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Outline of the Course

1 This is an introductory graduate-level course in mathematical logic and theory of
computation. Its first part delivered in the last semester covered the basic topics of
the two fields and their interactions. In this semester, we discuss more advanced topics
emphasizing on decidability and definability.

2 Each week, there are two lectures, in Tuesday and Thursday. Every Thursday, we will
assign simple homework problems or questionnaires to registered students, who are
motivated to attend the class continuously. Normally, homeworks are due next
Monday.

3 TA (Dr. Li) will handle homeworks as well as questions and comments from students
via WeChat. We may assign harder problems to students, who will presumably go to
the research level with us in the following years.

4 Lecture slides will be uploaded on the lecture page at BIMSA.
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Logic and Computation II� �
• Part 4. Formal arithmetic and Gödel’s incompleteness theorems

• Part 5. Automata on infinite objects

• Part 6. Recursion-theoretic hierarchies

• Part 7. Admissible ordinals and second order arithmetic� �
Part 4. Schedule� �
• Mar. 7, (1) First-order logic

• Mar. 9, (2) Arithmetical formulas

• Mar.14, (3) Gödel’s first incompleteness theorem

• Mar.16, (4) Gödel’s second incompleteness theorem

• Mar.21, (5) Second-order logic

• Mar.23, (6) Analytical formulas� �
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Today’s topics

1 Introduction

2 Languages and Structures

3 Terms and Formulas

4 Variables and Constants

5 Truth and Models

6 Recap

7 Formal system of first-order logic

8 Completeness theorem

9 Summary
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Introduction

• Propositional logic is the study of logical connections ¬,∧,∨,→ between propositions.

• First order logic is obtained from propositional logic by adding logical symbols: ∀,∃.
⋆ the quantifier ∀x expresses “for every element x (of the underlying set)”, and
⋆ the quantifier ∃x expresses “there exists an element x (of the underlying set)”.

• Historically, first order logic was tailored by D. Hilbert from Russell’s type theory to
capture mathematical theories in algebraic formulations. And, he asked if his
formulation is complete (i.e., sufficient to prove all the valid formulas). Gödel
immediately showed that it is complete.

• Hilbert also proposed the decision problem (such as satisfiability) of first-order logic as
“the main problem of mathematical logic (Hauptproblem)” (1928). Then, Gödel
showed the undecidability of first-order arithmetic. Subsequently, Church and Turing
proved that first-order logic is undecidable.
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First order logic

• In order to develop a formal argument, we first specify the symbols involved.

Symbols� �
• Common logical symbols of first-order logic

1 propositional connectives: ¬ (not · · · ), ∧ (and), ∨ (or), → (implies),
2 quantifiers: ∀ (for all · · · ), ∃ (there exists · · · ).
3 variables: x0,x1, · · ·
4 auxiliary symbols such as equality =, parentheses (,).

• Mathematical symbols of a specific theory:
constants c, · · · ; function symbols f, · · · ; and relation symbols R, · · · .� �

• The latter set of symbols is called the language1L of the theory. Note that L may be
infinite, though in an ordinary theory, at most five or six symbols are used.

1“Langauge” here is different from that in Part 1 and 2 of this course.
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• A structure in language L (simply, an L-structure) is defined as a non-empty set A
equipped with an interpretation of the symbols in L, denoted as

A = (A, cA, · · · , fA, · · · ,RA, · · · ).

• A is called the domain of the structure A. We do not make a strict distinction
between the set A and the structure A if it is clear from the context.

• Each function symbol has a predetermined number of arguments, called its arity. If
the arity of f is n, then fA : An → A.

• Each relation symbol also has an arity. If the arity of R is n, then RA ⊆ An.

• A constant could be regarded as a function symbol with no argument (0-ary
function), but here a constant plays a special role distinct from a function.
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Example 1� �
• The ordered field of real numbers R = (R, 0, 1,+, ·, <) is a structure in the

language LOR = {0, 1,+, ·, <}, where 0 and 1 are constants, + and · are binary
function symbols, and < is a binary relation symbol.

• Rigorously, R should be written as (R, 0R, 1R,+R, ·R, <R). For simplicity, we
often omit a superscipt such as R unless a serious confusion might occur.

• The subscript OR of LOR stands for ordered rings, since a typical structure in
this language is an ordered ring (e.g., integers). However, a structure in LOR is
not necessarily an ordered ring. E.g., (N, 0, 1,+, ·, <) is not a ring.� �
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Fix a language L and define a “term” of L to denote a specific element of L-structure A.

Definition (Terms)

The terms of the language L are symbol strings defined inductively as follows.

1 variables and constants in L are terms of L.
2 If t0, · · · , tn−1 are terms and f is an n-ary function symbol of L, then f(t0, · · · , tn−1)
is a term of L.

For a term t with no variable, its value in a structure A, denoted tA, is defined inductively
as follows.

1 the value of constant c in L is cA.

2 the value of term f(t0, · · · , tn−1) is f
A(tA1 , · · · , tAn−1).

Example 2t� �
In language LOR = {0, 1,+, ·, <}, symbol strings such as x, x+1, (x+1) ·y are terms.
(1 + 1) · (1 + 1) is a term without variables, sometimes called a closed term, which has
a unique value in an LOR-structure. ((1 + 1) · (1 + 1))N is “4” in (N, 0, 1,+, ·, <).� �
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A formula is introduced as a symbol string to describe a property of a structure.

Definition (Formulas)

A formula of language L is a sequence of symbols inductively defined as follows.

(1) s, t, t0, · · · , tn−1 are terms of L, and R is an n-ary relation symbol of L, then

s = t and R(t0, · · · , tn−1)

are formulas of L, which are called atomic formulas.

(2) If φ,ψ are formulas of L, then so are the followings: for any variable x,

¬(φ), (φ) ∧ (ψ), (φ) ∨ (ψ), (φ) → (ψ), ∀x(φ), ∃x(φ).

As in propositional logic, parentheses in a formula are appropriately omitted.

Example 2f� �
In (N, 0, 1,+, ·, <), the following formula φ(x) denotes “x is prime”.

φ(x) ≡ ∀y∀z(x = y · z → (y = 1 ∨ z = 1)) ∧ x > 1.� �10 / 24
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• To promote in-depth discussion on formulas, we must clarify the role of variables in
formulas.

• Let Q denote ∃ or ∀. Assume φ contains a subformula of the form Qx(ψ), where no
quantifier of the form Qx appears in ψ. Then each occurrence of x in (Qx and ψ) is
said to be bound in φ. An occurrence of the variable x in the formula φ is said to be
free when it is not bound.

• A variable may have both bound and free occurrences in a formula. For example, in

(∀x(x ≤ y)) → (∃y(x ≤ y)),

the first two of the three occurrences of x are bound, and last one is free.

• If a variable occurs both bound and free in a formula, we often automatically
replace the bound occurrence with another variable to avoid unnecessary misreading.

• For example, the above formula can be rewritten as

(∀w(w ≤ y)) → (∃z(x ≤ z)).

• The variables in a formula can be separated into free variables and bound variables.
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• A formula without free variables is called a sentence.

• For a formula φ with free variables, a sentence of the form ∀x1 · · · ∀xnφ (i.e. all free
variables appearing in φ are in {x1, . . . , xn}) is called the universal closure of φ.

• We often add new constants to a given language L to handle some elements of a
structure. We prepare a name (constant) ca for each element a of structure A.
Then for B ⊆ A, by LB we denote the language L extended with the new constant ca
for each element a of B.

• An L-structure A is naturally extended to the structure in LB by interpreting ca as a,
denoted AB .

• This kind of expansion is often made implicitly. Unless a serious confusion occurs, we
may write A for AB , and a and ca are indiscriminate.
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Definition (Tarski’s truth definition clauses)

For a sentence φ in LA, “φ is true in A (written as A |= φ)” is defined as follows.

A |= s = t⇔ sA = tA,

A |= R(s0, · · · , sn−1) ⇔ RA(sA0 , ..., s
A
n−1),

A |= ¬φ⇔ A |= φ does not hold,

A |= φ ∧ ψ ⇔ A |= φ and A |= ψ,

A |= φ ∨ ψ ⇔ A |= φ or A |= ψ,

A |= φ→ ψ ⇔ if A |= φ, then A |= ψ,

A |= ∀xφ(x) ⇔ for any constant a,A |= φ(a),

A |= ∃xφ(x) ⇔ there exists a constant a s.t. A |= φ(a).

The truth of a formula with free variables is defined by the truth of its universal closure.
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• If L-structures A, B are isomorphic, A ∼= B, then it can be shown by simple induction
that,

A |= φ⇔ B |= φ for any formula φ.︸ ︷︷ ︸
A ≡ B, elementary equivalence

• However, the converse, namely A ≡ B ⇒ A ∼= B, does not hold in general (See the
Löwenheim-Skolem theorem in the next lecture)

Definition

• The set T of sentences in the language L is called a theory.

• A is a model of T , denoted by A |= T , if all the sentence of T are true in A.

• A theory is said to be satisfiable if it has a model.

• We say that φ holds in T , written as T |= φ, if any model A of T is also a model of φ.

• In particular, given T = ∅, φ satisfying |= φ is said to be valid.
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Recap from Lecture 03-02
• φ can be transformed into an equivalent prenex normal form, abbreviated as PNF:

φ′ ≡ Q1x1Q2x2 . . . Qnxnθ.

For example, a formula φ ≡ θ ∧ ∀xξ(x) is equivalent to ∀x(θ ∧ ξ(x)), if θ does not
have x as a free variable. If θ has x as a free variable, we replace the bound variable x
of ∀xξ(x) by a new variable y and then obtain the equivalent transformation
φ′ ≡ ∀y(θ ∧ ξ(y)).

• Next, by repeating the following operations as much as possible, we obtain a Skolem
normal form of φ, abbreviated as SNF.

• Let Qi be the outermost (leftmost) existential symbol in φ′. Remove Qixi and replace
all occurrences of xi on its right side (inside) of Qixi with f(x1, . . . , xi−1), where f is a
new function symbol and is called a Skolem function.

In the above definition, when Q1 is existential, x1 is replaced by a “constant” (or a
0-ary function symbol).

Example 3� �
For a PNF ∀w∃x∀y∃zθ(w, x, y, z), we obtain a SNF φS ≡ ∀w∀yθ(w, f(w), y, g(w, y)).� �15 / 24
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Recap II from Lecture 03-02

• For a formula φ of L (i.e., not containing a Skolem function), T |= φ⇔ TS |= φ.
Namely, TS = {σS : σ ∈ T} is a conservative extension of T .

• Löwenheim-Skolem’s downward theorem.
For a structure A in a countable language L, there exists a countable substructure
A′ ⊂ A s.t. A′ |= φ⇔ A |= φ for any LA′ -sentence φ. Such A′ is called an
elementary substructure of A, denoted as A′ ≺ A.

• Herbrand’s theorem (Skolem version). In first-order logic (without equality), ∃-formula
∃x⃗φ(x⃗) is valid if and only if
• there exist n-tuples of terms, t⃗1, . . . , t⃗k, from L(φ) and
• φ(⃗t1) ∨ · · · ∨ φ(⃗tk) is a tautology.
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What happens if equality “=” is considered?

• Suppose we are given an arbitrary sentence σ with an equality “=”.

• Let D(σ) be the conjunction of the following axioms for all symbols f,R ∈ L(σ),

∀x⃗ ∀y⃗ (x⃗ = y⃗ → f(x⃗) = f(y⃗)), ∀x⃗ ∀y⃗ (x⃗ = y⃗ → R(x⃗) ↔ R(y⃗)).

• Let Eq(σ) be the conjunction of D(σ) with the reflexivity, symmetricity, and
transitivity of “=”, which can be expressed as a whole by a ∀ sentence.

• Therefore, an ∃-sentence σ is valid in first-order logic with “=” iff

Eq(σ) → σ

is valid without the equality axioms.

• Since the above expression is a ∃ statement, applying the Herbrand’s theorem to this,
we obtain the equivalent condition as a tautology.
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Formal system of first-order logic

• Before introducing Gödel’s completeness theorem, we define the the formal system of
first-order logic.

• Among the various formal systems, we consider an formal system by extending that of
propositional logic in part 2 of this course.

Axiom system� �
P1. φ→ (ψ → φ)

P2.
(
φ→ (ψ → θ)

)
→

(
(φ→ ψ) → (φ→ θ)

)
P3. (¬ψ → ¬φ) → (φ→ ψ)

P4. ∀xφ(x) → φ(t) (the quantification axiom)� �

Inference rules� �
(1) If φ and φ→ ψ are

theorems, so is ψ

(2) If ψ → φ(x) (where ψ does
not include x) is a theorem,
then so is ψ → ∀xφ(x)
(the generalization rule)� �
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• The existential quantifiers ∃xφ(x) := ¬∀x¬φ(x).

• In languages with equality, the axiom Eq is assumed (reflexive, symmetrical, transitive,
and for each symbol f or R, its value is preserved with equality).

• If a sentence σ can be proved from the set of sentences T , then σ is called a theorem
of T , and written as T ⊢ σ.

• The quantification axiom and the equality axiom hold trivially in any structure, and
the generalization rule also clearly preserves truth (because the free variable x of a
formula is interpreted by universal closure).

• So if T ⊢ σ then T |= σ. This means that the deductive system does not derive any
strange theorems, and is called the soundness theorem.

• The completeness theorem also asserts the opposite, that the system derives all valid
sentences.
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Theorem (Completeness theorem (a weak version))

For any sentence σ, |= σ iff ⊢ σ.

• We only need to show that for any sentence σ, if |= σ then ⊢ σ. So, assuming |= ¬σ,
we will show ⊢ ¬σ.

• By Herbrand’s Theorem (Skolem’s Fundamental Theorem), let ∀x⃗φ(x⃗) be the SNFσS

of σ. If ¬σ is valid, there are n pairs of terms t⃗i such that ¬φ(⃗t1) ∨ · · · ∨ ¬φ(⃗tk) is a
tautology.

• By the completeness theorem of propositional logic, the tautology is a theorem of
propositional logic. So, it is also a theorem of first-order logic, by regarding the atomic
propositions as atomic formulas of first-order logic.

• Since ¬φ(⃗ti) → ∃x⃗¬φ(x⃗) can be proved in first-order logic, we can deduce ∃x⃗¬φ(x⃗)
from the theorem ¬φ(⃗t1) ∨ · · · ∨ ¬φ(⃗tk). Thus, ¬σ is provable.

• To show the completeness theorem, Gödel introduced new relation symbols instead of
Skolem functions, and transformed any sentence into a ∀∃ sentence.
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• Subsequently, L. Henkin introduced a constant c∃xφ(x) (Henkin constant) for each
sentence ∃xφ(x), and assume the following formula ∃xφ(x) → φ(c∃xφ(x)) as an
additional axiom, called the Henkin axiom. By the Henkin axioms, any sentence can
be rewritten as a formula without quantifiers.

Henkin Theorem� �
If T is consistent, T ∪ {∃xφ(x) → φ(c∃xφ(x))} is also consistent.� �

Proof
By way of contradiction, assume T ∪ {∃xφ(x) → φ(c∃xφ(x))} were inconsistent. By
the deduction theorem, we have T ⊢ ∃xφ(x) ∧ ¬φ(c∃xφ(x)). Since the constant
c∃xφ(x) does not appear in theory T , we can replace all its occurrences by a new
variable y in its proof and then obtain a proof for T ⊢ ∃xφ(x) ∧ ¬φ(y). Thus, we
have T ⊢ ∃xφ(x) ∧ ∀y¬φ(y), equivalently T ⊢ ∃xφ(x) ∧ ¬∃xφ(x), which means that
T is inconsistent. □
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• For a consistent theory T in a language L, there are a set C of constants such that
any sentence of the form ∃xφ(x) in L ∪ C has its Henkin constant in C.

• Let TH be a consistent extension of T with all Henkin axioms H. Let Ŝ a maximal
consistent set of TH (with the equality axioms). Then, we define a model A of T as
follows.

• First define an equivalence relation ≈ on C by c ≈ d ⇔ (c = d) ∈ Ŝ.
Let A = C/ ≈. Then define the interpretations of f and R on A as follows

fA([c1], [c2], . . . , [cn]) = [d] ⇔ (f(c1, c2, . . . , cn) = d) ∈ Ŝ

RA([c1], [c2], . . . , [cn]) ⇔ R(c1, c2, . . . , cn) ∈ Ŝ

Here, a structure A is well-defined since Ŝ includes all the equality axioms. Then, we
can also show by induction that A |= φ([c1], . . . , [cn]) ⇔ φ(c1, . . . , cn) ∈ Ŝ. Thus, A
is a model of T .

Theorem (Model existence theorem)

If a set T of sentences of first order logic is consistent, then there exists a model of T .
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Summary

• Formal system of first-order logic: formal system of propositional logic +
∀xφ(x) → φ(t) (the quantification axiom) + the generalization inference rule

• Herbrand’s theorem (Skolem version). In first-order logic (without equality),
∃-formula ∃x⃗φ(x⃗) is valid if and only if

• there exist n-tuples of terms, t⃗1, . . . , t⃗k, from L(φ) and
• φ(⃗t1) ∨ · · · ∨ φ(⃗tk) is a tautology.

• Löwenheim-Skolem’s downward theorem.
For a structure A in a countable language L, there exists a countable substructure
A′ ⊂ A s.t. A′ |= φ⇔ A |= φ for any LA′ -sentence φ. Such A′ is called an
elementary substructure of A, denoted as A′ ≺ A.

• Henkin axiom ∃xφ(x) → φ(c∃xφ(x)), by which any sentence can be rewritten as a
formula without quantifiers.

• Gödel’s completeness theorem (a weak version). In first order logic, ⊢ φ⇔|= φ.
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Thank you for your attention!
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