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Logic and Computation I� �
• Part 1. Introduction to Theory of Computation

• Part 2. Propositional Logic and Computational Complexity

• Part 3. First Order Logic and Decision Problems� �
Part 3. Schedule� �
• Dec. 8, (1) What is first-order logic?

• Dec.13, (2) Skolem’s theorem

• Dec.15, (3) Gödel’s completeness theorem

• Dec.20, (4) Ehrenfeucht-Fräıssé’s theorem

• Dec.22, (5) Presburger arithmetic

• Dec.27, (6) Peano arithmetic and Gödel’s first incompleteness theorem� �
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Recap

• By the EF theorem, DLO is decidable.

• DLO is PSPACE-complete. TQBF is polynomial-time reducible to DLO.

• (Gurevich) For any m > 0, for any two finite linear sequences L1, L2 of length 2m or
greater, L1 ≡m L2.

• For finite linear orders, there is no first-order formula expressing the parity of its length.

• The connectivity of a graph cannot be defined by a first-order formula.

• For every formula φ(x1, x2, . . . , xs) in Presburger arithmetic, we can construct an
automaton accepting the language of words representing s-tuples (n1, n2, . . . , ns) that
satisfy the formula φ(x1, x2, . . . , xs).

• Presburger arithmetic is decidable.
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• So-called “Peano’s postulates” (1889) is famous as an
axiomatic treatment of the natural numbers. However, it is
not a formal system in the sense of modern logic, since its
underlying logic is ambiguous. Moreover, we should also
notice previous advanced studies by C.S. Peirce (1881) and
R. Dedekind (1888).

• It was Hilbert who began to consider natural number
theory as a formal theory in first-order logic.

• In fact, Peano arithmetic PA as a strict formal system were
established through Gödel’s arguments of his
incompleteness theorem.

G. Peano

C.S. Peirce

R. Dedekind
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Peano arithmetic is a first-order theory in the language of ordered rings
LOR = {+, ·, 0, 1, <}, consists of the following mathematical axioms.

Definition

Peano arithmetic (PA) has the following formulas in LOR as a mathematical axiom.

Successor: ¬(x+ 1 = 0), x+ 1 = y + 1 → x = y.
Addition: x+ 0 = x, x+ (y + 1) = (x+ y) + 1.
Multiplication: x · 0 = 0, x · (y + 1) = x · y + x.
Inequality ¬(x < 0), x < y + 1 ↔ x < y ∨ x = y.

Induction: φ(0) ∧ ∀x(φ(x) → φ(x+ 1)) → ∀xφ(x).

• Induction is not a single formula, but an axiom schema that collects the formulas for
all the φ(x) in LOR. Note that φ(x) may include free variables other than x.

• In ”Peano’s postulates”, induction is expressed in terms of sets, but Peano arithmetic
does not presuppose set theory.
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• In a modern formal system, to add a new function, it must be defined explicitly so
that the extended system is a conservative extension.

• The primitive recursive definition is not an explicit definition. In fact, if we add the
primitive recursive definition of multiplication to Presburger arithmetic (a system of
only addition), the resulting system loses completeness and decidability, and it is not a
conservative extension.

• In other words, multiplication is not definable from addition.

• On the other hand, the inequality x < y can be defined from addition as abbreviation
for ∃z(y = (x+ z) + 1). However, we prefer to include the inequality as a primitive
symbol, because it allows us to define the hierarchy of formulas simply.

• Similarly, in the following, we assume that ¬, ∧, ∨, →, ∀, ∃, etc. are all pre-set.
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Arithmetical Hierarchy

• We inductively define hierarchical classes of formulas Σi and Πi (i ∈ N).

Definition

• The bounded formulas are constructed from atomic formulas by using propositional
connectives and bounded quantifiers ∀x < t and ∃x < t, where ∀x < t and ∃x < t are
abbreviations for ∀x(x < t→ · · · ) and ∃x(x < t ∧ · · · ), respectively, and t is a term
that does not includes x. A bounded formula is also called a Σ0 (=Π0) formula.

• For any i, k ∈ N:
▶ if φ is a Σi formula, ∀x1 · · · ∀xkφ is a Πi+1 formula,

▶ if φ is a Πi formula, ∃x1 · · · ∃xkφ is a Σi+1 formula.

• Σi/Πi also denotes the set of all Σi/Πi formulas.
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• In the above definition, there are many formulas that do not belong to any class. So,
the (lowest) class to which the equivalent formula belongs is regarded as the class of
the formula.

Examples� �
• ¬∃y(y + y = x) does not belong to any of the above class.

• But it is logically equivalent to a Π1 formula ∀y¬(y + y = x).

• So ¬∃y(y + y = x) is a Π1 formula.� �
• If a Πi formula is equivalent to some Σi formula or a Σi formula equivalent to some
Πi formula, such a formula is called a ∆i formula.
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Example� �
• The following Σ0(= Π0)) formula P(x) expresses “x is a prime number”

P(x) ≡ ¬∃d < x∃e < x(d · e = x) ∧ ¬(x = 0) ∧ ¬(x = 1).

• The proposition “every even number greater than or equal to 4 is the sum of two
primes” (the “Goldbach conjecture”) is expressed by the following Π1 formula:

∀x > 1∃p < 2x∃q < 2x (2x = p+ q ∧ P(p) ∧ P(q)).

• “There are infinitely many primes” can be expressed as a Π2 formula

∀x∃y > xP(y).� �
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Let us define a subsystem of Peano arithmetic PA by restricting its induction axiom.

Definition

Let Γ be a class of formulas in LOR. By IΓ, we denote a subsystem of PA obtained by
restricting (φ(x) of) induction to the class Γ.

• The main subsystems of PA are IΣ1 ⊃ IΣ0 ⊃ IOpen, where Open is the set of
formulas without quantifiers.

• Another system weaker than IOpen is the system Q defined by R. Robinson, which has
no induction axiom but instead has

∀x(x ̸= 0 → ∃y(y + 1 = x)).

• Gödel proved two versions of the incompleteness theorems. The first incompleteness
theorem is mostly based on the representation theorem of recursive functions, which
can be proved in Q. On the other hand, the second incompleteness theorem needs the
absoluteness of primitive recursive functions, which requires IΣ1.
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• In this lecture, we look at the first theorem from the viewpoint of computability
theory. In the next semester, we will reexamine the proof more rigorously, and prove
the second theorem.

• Recall that X ⊆ Nn is called CE (computably enumerable) if it is the domain of some
partial recursive function. Then, from the lemma below, any CE relation R(x⃗) can be
expressed by ∃yS(x⃗, y) for some primitive recursive relation S.

• By Lemma (2) later, we will show that a CE relation R(x⃗) can be expressed by
∃yS(x⃗, y) for some Σ0 relation S, that is, a Σ1 formula.

Recall, Lemma in Lecture-01-05 of this course� �
For the relation R ⊂ Nn, the following conditions are equivalent.

(1) R is recursively enumerable (CE).

(6) There exists a primitive recursive relation S such that
R(x1, · · · , xn) ⇔ ∃yS(x1, · · · , xn, y).

(7) There exists a recursive relation S such that
R(x1, · · · , xn) ⇔ ∃yS(x1, · · · , xn, y).� �
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Definition

Let N = (N,+, ·, 0, 1, <) be a standard model of PA.

• A set A ⊆ Nl is said to be Σi if there exists a Σi formula φ(x1, . . . , xl) satisfying

(m1, . . . ,ml) ∈ A⇔ N |= φ(m1, . . . ,ml).

• Here, m is a term expressing number m, that is, m =

m︷ ︸︸ ︷
(1 + 1 + · · ·+ 1)(m > 0),

0 = 0.

• Similarly, Πi sets can be defined by Πi formulas.

• A set that is both Σi and Πi is called ∆i.
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Lemma (1)

The graph {(x⃗, y) : f(x⃗) = y} of a primitive recursive function f is a ∆1 set.

Proof

• By induction on the construction of primitive recursive functions. The main part is to
treat the definition by primitive recursion.

• For simplicity, we omit parameter variables x1, . . . , xl, and consider the definition of a
unary function f from a constant c and binary function h as follows:

f(0) = c, f(y + 1) = h(y, f(y)).

• From the induction hypothesis, h can be expressed in both Σ1 and Π1 formulas.

• First, let γ(x,m, n) be a Σ0 formula expressing “m(x+ 1) + 1 is a divisor of n”, that
is, ∃d < n (m(x+ 1) + 1) · d = n. Then, for any finite set A (with maxA < u), there
exist m,n such that ∀x < u(x ∈ A⇔ γ(x,m, n)).

• In fact, assume (u− 1)! | m. Then, (m(i+ 1) + 1) and (m(j + 1) + 1) are mutually
prime for any i < j < u. Thus, n = Πi∈A(m(i+ 1) + 1) works.
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• Now, we will define a Σ0 formula δ(u,m, n) such that

δ(⟨u1, u2⟩,m, n) ⇔ ∀y < u1∃z < u2 f(y) = z.

• The formula δ(u,m, n) is formally constructed as follows: for any u = ⟨u1, u2⟩,

δ(u,m, n) ≡ ∀y < u1∃z < u2 γ(⟨y, z⟩,m, n) ∧ ∀z < u2(γ(⟨0, z⟩,m, n) ↔ z = c)

∧ ∀y < u1−1∀z < u2(γ(⟨y + 1, z⟩,m, n) ↔ ∃z′ < u2(z = h(y, z′) ∧ γ(⟨y, z′⟩,m, n))).

• Then ∀u1∃u2∃m∃nδ(⟨u1, u2⟩,m, n) holds. Thus, we obtain

f(y) = z ⇔ ∃u∃m∃n(u1 = y + 1 ∧ δ(u,m, n) ∧ γ(⟨y, z⟩,m, n))
⇔ ∀u∀m∀n(u1 = y + 1 ∧ δ(u,m, n) → γ(⟨y, z⟩,m, n)).

• That is, f(y) = z is a ∆1 set. □
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• As we saw in the revisited lemma on Slides p. 12, any CE relation R(x⃗) can be
expressed by ∃yS(x⃗, y) for some primitive recursive relation S.

• By the above lemma, the primitive recursive relation S can be expressed by a Σ1

formula, and ∃yS(x⃗, y) is still Σ1. Thus, any CE relation can be expressed by a Σ1

formula.

• Therefore, we have the following.

Lemma (2)

The CE sets are exactly the same as the Σ1 sets. Hence, the computable (recursive) sets
are exactly the same as the ∆1 sets.
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Before moving on to the incompleteness theorem, we introduce some notions of formal
systems.

• A system is said to be Σ1 complete if it proves all true Σ1 sentences.
• This condition seems very strong at the first glance. But in fact, a very weak
subsystem of PA, such as Q(with <), satisfies this.

• Indeed, all the true atomic sentences are provable (in a weak system). Also for
their Boolean combinations. A bounded sentence ∀x < tθ(x) is equivalent to
θ(0) ∧ · · · ∧ θ(t− 1). So, all the true Σ0 sentences are provable (in a weak
system).

• Now, suppose that a Σ1 sentence ∃xφ(x) is true. Then, there is n ∈ N such that
the Σ0 sentence φ(n) holds. Hence, φ(n) is provable, and also ∃xφ(x).

• A system T is said to be 1-consistent if any Σ1 sentence provable by T is true.
• 1-consistency is strictly stronger than consistency. Gödel originally used
ω-consistency, which is strictly stronger than 1-consistency.
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Then, the following two representation theorems hold.

Theorem ((Weak) Representation Theorem for CE sets)

Suppose that a theory T is Σ1-complete and 1-consistent. Then, for any CE set C, there
exists a Σ1 formula φ(x) such that for any n,

n ∈ C ⇔ T ⊢ φ(n).

Proof.

• From the Lemma (2), for any CE set C, there exists a Σ1 formula φ(x) such that
n ∈ C ⇔ N |= φ(n).

• Since T is Σ1-complete, N |= φ(n) ⇒ T ⊢ φ(n).

• Also because T is 1-consistent, T ⊢ φ(n) ⇒ N |= φ(n).

□
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Theorem ((Strong) Representation Theorem for Recursive Sets)

Assume a theory T is Σ1-complete. For any recursive set C, there exists a Σ1 formula φ(x)
such that

n ∈ C ⇒ T ⊢ φ(n), n ̸∈ C ⇒ T ⊢ ¬φ(n).

Proof.

• For the recursive set C, from the Lemma (2) there exist Σ0 formulas θ1(x, y), θ2(x, y)
such that

n ∈ C ⇔ N |= ∃yθ1(n, y), n ̸∈ C ⇔ N |= ∃yθ2(n, y).

Now, let φ(x) be a Σ1 formula ∃y(θ1(n, y) ∧ ∀z ≤ y¬θ2(n, z)). By the
Σ1-completeness of T , n ∈ C ⇒ T ⊢ φ(n).

• To show n ̸∈ C ⇒ T ⊢ ¬φ(n), let n ̸∈ C.
Then, since N |= ∃yθ2(n, y), some m exists and N |= θ2(n,m). From the Σ1

completeness of T , T ⊢ θ2(n,m).
Also, since N ̸|= ∃yθ1(n, y), for all l, N |= ¬θ1(n, l), i.e., T ⊢ ¬θ1(n, l).
Therefore, if θ1(n, a) in some model of T , then a is not a standard natural number l.
Thus, T ⊢ ∀y(θ1(n, y) → ∃z≤y θ2(n, z)), that is, T ⊢ ¬φ(n). □
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• To derive the incompleteness theorem, we need one more condition on a formal
system, that is, the set of axioms is CE.

• Without this condition, for example, if we take all true arithmetic formulas as axioms,
we would have a complete theory, but it would not be a formal system.

• From the following theorem, the CE set of axioms can be also express as a primitive
recursive set.

Theorem (Craig’s lemma)

For any CE theory T , there exists an equivalent (proving the same theorem) primitive
recursive theory T ′.

Proof. Let T be a CE theory, defined by Σ1 formula φ(x) ≡ ∃yθ(x, y) (θ is Σ0).
That is, σ ∈ T ⇔ N |= φ(⌜σ⌝). ⌜σ⌝ is the Gödel number of a sentence σ.
Then, we define a primitive recursive theory T ′ as follows:

T ′ = {
n + 1 copies︷ ︸︸ ︷

σ ∧ σ ∧ · · · ∧ σ : θ(⌜σ⌝, n)}.

Then, T and T ′ are equivalent, since ⊢ σ ↔ σ ∧ σ ∧ · · · ∧ σ. □
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In the proof above, the definition of T ′ is not Σ0 since it includes the Gödel numbers, etc.
The following can be shown about the CE theory.

Theorem

For any CE theory T , the set of its theorems {⌜σ⌝ : T ⊢ σ} is also CE.

Proof

• Recall that a proof in a formal system of first-order logic is a finite sequence of
formulas, each formula being either a logical axiom, an equality axiom, or a
mathematical axiom of a theory T , or obtained from previous formulas by applying
MP or a quantification rule.

• From the Craig’s Lemma, a CE theory T can be transformed into a primitive recursive
theory. Thus, it is also a primitive recursive relation that (the Gödel number of) a
finite sequence of formulas is a proof of T .

• The set of theorems of T is CE. Because a sentence σ is a theorem of T iff there
exists a proof (i.e., a sequence that satisfies the primitive recursive relation) such that
σ is the last formula of the proof. □
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The halting problem K is CE, but its complement N−K is not (part 1 of this course).
Gödel’s first incompleteness theorem easily follows from this fact.

Theorem (Gödel’s first incompleteness theorem)

Let T be a Σ1-complete and 1-consistent CE theory. Then T is incomplete, that is, there is
a sentence that cannot be proved or disproved.

Proof.
• Suppose K is CE but not co-CE. By the weak representation theorem for CE sets,
there exists a formula φ(x) such that

n ∈ K ⇔ T ⊢ φ(n).
• On the other hand, since N−K is not a CE, there exists some d such that

d ∈ N−K ̸⇔ T ⊢ ¬φ(d).

Thus, (d ∈ K and T ⊢ ¬φ(d)) or (d ̸∈ K and T ̸⊢ ¬φ(d)).
• In the former case, since d ∈ K implies T ⊢ φ(d), T is inconsistent, contradicting
with the 1-consistency assumption.

• In the latter case, T is incomplete because φ(d) cannot be proved or disproved.
□
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Homework� �
(1) Prove Q ⊢ 0 + 1 = 1. (See Slide p.11)

(2) In a Σ1 complete theory T , show that 1-consistency of T is equivalent to the
following: for any Σ0 formula φ(x), if φ(n) is provable in T for all n, then
∃x¬φ(x) is not provable in T.

(3) Let A,B be two disjoint CE sets. Assume a theory T is Σ1-complete. Show that
there exists a Σ1 formula ψ(x) such that

n ∈ A⇒ T ⊢ ψ(n), n ∈ B ⇒ T ⊢ ¬ψ(n).

From this, deduce that {⌜σ⌝ : T ⊢ σ} and {⌜σ⌝ : T ⊢ ¬σ} are computably
inseparable. (See Part 1-6, Slide p.25.) In particular, {⌜σ⌝ : T ⊢ σ} is not
computable.� �
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Summary

Theorem (Gödel’s first incompleteness theorem)

Any Σ1-complete and 1-consistent CE theory is incomplete, that is, there is a sentence that
cannot be proved or disproved.

Further readings� �
• Theory of Computation, D.C. Kozen, Springer 2006.

• Mathematical Logic. H.-D. Ebbinghaus, J. Flum, W. Thomas, Graduate Texts in
Mathematics 291, Springer 2021.� �
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Next semester� �
• Part 4. Formal arithmetic and Gödel incompletess theorems

• Part 5. Automata on infinite objects

• Part 6. Recursion-theoretic hierarchies

• Part 7. Admissible ordinals and second order arithmetic� �
Thank you for your attention!
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