Logic and Computation

K. Tanaka

Recai

Application of

Presburger

arithmetic

Summary

Logic and Computation: I

Part 3 First order logic and decision problems

Kazuyuki Tanaka

BIMSA

December 22, 2022

Presburge arithmetic

Summary

Logic and Computation I -

- Part 1. Introduction to Theory of Computation
- Part 2. Propositional Logic and Computational Complexity
- Part 3. First Order Logic and Decision Problems

Part 3. Schedule

- Dec. 8, (1) What is first-order logic?
- Dec.13, (2) Skolem's theorem
- Dec.15, (3) Gödel's completeness theorem
- Dec.20, (4) Ehrenfeucht-Fraïssé's theorem
- Dec.22, (5) Presburger arithmetic
- Dec.27, (6) Peano arithmetic and Gödel's first incompleteness theorem

Presburger arithmetic

K. Tana

A -- !: -- +: -- -

Preshurger

arithmetic

Recap

2 Application of EF game

3 Presburger arithmetic

4 Summary

Recap

Application of EF

Presburger

Summar

Recap

- We consider a language of finitely many relation symbols and constants.
- The (quantifier) rank of a formula measures the entanglement of quantifiers appearing in it. For example, the rank of $\forall y (\forall x \exists y (x=y) \land \forall z (z>0))$ is 3.
- By $A \equiv_n \mathcal{B}$, we mean that structures A, \mathcal{B} satisfy the same formulas with rank $\leq n$.
- Given an \mathcal{A} and n, there is the **Scott-Hintikka sentence** $\varphi_{\mathcal{A}}^n$ of rank n such that $\mathcal{B} \models \varphi_{\mathcal{A}}^n \Leftrightarrow \mathcal{B} \equiv_n \mathcal{A}$.
- By $\mathcal{A} \simeq^n \mathcal{B}$, we mean that player II has a winning strategy in $\mathrm{EF}_n(\mathcal{A},\mathcal{B})$, where n is the round of the game.
- **EF theorem** For all $n \geq 0$, $\mathcal{A} \equiv_n \mathcal{B}$ iff $\mathcal{A} \simeq^n \mathcal{B}$.
- Corollary The following are equivalent.
 - (1) For any n, there exist $A \in K$ and $B \notin K$ such that $A \equiv_n B$.
 - (2) K is not an elementary class (K cannot be defined by a first-order formula).

Further readings

Jouko Väänänen, Models and Games, Cambridge University Press, 2011.

Poss

Application of EF game

Presburger

Summar

Dense linear order without end points (DLO)

- The typical models of DLO are $(\mathbb{Q},<)$ and $(\mathbb{R},<)$. $(\mathbb{Z},<)$ is LO but discrete (not dense) since no element exists between n and n+1.
- Let \mathcal{A}, \mathcal{B} be two models of DOL. Player II has a winning strategy in $\mathrm{EF}_n(\mathcal{A}, \mathcal{B})$ for all n. Suppose a partial isomorphism between $a_1 < a_2 < \cdots < a_n$ in A and $b_1 < b_2 < \cdots < b_n$ in B are constructed by the players up to the round n. If Player I chooses x_{n+1} between $a_i < a_{i+1}$ (or $b_i < b_{i+1}$), then Player II can extend the partial isomorphism by choosing y_{n+1} between $b_i < b_{i+1}$ (or $a_i < a_{i+1}$).
- Then, for all $n \geq 0$, $\mathcal{A} \simeq^n \mathcal{B}$. By the EF theorem, for all n, $\mathcal{A} \equiv_n \mathcal{B}$, and hence $\mathcal{A} \equiv \mathcal{B}$. In particular, $(\mathbb{Q}, <) \equiv (\mathbb{R}, <)$.
- Then, DLO is a complete theory. Therefore, it is decidable.
 - If it is not complete, then there is a sentece σ which is neither provable nor disprovable.
 - ▶ That is, both $DLO \cup \{\neg \sigma\}$ and $DLO \cup \{\sigma\}$ are consistent. So, each has its own model, but they are no longer elementary equivalent, which is a contradiction.
- A complete theory is characterized as $\mathsf{Th}(\mathcal{A})$ for its arbitrary model \mathcal{A} . DLO is often treated as $\mathsf{Th}(\mathbb{Q},<)$.

DLO is a PSPACE-complete problem.

Proof. First, we show that DLO is PSPACE-hard, by reducing TQBF to DLO in polynomial time. It was shown in Part 2 of this course, TQBF (true quantified Boolean formula) is PSPACE-complete.

- Let A be a QBF and transform it to a PNF $Q_1x_1Q_2x_2...Q_nx_nB(x_1,x_2,...,x_n)$, where $B(x_1,x_2,...,x_n)$ is a Boolean formula.
- Then, define a DLO formula $A_{<}$ as follows.

$$Q_1x_1Q_1y_1Q_2x_2Q_2y_2...Q_nx_nQ_ny_nB(x_1 < y_1, x_2 < y_2, ..., x_n < y_n).$$

• For example, for a QBF $A \equiv \forall x_1 \exists x_2 \forall x_3 ((x_1 \land x_2) \lor \neg x_3), A_{<}$ in DLO is

$$\forall x_1 \forall y_1 \exists x_2 \exists y_2 \forall x_3 \forall y_3 (((x_1 < y_1) \land (x_2 < y_2)) \lor \neg (x_3 < y_3)).$$

- An atomic formula $x_i < y_i$ in $A_{<}$ simply plays the role of variable x_i in A. Then A is true in a simple Boolean algebra $\{0,1\}$ iff $A_{<}$ is true in any model of DLO.
- true in a simple Boolean algebra {0,1} iff A_< is true in any model of DLO.
 Since the lengths of A and A_< differ only by constant multiples, TQBF is reduced to DLO in polynomial time.

Next, we show that DLO is PSPACE, following the proof that TQBF is PSPACE.

- First, assume a DLO formula is given in PNF $Q_1x_1Q_2x_2...Q_nx_n$ $C(x_1,x_2,...,x_n)$ (with no quantifiers in $C(x_1, x_2, ..., x_n)$). • In general, we can determine the truth value of $C(x_1, x_2, ..., x_n)$ by specifying
- elements of DLO substituting for variables $x_1, x_2, ..., x_n$. Here only the relations of the elements are enough to determine the truth value. • Now, we first fix x_1 is arbitrarily. Next, the necessary information on x_2 is whether it
- is larger, smaller, or equal to x_1 . • If Q_2 is \forall (\exists), all the three cases (one of the three cases) must hold. Without loss of
 - generality, we may assume $x_1 < x_2$. • Next, there are five cases for x_3 as illustrated by the red arrows:

$$\frac{x_3 \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow}{x_2 \qquad x_3 \qquad x_4 \qquad x_5 \qquad x_5 \qquad x_6 \qquad x$$

If Q_3 is \forall (\exists), all the five cases (one of the five cases) should hold.

- Since the number of cases for variable x_i is less than 2i-1, there are less than
- (2n-1)! cases to check in total.

• In order to execute this computation, we need $\log((2n-1)!) = O(n \log n)$ space to keep records. Thus, it is textsfDSPACE($n \log n$), hence also PSPACE.

Application of EF

Lemma (Gurevich)

For any m>0, for any two finite linear sequences L_1,L_2 of length 2^m or greater, $L_1 \equiv_m L_2$.

We next apply the EF theorem to the problem of length of finite linear orders.

Proof.

- A finite linear order of length n is denoted by [n] = (n, <), where n of (n, <) is identified with $\{0, 1, \ldots, n-1\}$.
- For each k, we introduce a threshold absolute value $|x|_k$ by $|x|_k = |x|$ if $|x| < 2^k$; $|x|_k = \infty$, otherwise.
 - Select l elements from [n] and arrange them in ascending order as $\vec{a} = (a_1, a_2, \dots, a_l)$.
 - Similarly, select l elements from [n'] and arrange as $\vec{b} = (b_1, b_2, \dots, b_l)$.
- Let I_k the a collection of all partial isomorphisms $\vec{a}\mapsto \vec{b}$ that satisfy the following conditions: if $a_0 = b_0 = 0$, $a_{l+1} = n$, $b_{l+1} = n'$. then
- for any i < l, $|a_{i+1} a_i|_k = |b_{i+1} b_i|_k$ holds.

- Application of EF

that $\vec{a}a \mapsto \vec{b}b \in I_{k-1}$ holds. Here, $\vec{a}a$ and $\vec{b}b$ are rearranged in order. • First consider the case $|a_{i+1} - a_i|_k = |b_{i+1} - b_i|_k < \infty$. If $a_{i+1} > a > a_i$, then

 $|a_{i+1}-a|_{k-1}<\infty$ or $|a-a_i|_{k-1}<\infty$ holds, and so the value of b is also uniquely determined by b_{i+1} or b_i . • Next assume $|a_{i+1} - a_i|_k = |b_{i+1} - b_i|_k = \infty$. If $a_{i+1} > a > a_i$ then

• Now, suppose $\vec{a} \mapsto \vec{b} \in I_k$. We can show that for any $a \in n$, there exists a $b \in n'$ such

- $|a_{i+1}-a|_{k-1}=\infty$ or $|a-a_i|_{k-1}=\infty$ holds; if one is $<\infty$, then the value of b is uniquely determined by the corresponding b_{i+1} or b_i ; if both are ∞ , the value of b can also be taken from both sides to ∞ .
 - Therefore, if n=n' or $n,n' \geq 2^m$, then we obtain $\varnothing \in I_m$.
 - In particular, if $n, n' > 2^m$, then $[n] \equiv_m [n']$.

Theorem (2)

For finite linear orders, there is no first-order formula expressing the parity of its length.

Proof Assume, for the sake of contradiction, we have such a formula φ . Let $qr(\varphi) = m$.

Then by the above lemma, for linear sequences longer than 2^m , we cannot tell whether its length is even or odd, which is a contradiction. Computation

- We can show the connectivity of graphs cannot be defined by a first-order formula by reducing the parity problem of linear orders to it. We first make a special graph from a linear order.
- In the linear order <, let $\mathrm{succ}(x,y) \equiv (x < y) \land \forall z (z \le x \lor y \le z)$ and $\mathrm{succ2}(x,y) \equiv \exists z (\mathrm{succ}(x,z) \land \mathrm{succ}(z,y)).$
- Also let $\operatorname{first}(x) \equiv \neg \exists y \operatorname{succ}(y, x)$, and $\operatorname{last}(x) \equiv \neg \exists y \operatorname{succ}(x, y)$
- Then, define edge(x, y) as follows.

```
edge(x,y) \equiv succ2(x,y) \vee
```

The connectivity of graphs

$$((\exists z(\operatorname{succ}(x,z) \land \operatorname{last}(z)) \land \operatorname{first}(y))) \lor (\operatorname{last}(x) \land (\exists z(\operatorname{first}(z) \land \operatorname{succ}(z,y))))$$
 this formula, we make a graph by connecting every other points in a line by an

By this formula, we make a graph by connecting every other points in a line by an edge, and also by going back to the first point from the second last point and also to the second point from the last point.

- If a linear order has even number of points, the graph becomes two cycles (disconnected), and if odd number, it results in a single cycle.
- In other words, if the connectivity of a graph can be defined, then the parity of the length of a linear order can be defined, which is a contradiction.

c and Homework

Given a finitely connected graph, the existence of an Eulerian cycle in it cannot be described in first-order logic.

- To expand the scope of application of the EF theorem, we would like to consider structures with functions.
- Rewriting functions as relations requires the use of extra quantifiers for function composition, and the need to use more complicated formulas for atomic formulas involving functions.
- However, there is not much problem when dealing with arbitrary ranks. For example, the following argument is possible for groups.
- $G_1 \equiv G_2 \Rightarrow G_1 \times H \equiv G_2 \times H$ for three groups G_1, G_2, H . For this proof, we observe that II's winning play $\vec{g_1} \leftrightarrow \vec{g_2}$ in $\mathsf{EF}_n(G_1, G_2)$ can be modified as II's winning play $(\vec{g_1}, \vec{h}) \leftrightarrow (\vec{g_2}, \vec{h})$ in $\mathsf{EF}_n(G_1 \times H, G_2 \times H)$.

Presburger arithmetic

Summa

Presburger arithmetic

- There are various methods of applying computational models such as automata to solve decision problems.
- As a typical example, let us consider its application to first-order Presburger arithmetic, which has only addition operation on natural numbers. The technique here will be extended to second-order logic in the next semester.
- Presburger arithmetic is a first order theory for structure $\mathcal{N}=(\mathbb{N},0,1,+)$ in the language $\mathcal{L}_P=\{0,1,+\}$.
- We want to find a method to determine whether or not $\mathcal{N} \models \sigma$ holds for a sentence σ in the language \mathcal{L}_P .
- Note that in Presburger arithmetic, < is defined as $x < y \leftrightarrow \exists z(x+z+1=y)$. The congruence relation \equiv_k is also defined. Then Presburger arithmetic with < and \equiv_k admits the elimination of quantifiers, which is another method of solving the decision problem.

Presburger arithmetic

• First, let us consider how to express the sequence of natural numbers (n_1, n_2, \dots, n_s) (where s > 0) in terms of a word that recognized by the automaton.

• The alphabet Ω_s is a set of vertical vectors of length s with elements 0, 1. So, Ω_s consists of 2^s symbols defined by

$$ec{b} = \left| egin{array}{c} b_1 \ b_2 \ dots \ b_s \end{array}
ight| \qquad ext{where } b_1, b_2, \ldots, b_s = 0 ext{ or } 1.$$

We may also write $\vec{b} = {}^t[b_1, b_2, \dots, b_s].$

• A word $\vec{b}_1 \vec{b}_2 \dots \vec{b}_t$ over Ω_s can be expressed as

$$\begin{bmatrix} b_{11} \\ b_{12} \\ \vdots \\ b_{1s} \end{bmatrix} \begin{bmatrix} b_{21} \\ b_{22} \\ \vdots \\ b_{2s} \end{bmatrix} \cdots \begin{bmatrix} b_{t1} \\ b_{t2} \\ \vdots \\ b_{ts} \end{bmatrix} = \begin{bmatrix} b_{11}b_{21} \dots b_{t1} \\ b_{12}b_{22} \dots b_{t2} \\ \vdots \\ b_{1s}b_{2s} \dots b_{ts} \end{bmatrix}$$

Presburger arithmetic

• An s-tuple (n_1, n_2, \dots, n_s) of natural numbers are represented by $\vec{b}_1 \vec{b}_2 \dots \vec{b}_t$ as follows.

$$n_{1} = b_{11} + b_{21} \cdot 2 + \dots + b_{t1} \cdot 2^{t-1}$$

$$n_{2} = b_{12} + b_{22} \cdot 2 + \dots + b_{t2} \cdot 2^{t-1}$$

$$\vdots$$

$$n_{s} = b_{1s} + b_{2s} \cdot 2 + \dots + b_{ts} \cdot 2^{t-1}$$

- In other words, the binary representation of natural number n_i is $b_{ti}b_{(t-1)i}\dots b_{1i}$.
- So, if we add the zero vector $\vec{0}$ to the right of the word $\vec{b}_1 \vec{b}_2 \dots \vec{b}_t$, the resulting sequence $\vec{b}_1 \vec{b}_2 \dots \vec{b}_t \vec{0}$ represents the same sequence (n_1, n_2, \dots, n_t) of natural numbers. But if we add $\vec{0}$ to the left of $\vec{b}_1 \vec{b}_2 \dots \vec{b}_t$, the resulting sequence $\vec{0} \dots \vec{b}_t$ represents $(2n_1, 2n_2, \ldots, 2n_s)$.
- Note that the zero vector $\vec{0}$ is different from the empty string

$$\varepsilon = \left[\quad \right].$$

Reca

Application of EF

Presburger

Summar

- Since an s-tuple of natural numbers (n_1,n_2,\ldots,n_s) (where s>0) can be expressed as words over Ω_s , we next consider the set of (n_1,n_2,\ldots,n_s) that satisfies a given formula $\varphi(x_1,x_2,\ldots,x_s)$ and whether an automaton can accept the language of words representing such a set.
- First, an atomic formula in Presburger arithmetic is expressed as follows.

$$a_1x_1 + a_2x_2 + \dots + a_sx_s = b, \qquad (\star)$$

where
$$a_i x_i$$
 is short for $\pm \underbrace{(x_i + x_i + \dots + x_i)}_{|a_i| \text{ copies}}$ and b for $\pm \underbrace{(1 + 1 + \dots + 1)}_{|b| \text{ copies}}$.

- Note that a_i 's and b may be negative because terms are transposed to express a formula as (\star) .
- Also, we may assume s > 0, since by setting $a_i = 0$, you can add the variable x_i meaninglessly.

Logic and

Presburger arithmetic

• Let $\vec{c} = {}^t[c_1, c_2, \dots, c_s]$ be the first letter of the word representing the solution (n_1, n_2, \ldots, n_s) of Equation (\star) .

• Then, let $(n'_1, n'_2, \dots, n'_s)$ be the sequence of numbers represented by the remaining strings excluding \vec{c} . Then for each i,

$$n_i = c_i + 2n_i'.$$

• Let $M = |b| + \sum_i |a_i|$. For any ${}^t[c_1, c_2, \dots, c_s] \in \Omega$, $|\sum_i a_i c_i| \le \sum_i |a_i| \le M$. Then for

Hence.

$$a_1 n_1' + a_2 n_2' + \dots + a_s n_s' = \frac{b - \sum_i a_i c_i}{2}.$$

- any $b' \in [-M, M]$, $\frac{b' \sum_i a_i c_i}{2} \in [-M, M]$. • Now define an automaton $\mathcal{M} = (Q, \Omega_s, \delta, q_0, F)$ for Equation (\star) by:
 - the set of states Q are the integer in the interval [-M, M].
 - transition function $\delta: Q \times \Omega \to Q$ is

$$\delta(q, \vec{c}) = \frac{q - \sum_i a_i c_i}{2}$$

- the initial state $q_0 = b$.
- the set of final states $F = \{0\}$.

Example

The transition of an automaton for $x_1+2x_2-3x_3=1$ is shown as follows. If the next state of $\delta(q,\vec{c})$ is not indicated, it will enter the deadlock state $\bot \not\in F$, in which the automaton cannot leave.

- At 1, if the first input symbol is $^t[0,0,0]$, it immediately enter the deadlock becasue of no outgoing arrow. For such a input, n_1,n_2 , and n_3 are all multiples of 2, and so they can not be a solution of $x_1+2x_2-3x_3=1$.
- On the other hand, it accepts the word ${}^t[1,1,0]{}^t[0,1,1]$, which represents $(n_1,n_2,n_3)=(1,3,2)$.

Presburger arithmetic

Summar

- An automaton thus defined accepts the language of words representing s-tuples (n_1,n_2,\ldots,n_s) that satisfy the atomic formula $\varphi(x_1,x_2,\ldots,x_s)$.
- It is also easy to extend an automaton expressing an atomic formula to that for a Boolean combination of them, since the class of regular languages is closed under Boolean operations.
- It is also easy to add quantifiers. If $\mathcal{M}=(Q,\Omega_s,\delta,q_0,F)$ is a deterministic automaton corresponding to a formula $\varphi(x_1,x_2,\ldots,x_s)$, then a nondeterministic automaton $\mathcal{M}'=(Q,\Omega_{s-1},\delta',\{q_0\},F)$ corresponding to $\exists x_1\varphi(x_1,x_2,\ldots,x_s)$ can be constructed as follows.

$$\delta'(q, {}^{t}[c_2, \dots, c_s]) = \{\delta(q, {}^{t}[b, c_2, \dots, c_s]) : b = 0, 1\}$$

Then \mathcal{M}' accepts a word representing (n_2, \ldots, n_s) iff \mathcal{M} accepts a word representing (n_1, n_2, \ldots, n_s) for some n_1 . Note that a nondeterministic automaton can always be transformed into a deterministic automaton.

Presburger arithmetic

Summar

- The universal quantifier $\forall x$ can be rewritten as $\neg \exists x \neg$.
- Thus, for every formula $\varphi(x_1,x_2,\ldots,x_s)$ in Pressburger arithmetic, we can construct an automaton accepting the language of words representing s-tuples (n_1,n_2,\ldots,n_s) that satisfy the formula $\varphi(x_1,x_2,\ldots,x_s)$.
- For a sentence σ , it can be treated by adding a meaningless variable, and the truth of the sentence can be determined by whether the language accepted by automaton is empty or Ω_1^* .
- Therefore, we obtain the following theorem.

Theorem

Presburger arithmetic is decidable.

Summary

- By the EF theorem, DLO is decidable.
- DLO is PSPACE-complete. TQBF is polynomial-time reducible to DLO.
- (Gurevich) For any m>0, for any two finite linear sequences L_1,L_2 of length 2^m or greater, $L_1\equiv_m L_2$.
- For finite linear orders, there is no first-order formula expressing the parity of its length.
- The connectivity of a graph cannot be defined by a first-order formula.
- For every formula $\varphi(x_1,x_2,\ldots,x_s)$ in Presburger arithmetic, we can construct an automaton accepting the language of words representing s-tuples (n_1,n_2,\ldots,n_s) that satisfy the formula $\varphi(x_1,x_2,\ldots,x_s)$.
- Presburger arithmetic is decidable.

Recal

Application of I

game

Presburg arithmet

Summary

Thank you for your attention!