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Outline of the Course

1 This is an introductory graduate-level course in mathematical logic and theory of
computation. Its first part delivered in the last semester covered the basic topics of
the two fields and their interactions. In this semester, we discuss more advanced topics
emphasizing on decidability and definability.

2 Each week, there are two lectures, in Tuesday and Thursday. Every Thursday, we will
assign simple homework problems or questionnaires to registered students, who are
motivated to attend the class continuously. Normally, homeworks are due next
Monday.

3 TA (Dr. Li) will handle homeworks as well as questions and comments from students
via WeChat. We may assign harder problems to students, who will presumably go to
the research level with us in the following years.

4 Lecture slides will be uploaded on the lecture page at BIMSA.
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Logic and Computation II� �
• Part 4. Formal arithmetic and Gödel’s incompleteness theorems

• Part 5. Automata on infinite objects

• Part 6. Recursion-theoretic hierarchies

• Part 7. Admissible ordinals and second order arithmetic� �
Part 4. Schedule� �
• Mar. 7, (1) First-order logic

• Mar. 9, (2) Arithmetical formulas

• Mar.14, (3) Gödel’s first incompleteness theorem

• Mar.16, (4) Gödel’s second incompleteness theorem

• Mar.21, (5) Second-order logic

• Mar.23, (6) Analytical formulas� �
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Today’s topics

1 Recap

2 Formal system of first-order logic

3 Completeness theorem

4 Application of the compactness theorem

5 Formal arithmetic

6 Peano arithmetic

7 Arithmetical hierarchy
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Recap
• First-order logic is developed in the common logical symbols and specific mathematical
symbols. Major logical symbols are propositional connectives, quantifiers ∀x and ∃x
and equality =. The set of mathematical symbols to use is called a language.

• A structure in language L (simply, a L-structure) is defined as a non-empty set A
equipped with an interpretation of the symbols in L.

• A term is a symbol string to denote an element of a structure. A formula is a symbol
string to describe a property of a structure. A formula without free variables is called a
sentence.

• “A sentence φ is true in A, written as A |= φ” is defined by Tarski’s clauses. The
truth of a formula with free variables is defined by the truth of its universal closure.

• A set of sentences in the language L is called a theory. A is a model of T , denoted
by A |= T , if ∀φ ∈ T (A |= φ).

• We say that φ holds in T , written as T |= φ, if ∀A(A |= T → A |= φ).
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Formal system of first-order logic

Axiom system� �
P1. φ→ (ψ → φ)

P2.
(
φ→ (ψ → θ)

)
→

(
(φ→ ψ) → (φ→ θ)

)
P3. (¬ψ → ¬φ) → (φ→ ψ)

P4. ∀xφ(x) → φ(t) (the quantification axiom)� �

Inference rules� �
(1) If φ and φ→ ψ are

theorems, so is ψ a

(2) If ψ → φ(x) (where ψ does
not include x) is a theorem,
then so is ψ → ∀xφ(x)
(the generalization rule)

aknown as Modus ponens(MP) or
cut rule� �

• In languages with equality, the axiom Eq is assumed (reflexive, symmetrical, transitive,
and for each symbol f or R, its value is preserved with equality).

• If a sentence σ can be proved from the set of sentences T , then σ is called a theorem
of T , and written as T ⊢ σ.

• The quantification axiom and the equality axiom hold trivially in any structure, and the
generalization rule also clearly preserves truth (because the free variable x of a formula
is interpreted by universal closure). So if T ⊢ σ then T |= σ (soundness theorem).
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Theorem (Completeness theorem (a weak version))

For any sentence σ, |= σ iff ⊢ σ.

• We only need to show that for any sentence σ, if |= σ, then ⊢ σ.

• By the Skolem-Herbrand method. Let ∀x⃗φ(x⃗) be the SNFσS of σ. If ¬σ is valid,
there are n pairs of terms t⃗i such that ¬φ(⃗t1) ∨ · · · ∨ ¬φ(⃗tk) is a tautology, and so
provable in propositional logic, hence provable in first-oder logic. Therefore, ∃x⃗¬φ(x⃗),
i.e., ¬σ is provable in first-oder logic.

• To show the completeness theorem, Gödel introduced new relation symbols instead of
Skolem functions, and transformed any sentence into a ∀∃ sentence.
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The compactness theorem of first order logic is also deduced from the compactness of
propositional logic.

Theorem (Compactness theorem)

If a set T of sentences of first order logic is not satisfiable, then there exists some finite
subset of T which is not satisfiable.

From this we can derive the general completeness theorem.

Theorem (Gödel’s completeness theorem)

In first order logic, T ⊢ φ⇔ T |= φ.

Proof. ⇒ has been proved.
• To show ⇐, assume T |= φ. Then T ∪ {¬φ} is not satisfiable.

• By the compactness theorem, there exists a finite set {σ1, . . . , σn} of T such that
{σ1, . . . , σn,¬φ} is not satisfiable.

• Then (σ1 ∧ · · · ∧ σn) → φ is valid.

• From the completeness theorem (a weak version), (σ1 ∧ · · · ∧ σn) → φ is provable,
and from MP, {σ1, . . . , σn} ⊢ φ, hence T ⊢ φ. □8 / 26
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• Subsequently, L. Henkin introduced a constant c∃xφ(x) (Henkin constant) for each
sentence ∃xφ(x), and assume the following formula ∃xφ(x) → φ(c∃xφ(x)) as an
additional axiom, called the Henkin axiom. By the Henkin axioms, any sentence can
be rewritten as a formula without quantifiers.

• Henkin proved by contradiction that T ̸⊢ φ⇒ T ̸|= φ. T ̸⊢ φ is equivalent to the
consistency of T ∪ {¬φ}. T ̸|= φ is equivalent to the satisfiability of T ∪ {¬φ} So, the
following is enough for the completeness theorem.

Theorem (Model existence theorem)

If a set T of sentences of first order logic is consistent, then there exists a model of T .
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• Henkin’s lemma: If T is consistent, T ∪ {∃xφ(x) → φ(c∃xφ(x))} is also consistent.

• For a consistent theory T in a language L, there are a set C of constants such that
any sentence of the form ∃xφ(x) in L ∪ C has its Henkin constant in C.

• Let TH be a consistent extension of T with all Henkin axioms H in C. Let Ŝ a
maximal consistent set of TH (with the equality axioms). Then, we define a model A
of T as follows.

• First define an equivalence relation ≈ on C by c ≈ d ⇔ (c = d) ∈ Ŝ.
Let A = C/ ≈. Then define the interpretations of f and R on A as follows

fA([c1], [c2], . . . , [cn]) = [d] ⇔ (f(c1, c2, . . . , cn) = d) ∈ Ŝ

RA([c1], [c2], . . . , [cn]) ⇔ R(c1, c2, . . . , cn) ∈ Ŝ

Here, a structure A is well-defined since Ŝ includes all the equality axioms. Then, we
can also show by induction that A |= φ([c1], . . . , [cn]) ⇔ φ(c1, . . . , cn) ∈ Ŝ. Thus, A
is a model of T .
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Existence of non-standard models of arithmetic
• Let N = (N, 0, 1,+, ·, <) be the standard model of arithmetic (natural number
theory).

• Let Th(N ) := {σ : N |= σ}. N is naturally a model of Th(N ), but there also exist
models of Th(N ) that are not isomorphic to N , which are called nonstandard
models of arithmetic.

• Using the compactness theorem, we construct a nonstandard model of arithmetic as
follows. First, with c as a new constant, for each k ∈ N

Tk = Th(N ) ∪ {0 < c, 1 < c, 1 + 1 < c, 1 + 1 + 1 < c, . . . ,

k times︷ ︸︸ ︷
1 + 1 + · · ·+ 1 < c}

• The structure of N plus the interpretation of the constant c as k+ 1 is a model of Tk.

• Let T =
⋃

k∈N Tk. Any finite subset of T is contained in some Tk and so satisfiable.
Hence, by the compactness theorem, T also has a model M, where the value of c is
larger than any standard natural number.

• That is, M has elements that are not standard natural numbers.

• By removing the constant c from the structure, M can be regarded as a non-standard
model of arithmetic in the language LOR. 11 / 26
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Existence of arbitrarily large models

• If T has an arbitrarily large finite model, then T has a model of arbitrarily large infinite
cardinality.

• Let {ci : i ∈ κ} be a set of constants with infinite cardinality κ. We consider

T ′ = T ∪ {ci ̸= cj : i ̸= j and i, j ∈ κ}

• For any finite subset of T ′, it is satisfiable if we take a finite model of T with at least
the number of constants ci in it, and interpret each constant as a distinct element.

• Therefore, from the compactness theorem, T ′ also has a model, which is a model of T
with more than κ elements.

• To construct a model with exactly the same cardinality as T , we use a generalized
version of the Löwenheim-Skolem’s downward theorem.

12 / 26
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Peano Arithmetic

• So-called “Peano’s postulates” (1889) is famous as an
axiomatic treatment of the natural numbers. However, it is
not a formal system in the sense of modern logic, since its
underlying logic is ambiguous. Moreover, we should also
notice previous advanced studies by C.S. Peirce (1881) and
R. Dedekind (1888).

• It was Hilbert who began to consider natural number
theory as a formal theory in first-order logic.

• In fact, Peano arithmetic PA as a strict formal system were
established through Gödel’s arguments of his
incompleteness theorem.

G. Peano

C.S. Peirce

R. Dedekind
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Peano arithmetic is a first-order theory in the language of ordered rings
LOR = {+, ·, 0, 1, <}.

Definition

Peano arithmetic (PA) consists of the following axioms.

Successor: ¬(x+ 1 = 0), x+ 1 = y + 1 → x = y.
Addition: x+ 0 = x, x+ (y + 1) = (x+ y) + 1.
Multiplication: x · 0 = 0, x · (y + 1) = x · y + x.
Inequality ¬(x < 0), x < y + 1 ↔ x < y ∨ x = y.

Induction: φ(0) ∧ ∀x(φ(x) → φ(x+ 1)) → ∀xφ(x).

• Induction is not a single formula, but an axiom scheme that collects the formulas for
all the φ(x) in LOR. Note that φ(x) may include free variables other than x.

• In “Peano’s postulates”, induction is expressed in terms of sets, but Peano arithmetic
does not presuppose set theory.
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• In a modern formal system, to introduce a new function by definition, it must be
defined explicitly so that the extended system is a conservative extension.

• The primitive recursive definition is not an explicit definition. In fact, if we add the
primitive recursive definition of multiplication to Presburger arithmetic (a system of
only addition), the resulting system loses completeness and decidability, and it is not a
conservative extension.

• In other words, multiplication is not definable from addition in the formal sense.

• On the other hand, the inequality x < y can be defined from addition as abbreviation
for ∃z(y = (x+ z) + 1). However, we prefer to include the inequality as a primitive
symbol, because it allows us to define the hierarchy of formulas simply.

• Similarly, in the following, we assume that ¬, ∧, ∨, →, ∀, ∃, etc. are all pre-set.
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Arithmetical Hierarchy

• We inductively define hierarchical classes of formulas Σi and Πi (i ∈ N).

Definition

• The bounded formulas are constructed from atomic formulas by using propositional
connectives and bounded quantifiers ∀x < t and ∃x < t, where ∀x < t and ∃x < t are
abbreviations for ∀x(x < t→ · · · ) and ∃x(x < t ∧ · · · ), respectively, and t is a term
that does not includes x. A bounded formula is also called a Σ0 (=Π0) formula.

• For any i, k ∈ N:
▶ if φ is a Σi formula, ∀x1 · · · ∀xkφ is a Πi+1 formula,

▶ if φ is a Πi formula, ∃x1 · · · ∃xkφ is a Σi+1 formula.

• Σi/Πi also denotes the set of all Σi/Πi formulas.

16 / 26
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• In the above definition, there are many formulas that do not belong to any class. So,
the (lowest) class to which the equivalent formula belongs is regarded as the class of
the formula.

Examples� �
• ¬∃y(y + y = x) does not belong to any of the above class.

• But it is logically equivalent to a Π1 formula ∀y¬(y + y = x).

• So ¬∃y(y + y = x) is a Π1 formula.� �
• If a Πi formula is equivalent to some Σi formula or a Σi formula equivalent to some
Πi formula, such a formula is called a ∆i formula.
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Example� �
• The following Σ0(= Π0) formula P(x) expresses “x is a prime number”

P(x) ≡ ¬∃d < x∃e < x(d · e = x) ∧ ¬(x = 0) ∧ ¬(x = 1).

• The proposition “every even number greater than or equal to 4 is the sum of two
primes” (the “Goldbach conjecture”) is expressed by the following Π1 formula:

∀x > 1∃p < 2x∃q < 2x (2x = p+ q ∧ P(p) ∧ P(q)).

• “There are infinitely many primes” is expressed as a Π2 formula ∀x∃y > xP(y).
It can be expressed as a Π1 formula (exercise).� �
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Let us define a subsystem of Peano arithmetic PA by restricting its induction axiom.

Definition

Let Γ be a class of formulas in LOR. By IΓ, we denote a subsystem of PA obtained by
restricting (φ(x) of) induction to the class Γ.

• The main subsystems of PA are IΣ1 ⊃ IΣ0 ⊃ IOpen, where Open is the set of
formulas without quantifiers.

Another system weaker than IOpen is the system Q defined by R. Robinson.

Definition

Robinson’s system Q is obtained from PA by removing the axioms of inequality and
induction, and instead adding the following axiom:
Predecessor: ∀x(x ̸= 0 → ∃y(y + 1 = x)).

So, it is a theory in the language of ring LR = {+, ·, 0, 1}.

Let Q< be the system Q plus the definition of the inequality symbol.
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Example: Show that Q ⊢ 0 + 1 = 1� �
• First, we show Q ⊢ 1 ̸= 0. If 1 = 0, then 0 + 1 = 0 + 0. On the other hand, we

have 0 + 1 ̸= 0 according to the successor axiom, and 0 + 0 = 0 according to the
axiom of addition. So it is a contradiction.

• Then we have y such that y + 1 = 1 by applying the predecessor axiom.

• Next we show y = 0. Assume y ̸= 0. Then, by axiom of addition
0 + 1 = 0 + (y + 1) = (0 + y) + 1, we have 0 = 0 + y. Again by the predecessor
axiom, there is z such that z + 1 = y. Thus 0 = 0 + (z + 1) = (0 + z) + 1, a
contradiction.� �
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Lemma

In IOpen, all axioms of theory of discrete ordered semirings PA− can be proved.
(1) Semiring axiom ( excluding the existence of additive inverses from the commutative

ring axiom ).
(2) difference axiom x < y → ∃z(z + (x+ 1) = y).
(3) 0 as the minimum element in linear order and discrete (0 < x↔ 1 ≤ x) .
(4) Order preservation x < y → x+ z < y + z ∧ (x · z < y · z ∨ z = 0).

Problem� �
• In PA−, the predecessor axiom holds.

• In IOpen, the associative law of addition (x+ y) + z = x+ (y + z) holds. a

• In IOpen, the difference axiom x < y → ∃z(z + (x+ 1) = y) holds.

aThis claim has already been shown in Peirce’s paper, On the Logic of Number, American Journal
of Mathematics, Vol. 4, No. 1 (1881), pp.85-95.� �
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Corollary

Q< ⊂ PA− ⊂ IOpen ⊂ IΣ0 ⊂ IΣ1 ⊂ PA.

Example� �
• Let Z[X] be the set of polynomials of integer coefficients with X as a variable.
+, ·, 0, 1 are naturally defined on it, making it a ring.

• For p ∈ Z[X], define p > 0 when its highest order coefficient is positive, and
p > q ⇔ p− q > 0 defines an order between the two polynomials p, q.

• Let Z[X]+ = {p ∈ Z[X] : p ≥ 0}. Then it is a (non-standard) model of PA−.

• In Z[X]+, the standard part N is immediately followed by a Z-structure
containing X, then followed by Z-structure containing 2X, then followed by
Z-structure containing 3X, etc.

• Between those string of Z-structures and the Z-structure containing X2 there is
an infinite descending sequence of Z structures containing X2 − nX.� �
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• Since Q< lacks induction, it cannot prove many propositions that something holds for
all x (eg, ∀x(0 + x = x)).

• However, it proves correct equalities and inequalities consiting of only concrete
numbers.

• In other words, an atomic formula s = t or s < t without variables can be proved if
true, and its negation can be proved if false1.

• Furthermore, propositional connectives and bounded quantifiers preserve the
correspondence between truth and provability.

• A bounded formulas without free variables can be proved/disproved in Q< if it is
true/false.

• A system is said to be Σ1-complete if it proves all true Σ1 sentences. This seems to
be very strong condition, but indeed Q< is Σ1-complete.

1This fact is strictly shown by meta-induction on the composition of the terms, not by induction in the
system. For details, see Section 4.2 of my book
https://www.kinokuniya.co.jp/f/dsg-01-9784785315757.
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• In a formal system, a natural number n is denoted by a term n =

n times︷ ︸︸ ︷
1 + · · ·+ 1 (called a

numeral). Note 0 = 0.

Theorem (Σ1-completeness of Q<)

Q< proves all true Σ1 sentences.

Proof

• If a Σ1 sentence ∃x1∃x2 . . . ∃xkφ(x1, x2, . . . , xk) is true, there exist concrete numbers
n1, n2, . . . , nk such that φ(n1, n2, . . . , nk) holds.

• Since φ(n1, n2, . . . , nk) is a bounded formula, it is provable if it is true. From the rule
of first-order logic, ∃x1∃x2 . . . ∃xkφ(x1, x2, . . . , xk) is also provable. □
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• Now, a typical condition for a theory to induce the first incompleteness theorem is
often described as including a weak arithmetic (such as Q<).

• This is simply rephrased as Σ1-complete. All the arithmetic systems we will discuss are
extensions of Q<, and thus Σ1-complete.

• Another condition introduced by Gödel is ω-consistency. A system T is said to be
ω-consistent if “φ(n) can be proved by T for all natural numbers n, ∃x¬φ(x) cannot
be proved by T .”

• However, only the case where this φ(x) is a Σ0 formula is sufficient to prove the
incompleteness theorem. ω-consistency when φ(x) is restricted to Σ0 is called
1-consistency.

• ω-consistency is strictly stronger than 1-consistency, and 1-consistency is strictly
stronger than consistency.

• A system in which all provable Σn statements are true is said to be Σn-sound. Then,
1-consistency and Σ1-soundness are equivalent in the Σ1-complete theory (Exercise).
So, Σ1-soundness is sometimes called 1-consistency.

• It is known that Π3-soundness can be derived from ω-consistency, but Σ3-soundness
cannot be derived.
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In the next lecture, we are going to prove

Theorem (Gödel’s first incompleteness theorem)

Any Σ1-complete and 1-consistent CE theory is incomplete, that is, there is a sentence that
cannot be proved or disproved.

Thank you for your attention!
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