m(i+ 1) + 1) works.

11 / 25



Logic and
Computation

K. Tanaka

Recap: Peano
Arithmetic

Recap:
Arithmetical
hierarchy

Subsystems of PA

Representation
theorems

Formal
Representation
theorems

First proof

Diagonalization
lemma

Bew

Alternative proof

Summary

• Now, we will define a Σ0 formula δ(u,m, n) such that

δ(⟨u1, u2⟩,m, n) ⇔ ∀y < u1∃z < u2 f(y) = z.

• The formula δ(u,m, n) is formally constructed as follows: for any u = ⟨u1, u2⟩,

δ(u,m, n) ≡ ∀y < u1∃z < u2 γ(⟨y, z⟩,m, n) ∧ ∀z < u2(γ(⟨0, z⟩,m, n) ↔ z = c)

∧ ∀y < u1−1∀z < u2(γ(⟨y + 1, z⟩,m, n) ↔ ∃z′ < u2(z = h(y, z′) ∧ γ(⟨y, z′⟩,m, n))).

• Then ∀u1∃u2∃m∃nδ(⟨u1, u2⟩,m, n) holds. Thus, we obtain

f(y) = z ⇔ ∃u∃m∃n(u1 = y + 1 ∧ δ(u,m, n) ∧ γ(⟨y, z⟩,m, n))
⇔ ∀u∀m∀n(u1 = y + 1 ∧ δ(u,m, n) → γ(⟨y, z⟩,m, n)).

• That is, f(y) = z is a ∆1 set. □
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• As we saw in the revisited lemma on Slides p.9, any CE relation R(x⃗) can be
expressed by ∃yS(x⃗, y) for some primitive recursive relation S.

• By the above lemma, the primitive recursive relation S can be expressed by a Σ1

formula, and ∃yS(x⃗, y) is still Σ1. Thus, any CE relation can be expressed by a Σ1

formula.

• Therefore, we have the following.

Lemma (2)

The CE sets are exactly the same as the Σ1 sets. Hence, the computable (recursive) sets
are exactly the same as the ∆1 sets.
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Then, the following two formal representation theorems hold.

Theorem ((Weak) Representation Theorem for CE sets)

Suppose that a theory T is Σ1-complete and 1-consistent. Then, for any CE set C, there
exists a Σ1 formula φ(x) such that for any n,

n ∈ C ⇔ T ⊢ φ(n).

Proof.

• From the Lemma (2), for any CE set C, there exists a Σ1 formula φ(x) such that
n ∈ C ⇔ N |= φ(n).

• Since T is Σ1-complete, N |= φ(n) ⇒ T ⊢ φ(n).

• Also because T is 1-consistent, T ⊢ φ(n) ⇒ N |= φ(n).

□
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Theorem ((Strong) Representation Theorem for Computable Sets)

Assume a theory T is Σ1-complete. For any computable set C, there exists a Σ1 formula
φ(x) such that

n ∈ C ⇒ T ⊢ φ(n), n ̸∈ C ⇒ T ⊢ ¬φ(n).

Proof.
• For a computable set C, from the Lemma (2) there exist Σ0 formulas
θ1(x, y), θ2(x, y) such that

n ∈ C ⇔ N |= ∃yθ1(n, y), n ̸∈ C ⇔ N |= ∃yθ2(n, y).

Now, let φ(x) be a Σ1 formula ∃y(θ1(n, y) ∧ ∀z ≤ y¬θ2(n, z)). By the
Σ1-completeness of T , n ∈ C ⇒ T ⊢ φ(n).

• To show n ̸∈ C ⇒ T ⊢ ¬φ(n), let n ̸∈ C.
Then, since N |= ∃yθ2(n, y), some m exists and N |= θ2(n,m). From the Σ1

completeness of T , T ⊢ θ2(n,m).
Also, since N ̸|= ∃yθ1(n, y), for all l, N |= ¬θ1(n, l), i.e., T ⊢ ¬θ1(n, l).
Therefore, if θ1(n, a) in some model of T , then a is not a standard natural number l.
Thus, T ⊢ ∀y(θ1(n, y) → ∃z≤y θ2(n, z)), that is, T ⊢ ¬φ(n). □
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• To derive the incompleteness theorem, we need one more condition on a formal
system, that is, the set of axioms is CE.

• Without this condition, for example, if we take all true arithmetic formulas as axioms,
we would have a complete theory, but it would not be a formal system.

• From the following theorem, the CE set of axioms can be also expressed as a primitive
recursive set.

Theorem (Craig’s lemma)

For any CE theory T , there exists an equivalent (proving the same theorem) primitive
recursive theory T ′.

Proof. Let T be a CE theory, defined by Σ1 formula φ(x) ≡ ∃yθ(x, y) (θ is Σ0).
That is, σ ∈ T ⇔ N |= φ(⌜σ⌝). ⌜σ⌝ is the Gödel number of a sentence σ.
Then, we define a primitive recursive theory T ′ as follows:

T ′ = {
n + 1 copies︷ ︸︸ ︷

σ ∧ σ ∧ · · · ∧ σ : θ(⌜σ⌝, n)}.

Then, T and T ′ are equivalent, since ⊢ σ ↔ σ ∧ σ ∧ · · · ∧ σ. □
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In the proof above, the definition of T ′ is not Σ0 since it includes the Gödel numbers, etc.
The following can be shown about the CE theory.

Theorem

For any CE theory T , the set of its theorems {⌜σ⌝ : T ⊢ σ} is also CE.

Proof

• Recall that a proof in a formal system of first-order logic is a finite sequence of
formulas, each formula being either a logical axiom, an equality axiom, or a
mathematical axiom of a theory T , or obtained from previous formulas by applying
MP or a quantification rule.

• From the Craig’s Lemma, a CE theory T can be transformed into a primitive recursive
theory. Thus, it is also a primitive recursive relation that (the Gödel number of) a
finite sequence of formulas is a proof of T .

• The set of theorems of T is CE. Because a sentence σ is a theorem of T iff there
exists a proof (i.e., a sequence that satisfies the primitive recursive relation) such that
σ is the last formula of the proof. □
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The halting problem K is CE, but its complement N−K is not (part 1 of this course).
Gödel’s first incompleteness theorem easily follows from this fact.

Theorem (Gödel’s first incompleteness theorem)

Let T be a Σ1-complete and 1-consistent CE theory. Then T is incomplete, that is, there is
a sentence that cannot be proved or disproved.

Proof.
• Suppose K is CE but not co-CE. By the weak representation theorem for CE sets,
there exists a formula φ(x) such that

n ∈ K ⇔ T ⊢ φ(n).
• On the other hand, since N−K is not a CE, there exists some d such that

d ∈ N−K ̸⇔ T ⊢ ¬φ(d).

Thus, (d ∈ K and T ⊢ ¬φ(d)) or (d ̸∈ K and T ̸⊢ ¬φ(d)).
• In the former case, since d ∈ K implies T ⊢ φ(d), T is inconsistent, contradicting
with the 1-consistency assumption.

• In the latter case, T is incomplete because φ(d) cannot be proved or disproved.
□
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Homework� �
(1) In a Σ1 complete theory T , show that 1-consistency (Σ1-soundness) of T is

equivalent to the following: for any Σ0 formula φ(x), if φ(n) is provable in T for
all n, then ∃x¬φ(x) is not provable in T.

(2) Let A,B be two disjoint CE sets. Assume a theory T is Σ1-complete. Show that
there exists a Σ1 formula ψ(x) such that

n ∈ A⇒ T ⊢ ψ(n), n ∈ B ⇒ T ⊢ ¬ψ(n).

From this, deduce that {⌜σ⌝ : T ⊢ σ} and {⌜σ⌝ : T ⊢ ¬σ} are computably
inseparable. (See Part 1-6, Slide p.25.) In particular, {⌜σ⌝ : T ⊢ σ} is not
computable.� �
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From now, we will reconsider the proof of the first incompleteness theorem more rigorously
and constructively, which leads us to the second incompleteness theorem.
By the previous lemma, we know that the graph of a primitive recursive (p.r.) function f is
a ∆1 set. In fact, we can prove the following.

Lemma (Strong Representation for primitive recursive functions)

For any p.r. function, there is a ∆1 formula φ(x, y) which expresses its graph, and
moreover in IΣ1, it is provable that ∀x∃!yφ(x, y). Here, ∃! means “there is a unique”.

Proof.
∀x∃!yφ(x, y) is based on the fact that φ(x, y) represents a p.r. function, which can be
shown by induction on IΣ1, since φ(x, y) is a ∆1 formula. □
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• The constructive proof of the first incompleteness theorem utilizes the diagonalization
lemma.

• To state the lemma, we need the following fact: IΣ1 is a conservative extension even if
we add the symbols of the p.r. function and its definable formulas.

• In other words, (in IΣ1) a Σ1 formula containing a p.r. functions is rewritten as an
equivalent Σ1 formula without p.r. functions by replacing the functions with the
corresponding ∆1 formula.

Lemma (Diagonalization lemma)

Let T be any extension of IΣ1. For any formula ψ(x) in which x is the only free variable,
there exists a sentence σ such that T ⊢ “σ ↔ ψ(⌜σ⌝)” .
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Proof.

• A formula with only x as a free variable is primitively recursively enumerated as
φ0(x), φ1(x), . . ., and then f(n) = ⌜φn(n)⌝ is also a p.r. function. By the strong
representation theorem for p.r. functions, there exists a Σ1 formula χ such that

f(m) = n⇒ T ⊢ χ(m,n) ∧ ∀x∃!yχ(x, y).

• Considering the formula ∃y(χ(x, y) ∧ ψ(y)), since it only has free variable x, it is
φk(x) for some k.

• Let σ ≡ φk(k) for this k. Then, f(k) = ⌜σ⌝, so T ⊢ χ(k, ⌜σ⌝).
• Thus, in T ,

ψ(⌜σ⌝) → ∃y(χ(k, y) ∧ ψ(y)) (≡ φk(k) ≡ σ)

• On the other hand, since T ⊢ ∀x∃!yχ(x, y), in T ,

¬ψ(⌜σ⌝) → ¬∃y(χ(k, y) ∧ ψ(y)) (≡ ¬σ).

• Therefore, σ is the fixed point of ψ (T ⊢ σ ↔ ψ(⌜σ⌝)). □
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Based on Craig’s lemma, a CE theory is primitive recursively axiomatizable. Then, “a finite
sequence of formulas P is a proof in T” can be defined in a primitive recursive way.

Definition

• Let T be a CE theory and its p.r. counterpart T ′.

• A proof in T ′ is a finite sequence of formulas where each formula is either a logical
axiom, an equality axiom, or an axiom of T ′, or obtained by applying MP or
quantification rules from formulas.

• The formula that appears at the end of the proof is the theorem of T .

• Now, we define the predicate ProofT as follows.

ProofT (⌜P⌝, ⌜σ⌝) ⇔ P is a proof of formula σ in T ′.

• By ProofT , we also denote a ∆1 formula expressing the above ProofT in IΣ1. A Σ1

formula BewT is defined as BewT (x) ≡ ∃y ProofT (y, x).

The formula BewT (x) expresses that “x is the Gödel number of a theorem of T”. “Bew”
stands for the German beweisbar (provable).

23 / 25



Logic and
Computation

K. Tanaka

Recap: Peano
Arithmetic

Recap:
Arithmetical
hierarchy

Subsystems of PA

Representation
theorems

Formal
Representation
theorems

First proof

Diagonalization
lemma

Bew

Alternative proof

Summary

Alternative proof: the first incompleteness
We give another proof for the first incompleteness theorem (with the additional assumption
that a theory T includes IΣ1).

Proof.

• By the diagonalization lemma, ¬BewT (x) has a fixed point, that is, there exists σ
such that T ⊢ σ ↔ ¬BewT (⌜σ⌝).

• We will show this σ is neither provable nor disprovable in T as follows.

• Let T ⊢ σ. Then BewT (⌜σ⌝) is true. Hence T ⊢ BewT (⌜σ⌝) from Σ1 completeness.
Since σ is the fixed point of ¬BewT (x), we have T ⊢ ¬σ, which means that T is
inconsistent.

• On the other hand, if T ⊢ ¬σ, T ⊢ BewT (⌜σ⌝) because σ is a fixed point. Here, using
the 1-consistency of T , BewT (⌜σ⌝) is true, and so T ⊢ σ, which is a contradiction. □

The sentence σ thus constructed “asserts its own unprovability” because “σ ⇔ T ̸⊢ σ”
holds. This σ is called the Gödel sentence of T .
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Theorem (Gödel’s first incompleteness theorem)

Any 1-consistent CE extension of IΣ1 is incomplete.

Further readings� �
• Theory of Computation, D.C. Kozen, Springer 2006.

• Mathematical Logic. H.-D. Ebbinghaus, J. Flum, W. Thomas, Graduate Texts in
Mathematics 291, Springer 2021.� �
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