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Logic and Computation I� �
• Part 1. Introduction to Theory of Computation

• Part 2. Propositional Logic and Computational Complexity

• Part 3. First Order Logic and Decision Problems� �
Part 3. Schedule� �
• Dec. 8, (1) What is first-order logic?

• Dec.13, (2) Skolem’s theorem

• Dec.15, (3) Gödel’s completeness theorem

• Dec.20, (4) Ehrenfeucht-Fräıssé’s theorem

• Dec.22, (5) Presburger arithmetic

• Dec.27, (6) Peano arithmetic and Gödel’s first incompleteness theorem� �
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Recap
• We consider a language of finitely many relation symbols and constants.

• The (quantifier) rank of a formula measures the entanglement of quantifiers appearing
in it. For example, the rank of ∀y(∀x∃y(x = y) ∧ ∀z(z > 0)) is 3.

• By A ≡n B, we mean that structures A,B satisfy the same formulas with rank ≤ n.

• Given an A and n, there is the Scott-Hintikka sentence φn
A of rank n such that

B |= φn
A ⇔ B ≡n A.

• By A ≃n B, we mean that player II has a winning strategy in EFn(A,B), where n is
the round of the game.

• EF theorem For all n ≥ 0, A ≡n B iff A ≃n B.
• Corollary The following are equivalent.

(1) For any n, there exist A ∈ K and B ̸∈ K such that A ≡n B.

(2) K is not an elementary class (K cannot be defined by a first-order formula).

Further readings� �
Jouko Väänänen, Models and Games, Cambridge University Press, 2011.� �
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Dense linear order without end points (DLO)
• The typical models of DLO are (Q, <) and (R, <). (Z, <) is LO but discrete (not
dense) since no element exists between n and n+ 1.

• Let A,B be two models of DOL. Player II has a winning strategy in EFn(A,B) for all
n. Suppose a partial isomorphism between a1 < a2 < · · · < an in A and
b1 < b2 < · · · < bn in B are constructed by the players up to the round n. If Player I
chooses xn+1 between ai < ai+1 (or bi < bi+1), then Player II can extend the partial
isomorphism by choosing yn+1 between bi < bi+1 (or ai < ai+1).

• Then, for all n ≥ 0, A ≃n B. By the EF theorem, for all n, A ≡n B, and hence
A ≡ B. In particular, (Q, <) ≡ (R, <).

• Then, DLO is a complete theory. Therefore, it is decidable.
▶ If it is not complete, then there is a sentece σ which is neither provable nor disprovable.
▶ That is, both DLO∪{¬σ} and DLO∪{σ} are consistent. So, each has its own model,

but they are no longer elementary equivalent, which is a contradiction.

• A complete theory is characterized as Th(A) for its arbitrary model A.
DLO is often treated as Th(Q, <).
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Theorem (1)

DLO is a PSPACE-complete problem.

Proof. First, we show that DLO is PSPACE-hard, by reducing TQBF to DLO in
polynomial time. It was shown in Part 2 of this course, TQBF (true quantified Boolean
formula) is PSPACE-complete.
• Let A be a QBF and transform it to a PNF Q1x1Q2x2...QnxnB(x1, x2, ..., xn),
where B(x1, x2, ..., xn) is a Boolean formula.

• Then, define a DLO formula A< as follows.

Q1x1Q1y1Q2x2Q2y2...QnxnQnynB(x1 < y1, x2 < y2, ..., xn < yn).

• For example, for a QBF A ≡ ∀x1∃x2∀x3((x1 ∧ x2) ∨ ¬x3), A< in DLO is

∀x1∀y1∃x2∃y2∀x3∀y3(((x1 < y1) ∧ (x2 < y2)) ∨ ¬(x3 < y3)).

• An atomic formula xi < yi in A< simply plays the role of variable xi in A. Then A is
true in a simple Boolean algebra {0, 1} iff A< is true in any model of DLO.

• Since the lengths of A and A< differ only by constant multiples, TQBF is reduced to
DLO in polynomial time.
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Next, we show that DLO is PSPACE, following the proof that TQBF is PSPACE.
• First, assume a DLO formula is given in PNF Q1x1Q2x2...Qnxn C(x1, x2, ..., xn)
(with no quantifiers in C(x1, x2, ..., xn)).

• In general, we can determine the truth value of C(x1, x2, ..., xn) by specifying
elements of DLO substituting for variables x1, x2, ..., xn. Here only the relations of
the elements are enough to determine the truth value.

• Now, we first fix x1 is arbitrarily. Next, the necessary information on x2 is whether it
is larger, smaller, or equal to x1.

• If Q2 is ∀ (∃), all the three cases (one of the three cases) must hold. Without loss of
generality, we may assume x1 < x2.

• Next, there are five cases for x3 as illustrated by the red arrows:

𝑥𝑥1 𝑥𝑥2

𝑥𝑥3

If Q3 is ∀ (∃), all the five cases (one of the five cases) should hold.

• Since the number of cases for variable xi is less than 2i− 1, there are less than
(2n− 1)! cases to check in total.

• In order to execute this computation, we need log((2n− 1)!) = O(n log n) space to
keep records. Thus, it is textsfDSPACE(n log n), hence also PSPACE.
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We next apply the EF theorem to the problem of length of finite linear orders.

Lemma (Gurevich)

For any m > 0, for any two finite linear sequences L1, L2 of length 2m or greater,
L1 ≡m L2.

Proof.
• A finite linear order of length n is denoted by [n] = (n,<), where n of (n,<) is
identified with {0, 1, . . . , n− 1}.

• For each k, we introduce a threshold absolute value |x|k by |x|k = |x| if |x| < 2k;
|x|k = ∞, otherwise.

• Select l elements from [n] and arrange them in ascending order as a⃗ = (a1, a2, . . . , al).

• Similarly, select l elements from [n′] and arrange as b⃗ = (b1, b2, . . . , bl).

• Let Ik the a collection of all partial isomorphisms a⃗ 7→ b⃗ that satisfy the following
conditions: if a0 = b0 = 0, al+1 = n, bl+1 = n′, then

for any i ≤ l, |ai+1 − ai|k = |bi+1 − bi|k holds.

• Note that by ∅ ∈ Ik we mean |n|k = |n′|k. 8 / 21
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• Now, suppose a⃗ 7→ b⃗ ∈ Ik. We can show that for any a ∈ n, there exists a b ∈ n′ such
that a⃗a 7→ b⃗b ∈ Ik−1 holds. Here, a⃗a and b⃗b are rearranged in order.

• First consider the case |ai+1 − ai|k = |bi+1 − bi|k < ∞. If ai+1 > a > ai, then
|ai+1 − a|k−1 < ∞ or |a− ai|k−1 < ∞ holds, and so the value of b is also uniquely
determined by bi+1 or bi.

• Next assume |ai+1 − ai|k = |bi+1 − bi|k = ∞. If ai+1 > a > ai then
|ai+1 − a|k−1 = ∞ or |a− ai|k−1 = ∞ holds; if one is < ∞, then the value of b is
uniquely determined by the corresponding bi+1 or bi; if both are ∞, the value of b can
also be taken from both sides to ∞.

• Therefore, if n = n′ or n, n′ ≥ 2m, then we obtain ∅ ∈ Im.

• In particular, if n, n′ ≥ 2m, then [n] ≡m [n′]. □

Theorem (2)

For finite linear orders, there is no first-order formula expressing the parity of its length.

Proof Assume, for the sake of contradiction, we have such a formula φ. Let qr(φ)= m.
Then by the above lemma, for linear sequences longer than 2m, we cannot tell whether its
length is even or odd, which is a contradiction. □
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The connectivity of graphs� �
• We can show the connectivity of graphs cannot be defined by a first-order
formula by reducing the parity problem of linear orders to it. We first make a
special graph from a linear order.

• In the linear order <, let succ(x, y) ≡ (x < y) ∧ ∀z(z ≤ x ∨ y ≤ z) and
succ2(x, y) ≡ ∃z(succ(x, z) ∧ succ(z, y)).

• Also let first(x) ≡ ¬∃y succ(y, x), and last(x) ≡ ¬∃y succ(x, y)

• Then, define edge(x, y) as follows.
edge(x, y) ≡ succ2(x, y)∨

((∃z(succ(x, z) ∧ last(z)) ∧ first(y))) ∨ (last(x) ∧ (∃z(first(z) ∧ succ(z, y))))
By this formula, we make a graph by connecting every other points in a line by an
edge, and also by going back to the first point from the second last point and
also to the second point from the last point.

• If a linear order has even number of points, the graph becomes two cycles
(disconnected), and if odd number, it results in a single cycle.

• In other words, if the connectivity of a graph can be defined, then the parity of
the length of a linear order can be defined, which is a contradiction.� �
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Homework� �
Given a finitely connected graph, the existence of an Eulerian cycle in it cannot be
described in first-order logic.� �
• To expand the scope of application of the EF theorem, we would like to consider
structures with functions.

• Rewriting functions as relations requires the use of extra quantifiers for function
composition, and the need to use more complicated formulas for atomic formulas
involving functions.

• However, there is not much problem when dealing with arbitrary ranks. For example,
the following argument is possible for groups.

• G1 ≡ G2 ⇒ G1 ×H ≡ G2 ×H for three groups G1, G2, H. For this proof, we
observe that II’s winning play g⃗1 ↔ g⃗2 in EFn(G1, G2) can be modified as II’s winning

play (g⃗1, h⃗) ↔ (g⃗2, h⃗) in EFn(G1 ×H,G2 ×H).
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Presburger arithmetic

• There are various methods of applying computational models such as automata to
solve decision problems.

• As a typical example, let us consider its application to first-order Presburger
arithmetic, which has only addition operation on natural numbers. The technique here
will be extended to second-order logic in the next semester.

• Presburger arithmetic is a first order theory for structure N = (N, 0, 1,+) in the
language LP = {0, 1,+}.

• We want to find a method to determine whether or not N |= σ holds for a sentence σ
in the language LP.

• Note that in Presburger arithmetic, < is defined as x < y ↔ ∃z(x+ z + 1 = y). The
congruence relation ≡k is also defined. Then Presburger arithmetic with < and ≡k

admits the elimination of quantifiers, which is another method of solving the decision
problem.
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• First, let us consider how to express the sequence of natural numbers (n1, n2, . . . , ns)
(where s > 0) in terms of a word that recognized by the automaton.

• The alphabet Ωs is a set of vertical vectors of length s with elements 0, 1. So, Ωs

consists of 2s symbols defined by

b⃗ =


b1
b2
...
bs

 where b1, b2, . . . , bs = 0 or 1.

We may also write b⃗ = t[b1, b2, . . . , bs].

• A word b⃗1⃗b2 . . . b⃗t over Ωs can be expressed as
b11
b12
...
b1s




b21
b22
...
b2s

 . . .


bt1
bt2
...
bts

 =


b11b21 . . . bt1
b12b22 . . . bt2

...
b1sb2s . . . bts
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• An s-tuple (n1, n2, . . . , ns) of natural numbers are represented by b⃗1⃗b2 . . . b⃗t as follows.

n1 = b11 + b21 · 2 + · · ·+ bt1 · 2t−1

n2 = b12 + b22 · 2 + · · ·+ bt2 · 2t−1

...
ns = b1s + b2s · 2 + · · ·+ bts · 2t−1

• In other words, the binary representation of natural number ni is btib(t−1)i . . . b1i.

• So, if we add the zero vector 0⃗ to the right of the word b⃗1⃗b2 . . . b⃗t, the resulting
sequence b⃗1⃗b2 . . . b⃗t0⃗ represents the same sequence (n1, n2, . . . , nt) of natural

numbers. But if we add 0⃗ to the left of b⃗1⃗b2 . . . b⃗t, the resulting sequence 0⃗ . . . b⃗t
represents (2n1, 2n2, . . . , 2ns).

• Note that the zero vector 0⃗ is different from the empty string

ε =


 .
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• Since an s-tuple of natural numbers (n1, n2, . . . , ns) (where s > 0) can be expressed
as words over Ωs, we next consider the set of (n1, n2, . . . , ns) that satisfies a given
formula φ(x1, x2, . . . , xs) and whether an automaton can accept the language of
words representing such a set.

• First, an atomic formula in Presburger arithmetic is expressed as follows.

a1x1 + a2x2 + · · ·+ asxs = b, · · · (⋆)

where aixi is short for ± (xi + xi + · · ·+ xi)︸ ︷︷ ︸
|ai| copies

and b for ± (1 + 1 + · · ·+ 1)︸ ︷︷ ︸
|b| copies

.

• Note that ai’s and b may be negative because terms are transposed to express a
formula as (⋆).

• Also, we may assume s > 0, since by setting ai = 0, you can add the variable xi

meaninglessly.
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• Let c⃗ = t[c1, c2, . . . , cs] be the first letter of the word representing the solution
(n1, n2, . . . , ns) of Equation (⋆).

• Then, let (n′
1, n

′
2, . . . , n

′
s) be the sequence of numbers represented by the remaining

strings excluding c⃗. Then for each i,

ni = ci + 2n′
i.

Hence,

a1n
′
1 + a2n

′
2 + · · ·+ asn

′
s =

b− Σiaici
2

.

• Let M = |b|+Σi|ai|. For any t[c1, c2, . . . , cs] ∈ Ω, |
∑

i aici| ≤ Σi|ai| ≤ M . Then for

any b′ ∈ [−M,M ], b′−Σiaici
2 ∈ [−M,M ].

• Now define an automaton M = (Q,Ωs, δ, q0, F ) for Equation (⋆) by:
• the set of states Q are the integer in the interval [−M,M ].
• transition function δ : Q× Ω → Q is

δ(q, c⃗) =
q − Σiaici

2

• the initial state q0 = b,
• the set of final states F = {0}.
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Example� �
The transition of an automaton for x1 +2x2 − 3x3 = 1 is shown as follows. If the next
state of δ(q, c⃗) is not indicated, it will enter the deadlock state ⊥ ̸∈ F , in which the
automaton cannot leave.

• At 1, if the first input symbol is
t[0, 0, 0], it immediately enter the
deadlock becasue of no outgoing
arrow. For such a input, n1, n2,
and n3 are all multiples of 2, and
so they can not be a solution of
x1 + 2x2 − 3x3 = 1.

• On the other hand, it accepts the
word t[1, 1, 0]t[0, 1, 1], which
represents (n1, n2, n3) = (1, 3, 2).

� �
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• An automaton thus defined accepts the language of words representing s-tuples
(n1, n2, . . . , ns) that satisfy the atomic formula φ(x1, x2, . . . , xs).

• It is also easy to extend an automaton expressing an atomic formula to that for a
Boolean combination of them, since the class of regular languages is closed under
Boolean operations.

• It is also easy to add quantifiers. If M = (Q,Ωs, δ, q0, F ) is a deterministic automaton
corresponding to a formula φ(x1, x2, . . . , xs), then a nondeterministic automaton
M′ = (Q,Ωs−1, δ

′, {q0}, F ) corresponding to ∃x1φ(x1, x2, . . . , xs) can be
constructed as follows.

δ′(q, t[c2, . . . , cs]) = {δ(q, t[b, c2, . . . , cs]) : b = 0, 1}

Then M′ accepts a word representing (n2, . . . , ns) iff M accepts a word representing
(n1, n2, . . . , ns) for some n1. Note that a nondeterministic automaton can always be
transformed into a deterministic automaton.
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• The universal quantifier ∀x can be rewritten as ¬∃x¬.

• Thus, for every formula φ(x1, x2, . . . , xs) in Pressburger arithmetic, we can construct
an automaton accepting the language of words representing s-tuples (n1, n2, . . . , ns)
that satisfy the formula φ(x1, x2, . . . , xs).

• For a sentence σ, it can be treated by adding a meaningless variable, and the truth of
the sentence can be determined by whether the language accepted by automaton is
empty or Ω∗

1.

• Therefore, we obtain the following theorem.

Theorem

Presburger arithmetic is decidable.
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Summary

• By the EF theorem, DLO is decidable.

• DLO is PSPACE-complete. TQBF is polynomial-time reducible to DLO.

• (Gurevich) For any m > 0, for any two finite linear sequences L1, L2 of length 2m or
greater, L1 ≡m L2.

• For finite linear orders, there is no first-order formula expressing the parity of its length.

• The connectivity of a graph cannot be defined by a first-order formula.

• For every formula φ(x1, x2, . . . , xs) in Presburger arithmetic, we can construct an
automaton accepting the language of words representing s-tuples (n1, n2, . . . , ns) that
satisfy the formula φ(x1, x2, . . . , xs).

• Presburger arithmetic is decidable.
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Thank you for your attention!
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