K. Tanaka

[Recap](#page-3-0)

[Application of EF](#page-4-0) game

[Presburger](#page-11-0) arithmetic

[Summary](#page-19-0)

Logic and Computation: I Part 3 First order logic and decision problems

Kazuyuki Tanaka

BIMSA

December 22, 2022

21

 2990 D-1

メロトメ 伊 トメ 君 トメ 君 ト

K. Tanaka

[Recap](#page-3-0)

[Application of EF](#page-4-0) game

[Presburger](#page-11-0)

[Summary](#page-19-0)

Logic and Computation I

- Part 1. Introduction to Theory of Computation
- Part 2. Propositional Logic and Computational Complexity

✒ ✑

✒ ✑

• Part 3. First Order Logic and Decision Problems

Part 3. Schedule

- Dec. 8, (1) What is first-order logic?
- Dec.13, (2) Skolem's theorem
- Dec.15, (3) Gödel's completeness theorem
- Dec.20, (4) Ehrenfeucht-Fraïssé's theorem
- Dec.22, (5) Presburger arithmetic
- Dec.27, (6) Peano arithmetic and Gödel's first incompleteness theorem

K. Tanaka

[Recap](#page-3-0)

[Application of EF](#page-4-0) game

[Presburger](#page-11-0) arithmetic

[Summary](#page-19-0)

2 [Application of EF game](#page-4-0)

3 [Presburger arithmetic](#page-11-0)

4 [Summary](#page-19-0)

Presburger arithmetic

K. Tanaka

[Recap](#page-3-0)

[Presburger](#page-11-0)

[Summary](#page-19-0)

- • We consider a language of finitely many relation symbols and constants.
- The (quantifier) rank of a formula measures the entanglement of quantifiers appearing in it. For example, the rank of $\forall y (\forall x \exists y (x = y) \land \forall z (z > 0))$ is 3.
- By $\mathcal{A} \equiv_n \mathcal{B}$, we mean that structures \mathcal{A}, \mathcal{B} satisfy the same formulas with rank $\leq n$.
- \bullet Given an ${\mathcal A}$ and n , there is the ${\sf Scott\text{-}Hintikka}$ sentence $\varphi_{\mathcal A}^n$ of rank n such that $\mathcal{B} \models \varphi_{\mathcal{A}}^n \Leftrightarrow \mathcal{B} \equiv_n \mathcal{A}.$
- By $A \simeq^n B$, we mean that player II has a winning strategy in $\text{EF}_n(\mathcal{A}, \mathcal{B})$, where n is the round of the game.
- EF theorem For all $n > 0$, $\mathcal{A} \equiv_n \mathcal{B}$ iff $\mathcal{A} \simeq^n \mathcal{B}$.
- Corollary The following are equivalent. (1) For any n, there exist $A \in K$ and $B \notin K$ such that $A \equiv_n B$.

(2) K is not an elementary class (K cannot be defined by a first-order formula).

Further readings

Jouko Väänänen, Models and Games, Cambridge University Press, 2011.

Recap

K. Tanaka

[Recap](#page-3-0)

[Application of EF](#page-4-0) game

[Presburger](#page-11-0) arithmetic

[Summary](#page-19-0)

Dense linear order without end points (DLO)

- • The typical models of DLO are (\mathbb{O}, \leq) and (\mathbb{R}, \leq) . (\mathbb{Z}, \leq) is LO but discrete (not dense) since no element exists between n and $n + 1$.
- Let A, B be two models of DOL. Player II has a winning strategy in $EF_n(A, B)$ for all n. Suppose a partial isomorphism between $a_1 < a_2 < \cdots < a_n$ in A and $b_1 < b_2 < \cdots < b_n$ in B are constructed by the players up to the round n. If Player I chooses x_{n+1} between $a_i < a_{i+1}$ (or $b_i < b_{i+1}$), then Player II can extend the partial isomorphism by choosing y_{n+1} between $b_i < b_{i+1}$ (or $a_i < a_{i+1}$).
- Then, for all $n > 0$, $\mathcal{A} \simeq^{n} \mathcal{B}$. By the EF theorem, for all n , $\mathcal{A} \equiv_{n} \mathcal{B}$, and hence $A \equiv B$. In particular, $(0, <) \equiv (R, <)$.
- Then, DLO is a complete theory. Therefore, it is decidable.
	- \blacktriangleright If it is not complete, then there is a sentece σ which is neither provable nor disprovable.
	- **►** That is, both $DLO\cup\{\neg \sigma\}$ and $DLO\cup\{\sigma\}$ are consistent. So, each has its own model, but they are no longer elementary equivalent, which is a contradiction.
- A complete theory is characterized as $Th(A)$ for its arbitrary model A. DLO is often treated as $\text{Th}(\mathbb{Q}, <)$. K ロ ▶ K 個 ▶ K 듣 ▶ K 듣 ▶ │ 듣 │ ◆) Q (º

K. Tanaka

[Recap](#page-3-0)

[Application of EF](#page-4-0) game

[Presburger](#page-11-0) arithmetic [Summary](#page-19-0)

Theorem (1)

DLO is a PSPACE-complete problem.

Proof. First, we show that DLO is PSPACE-hard, by reducing TQBF to DLO in polynomial time. It was shown in Part 2 of this course, TQBF (true quantified Boolean formula) is PSPACE-complete.

- Let A be a QBF and transform it to a PNF $Q_1x_1Q_2x_2...Q_nx_nB(x_1, x_2, ..., x_n)$. where $B(x_1, x_2, ..., x_n)$ is a Boolean formula.
- Then, define a DLO formula A_{\leq} as follows.

 $Q_1x_1Q_1y_1Q_2x_2Q_2y_2...Q_nx_nQ_ny_nB(x_1 \leq y_1, x_2 \leq y_2,..., x_n \leq y_n).$

• For example, for a QBF $A \equiv \forall x_1 \exists x_2 \forall x_3((x_1 \land x_2) \lor \neg x_3)$, $A_<$ in DLO is

 $\forall x_1 \forall y_1 \exists x_2 \exists y_2 \forall x_3 \forall y_3 (((x_1 < y_1) \land (x_2 < y_2)) \lor \neg (x_3 < y_3)).$

- \bullet An atomic formula $x_i < y_i$ in $A_<$ simply plays the role of variable x_i in A . Then A is true in a simple Boolean algebra $\{0, 1\}$ iff A_{\leq} is true in any model of DLO.
- Since the lengths of A and A_{\leq} differ only by constant multiples, TQBF is reduced to DLO in polynomial time. **KORK EXTERNS ORA**

6 / 21

K. Tanaka

[Recap](#page-3-0)

[Application of EF](#page-4-0) game

[Presburger](#page-11-0)

[Summary](#page-19-0)

Next, we show that DLO is PSPACE, following the proof that TQBF is PSPACE.

- First, assume a DLO formula is given in PNF $Q_1x_1Q_2x_2...Q_nx_n$ $C(x_1, x_2, ..., x_n)$ (with no quantifiers in $C(x_1, x_2, ..., x_n)$).
- In general, we can determine the truth value of $C(x_1, x_2, ..., x_n)$ by specifying elements of DLO substituting for variables $x_1, x_2, ..., x_n$. Here only the relations of the elements are enough to determine the truth value.
- Now, we first fix x_1 is arbitrarily. Next, the necessary information on x_2 is whether it is larger, smaller, or equal to x_1 .
- If Q_2 is \forall (\exists), all the three cases (one of the three cases) must hold. Without loss of generality, we may assume $x_1 < x_2$.
- Next, there are five cases for x_3 as illustrated by the red arrows:

If Q_3 is \forall (\exists), all the five cases (one of the five cases) should hold.

- Since the number of cases for variable x_i is less than $2i 1$, there are less than $(2n - 1)!$ cases to check in total.
- I[n](#page-11-0) order to execute thi[s](#page-4-0) com[p](#page-10-0)ut[a](#page-11-0)tion, we need $\log((2n-1)!) = O(n \log n)$ spa[ce](#page-0-0) [to](#page-20-0) keep records. Thus, it is textsfDS[P](#page-5-0)[AC](#page-6-0)[E](#page-7-0)($n \log n$), hence al[so](#page-5-0) [PS](#page-7-0)PACE[.](#page-3-0)⁴

K. Tanaka

[Recap](#page-3-0)

[Application of EF](#page-4-0) game

[Presburger](#page-11-0) arithmetic

[Summary](#page-19-0)

We next apply the EF theorem to the problem of length of finite linear orders.

Lemma (Gurevich)

For any $m>0$, for any two finite linear sequences L_1,L_2 of length 2^m or greater, $L_1 \equiv_m L_2$.

Proof.

- A finite linear order of length n is denoted by $[n] = (n, <)$, where n of $(n, <)$ is identified with $\{0, 1, \ldots, n-1\}$.
- $\bullet\,$ For each k , we introduce a threshold absolute value $|x|_k$ by $|x|_k=|x|$ if $|x|< 2^k;$ $|x|_k = \infty$, otherwise.
- Select l elements from [n] and arrange them in ascending order as $\vec{a} = (a_1, a_2, \ldots, a_l)$.
- \bullet Similarly, select l elements from $[n']$ and arrange as $\vec{b} = (b_1, b_2, \ldots, b_l).$
- Let I_k the a collection of all partial isomorphisms $\vec{a} \mapsto \vec{b}$ that satisfy the following conditions: if $a_0 = b_0 = 0$, $a_{l+1} = n$, $b_{l+1} = n'$, then for any $i \leq l$, $|a_{i+1} - a_i|_k = |b_{i+1} - b_i|_k$ holds.

8 / 21

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익단

• Note that by $\emptyset \in I_k$ we mean $|n|_k = |n'|_k$.

K. Tanaka

[Recap](#page-3-0)

[Application of EF](#page-4-0) game

[Presburger](#page-11-0)

[Summary](#page-19-0)

- Now, suppose $\vec{a} \mapsto \vec{b} \in I_k.$ We can show that for any $a \in n,$ there exists a $b \in n'$ such that $\vec{a}a \mapsto \vec{b}b \in I_{k-1}$ holds. Here, $\vec{a}a$ and $\vec{b}b$ are rearranged in order.
- First consider the case $|a_{i+1} a_i|_k = |b_{i+1} b_i|_k < \infty$. If $a_{i+1} > a > a_i$, then $|a_{i+1} - a|_{k-1} < \infty$ or $|a - a_i|_{k-1} < \infty$ holds, and so the value of b is also uniquely determined by b_{i+1} or b_i .
- Next assume $|a_{i+1} a_i|_k = |b_{i+1} b_i|_k = \infty$. If $a_{i+1} > a > a_i$ then $|a_{i+1}-a|_{k-1}=\infty$ or $|a-a_i|_{k-1}=\infty$ holds; if one is $<\infty$, then the value of b is uniquely determined by the corresponding b_{i+1} or $b_i;$ if both are $\infty,$ the value of b can also be taken from both sides to ∞ .
- Therefore, if $n = n'$ or $n, n' \ge 2^m$, then we obtain $\emptyset \in I_m$.
- $\bullet\,$ In particular, if $n,n'\geq 2^m$, then $[n]\equiv_m [n']$ \Box

Theorem (2)

For finite linear orders, there is no first-order formula expressing the parity of its length.

Proof Assume, for the sake of contradiction, we have such a formula φ . Let $\text{qr}(\varphi) = m$. Then by the above lemma, for linear sequences longer than 2^m , we cannot tell whether its length is even or odd, which is a contradiction. \square

9 / 21

K. Tanaka

[Recap](#page-3-0)

[Application of EF](#page-4-0) game

[Presburger](#page-11-0)

[Summary](#page-19-0)

- The connectivity of graphs
	- We can show the connectivity of graphs cannot be defined by a first-order formula by reducing the parity problem of linear orders to it. We first make a special graph from a linear order.
	- In the linear order \lt , let $succ(x, y) \equiv (x \lt y) \land \forall z (z \leq x \lor y \leq z)$ and $\text{succ2}(x, y) \equiv \exists z (\text{succ}(x, z) \land \text{succ}(z, y)).$
	- Also let first(x) $\equiv \neg \exists y \; \text{succ}(y, x)$, and $\text{last}(x) \equiv \neg \exists y \; \text{succ}(x, y)$
	- Then, define $edge(x, y)$ as follows. $edge(x, y) \equiv succ2(x, y) \vee$

 $((\exists z({\rm succ}(x,z)\wedge {\rm last}(z))\wedge {\rm first}(y)))\vee ({\rm last}(x)\wedge (\exists z({\rm first}(z)\wedge {\rm succ}(z,y))))$ By this formula, we make a graph by connecting every other points in a line by an edge, and also by going back to the first point from the second last point and also to the second point from the last point.

- If a linear order has even number of points, the graph becomes two cycles (disconnected), and if odd number, it results in a single cycle.
- In other words, if the connectivity of a graph can be defined, then the parity of the length of a linear order can be defined, which is a contradiction.

K. Tanaka

[Recap](#page-3-0)

[Application of EF](#page-4-0) game

[Presburger](#page-11-0)

[Summary](#page-19-0)

 \leftarrow Homework \longrightarrow

Given a finitely connected graph, the existence of an Eulerian cycle in it cannot be described in first-order logic.

✒ ✑

- To expand the scope of application of the EF theorem, we would like to consider structures with functions.
- Rewriting functions as relations requires the use of extra quantifiers for function composition, and the need to use more complicated formulas for atomic formulas involving functions.
- However, there is not much problem when dealing with arbitrary ranks. For example, the following argument is possible for groups.
- $G_1 \equiv G_2 \Rightarrow G_1 \times H \equiv G_2 \times H$ for three groups G_1, G_2, H . For this proof, we observe that II's winning play $\vec{q_1} \leftrightarrow \vec{q_2}$ in $\textsf{EF}_n(G_1, G_2)$ can be modified as II's winning play $(\vec{{g_1}}, \vec{{h}}) \leftrightarrow (\vec{{g_2}}, \vec{{h}})$ in $\mathsf{EF}_n(G_1 \times H, G_2 \times H).$ メロメメ 御 メメ きょくきょうき

11 / 21

 η an

K. Tanaka

[Recap](#page-3-0)

[Application of EF](#page-4-0) game

[Presburger](#page-11-0) arithmetic

[Summary](#page-19-0)

Presburger arithmetic

12 / 21

KO KARA KEK (EK) EL VOQO

- • There are various methods of applying computational models such as automata to solve decision problems.
- As a typical example, let us consider its application to first-order Presburger arithmetic, which has only addition operation on natural numbers. The technique here will be extended to second-order logic in the next semester.
- Presburger arithmetic is a first order theory for structure $\mathcal{N} = (\mathbb{N}, 0, 1, +)$ in the language $\mathcal{L}_{\mathrm{P}} = \{0, 1, +\}.$
- We want to find a method to determine whether or not $\mathcal{N} \models \sigma$ holds for a sentence σ in the language \mathcal{L}_{P} .
- Note that in Presburger arithmetic, \lt is defined as $x \lt y \leftrightarrow \exists z (x + z + 1 = y)$. The congruence relation \equiv_k is also defined. Then Presburger arithmetic with \lt and \equiv_k admits the elimination of quantifiers, which is another method of solving the decision problem.

K. Tanaka

- [Recap](#page-3-0)
- [Application of EF](#page-4-0) game
- [Presburger](#page-11-0) arithmetic
- [Summary](#page-19-0)
- First, let us consider how to express the sequence of natural numbers (n_1, n_2, \ldots, n_s) (where $s > 0$) in terms of a word that recognized by the automaton.
- The alphabet Ω_s is a set of vertical vectors of length s with elements 0, 1. So, Ω_s consists of 2^s symbols defined by

$$
\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_s \end{bmatrix} \text{ where } b_1, b_2, \dots, b_s = 0 \text{ or } 1.
$$

We may also write $\vec{b}={}^t[b_1,b_2,\ldots,b_s].$

 \bullet A word $\vec{b}_1 \vec{b}_2 \ldots \vec{b}_t$ over Ω_s can be expressed as

$$
\begin{bmatrix} b_{11} \\ b_{12} \\ \vdots \\ b_{1s} \end{bmatrix} \begin{bmatrix} b_{21} \\ b_{22} \\ \vdots \\ b_{2s} \end{bmatrix} \cdots \begin{bmatrix} b_{t1} \\ b_{t2} \\ \vdots \\ b_{ts} \end{bmatrix} = \begin{bmatrix} b_{11}b_{21} \cdots b_{t1} \\ b_{12}b_{22} \cdots b_{t2} \\ \vdots \\ b_{1s}b_{2s} \cdots b_{ts} \end{bmatrix}
$$

13 / 21

K. Tanaka

[Recap](#page-3-0)

[Application of EF](#page-4-0)

[Presburger](#page-11-0) arithmetic

[Summary](#page-19-0)

 \bullet An s -tuple (n_1,n_2,\ldots,n_s) of natural numbers are represented by $\vec{b}_1\vec{b}_2\ldots\vec{b}_t$ as follows.

$$
n_1 = b_{11} + b_{21} \cdot 2 + \dots + b_{t1} \cdot 2^{t-1}
$$

\n
$$
n_2 = b_{12} + b_{22} \cdot 2 + \dots + b_{t2} \cdot 2^{t-1}
$$

\n
$$
\vdots
$$

\n
$$
n_s = b_{1s} + b_{2s} \cdot 2 + \dots + b_{ts} \cdot 2^{t-1}
$$

- In other words, the binary representation of natural number n_i is $b_{ti}b_{(t-1)i}\ldots b_{1i}$.
- $\bullet\,$ So, if we add the zero vector $\vec{0}$ to the right of the word $\vec{b}_1\vec{b}_2\ldots\vec{b}_t$, the resulting sequence $\vec{b}_1\vec{b}_2\ldots\vec{b}_t\vec{0}$ represents the same sequence (n_1,n_2,\ldots,n_t) of natural numbers. But if we add $\vec{0}$ to the left of $\vec{b}_1\vec{b}_2\ldots\vec{b}_t$, the resulting sequence $\vec{0}\ldots\vec{b}_t$ represents $(2n_1, 2n_2, \ldots, 2n_s)$.
- Note that the zero vector $\vec{0}$ is different from the empty string

$$
\varepsilon = \left[\begin{array}{c} \vphantom{\int} \\ \vphantom{\int} \end{array} \right].
$$

14 / 21

KORK EXTERNS ORA

K. Tanaka

[Recap](#page-3-0)

[Application of EF](#page-4-0) game

[Presburger](#page-11-0) arithmetic

[Summary](#page-19-0)

- Since an s-tuple of natural numbers (n_1, n_2, \ldots, n_s) (where $s > 0$) can be expressed as words over Ω_s , we next consider the set of (n_1, n_2, \ldots, n_s) that satisfies a given formula $\varphi(x_1, x_2, \ldots, x_s)$ and whether an automaton can accept the language of words representing such a set.
- First, an atomic formula in Presburger arithmetic is expressed as follows.

$$
a_1x_1 + a_2x_2 + \dots + a_sx_s = b, \qquad \qquad \dots \qquad (*)
$$

where
$$
a_i x_i
$$
 is short for $\pm (x_i + x_i + \cdots + x_i)$ and b for $\pm (1 + 1 + \cdots + 1)$.

$$
\underbrace{|a_i|}_{|c \text{opies}} \text{opies}
$$

- $\bullet\,$ Note that a_i 's and b may be negative because terms are transposed to express a formula as (\star) .
- Also, we may assume $s > 0$, since by setting $a_i = 0$, you can add the variable x_i meaninglessly.

15 / 21

KID KARA KE KIEK E KORO

K. Tanaka

[Recap](#page-3-0)

[Application of EF](#page-4-0)

[Presburger](#page-11-0) arithmetic

[Summary](#page-19-0)

- \bullet Let $\vec{c} = {}^t[c_1, c_2, \ldots, c_s]$ be the first letter of the word representing the solution (n_1, n_2, \ldots, n_s) of Equation (\star) .
- Then, let $(n'_1, n'_2, \ldots, n'_s)$ be the sequence of numbers represented by the remaining strings excluding \vec{c} . Then for each i,

$$
n_i = c_i + 2n_i^\prime.
$$

Hence,

$$
a_1n'_1 + a_2n'_2 + \cdots + a_sn'_s = \frac{b - \sum_ia_ic_i}{2}.
$$

- \bullet Let $M=|b|+\Sigma_i|a_i|$. For any ${}^t[c_1, c_2, \ldots, c_s]\in \Omega,$ $|\sum_ia_ic_i|\leq \Sigma_i|a_i|\leq M.$ Then for any $b' \in [-M, M]$, $\frac{b' - \Sigma_i a_i c_i}{2} \in [-M, M]$.
- Now define an automaton $\mathcal{M} = (Q, \Omega_s, \delta, q_0, F)$ for Equation (\star) by:
	- the set of states Q are the integer in the interval $[-M, M]$.
	- transition function $\delta: Q \times \Omega \to Q$ is

$$
\delta(q, \vec{c}) = \frac{q - \sum_i a_i c_i}{2}
$$

16 / 21

KO KARA KEK (EK) EL VOQO

- the initial state $q_0 = b$,
- the set of final states $F = \{0\}.$

K. Tanaka

[Recap](#page-3-0)

[Application of EF](#page-4-0) game

[Presburger](#page-11-0) arithmetic

[Summary](#page-19-0)

The transition of an automaton for $x_1 + 2x_2 - 3x_3 = 1$ is shown as follows. If the next state of $\delta(q, \vec{c})$ is not indicated, it will enter the deadlock state $\perp \notin F$, in which the automaton cannot leave.

 \sim Example \sim

メロメ メ御 メメ きょくきょう 君 2990 17 / 21

K. Tanaka

[Recap](#page-3-0)

[Application of EF](#page-4-0) game

[Presburger](#page-11-0) arithmetic

[Summary](#page-19-0)

- An automaton thus defined accepts the language of words representing s -tuples (n_1, n_2, \ldots, n_s) that satisfy the atomic formula $\varphi(x_1, x_2, \ldots, x_s)$.
- It is also easy to extend an automaton expressing an atomic formula to that for a Boolean combination of them, since the class of regular languages is closed under Boolean operations.
- It is also easy to add quantifiers. If $\mathcal{M} = (Q, \Omega_s, \delta, q_0, F)$ is a deterministic automaton corresponding to a formula $\varphi(x_1, x_2, \ldots, x_s)$, then a nondeterministic automaton $\mathcal{M}'=(Q,\Omega_{s-1},\delta',\{q_0\},F)$ corresponding to $\exists x_1\varphi(x_1,x_2,\ldots,x_s)$ can be constructed as follows.

$$
\delta'(q, {}^t[c_2,\ldots,c_s]) = \{\delta(q, {}^t[b,c_2,\ldots,c_s]): b = 0,1\}
$$

Then \mathcal{M}' accepts a word representing (n_2,\ldots,n_s) iff $\mathcal M$ accepts a word representing (n_1, n_2, \ldots, n_s) for some n_1 . Note that a nondeterministic automaton can always be transformed into a deterministic automaton.

18 / 21

KO KARA KEK (EK) EL VOQO

K. Tanaka

[Recap](#page-3-0)

[Application of EF](#page-4-0) game

[Presburger](#page-11-0) arithmetic

[Summary](#page-19-0)

- The universal quantifier $\forall x$ can be rewritten as $\neg \exists x \neg$.
- Thus, for every formula $\varphi(x_1, x_2, \ldots, x_s)$ in Pressburger arithmetic, we can construct an automaton accepting the language of words representing s-tuples (n_1, n_2, \ldots, n_s) that satisfy the formula $\varphi(x_1, x_2, \ldots, x_s)$.
- For a sentence σ , it can be treated by adding a meaningless variable, and the truth of the sentence can be determined by whether the language accepted by automaton is empty or Ω_1^* .

19 / 21

KO KARA KEK (EK) EL VOQO

• Therefore, we obtain the following theorem.

Theorem

Presburger arithmetic is decidable.

K. Tanaka

[Recap](#page-3-0)

- [Application of EF](#page-4-0) game
- [Presburger](#page-11-0)
- [Summary](#page-19-0)

Summary

20 / 21

KO KARA KEK (EK) EL VOQO

- • By the EF theorem, DLO is decidable.
- DLO is PSPACE-complete. TQBF is polynomial-time reducible to DLO.
- \bullet (Gurevich) For any $m>0,$ for any two finite linear sequences L_1,L_2 of length 2^m or greater, $L_1 \equiv_m L_2$.
- For finite linear orders, there is no first-order formula expressing the parity of its length.
- The connectivity of a graph cannot be defined by a first-order formula.
- For every formula $\varphi(x_1, x_2, \ldots, x_s)$ in Presburger arithmetic, we can construct an automaton accepting the language of words representing s-tuples (n_1, n_2, \ldots, n_s) that satisfy the formula $\varphi(x_1, x_2, \ldots, x_s)$.
- Presburger arithmetic is decidable.

K. Tanaka

[Recap](#page-3-0)

[Application of EF](#page-4-0) game

[Presburger](#page-11-0) arithmetic

[Summary](#page-19-0) Thank you for your attention!

