Logic and Computation

K. Tanaka

Reca

Introduct

Relational languages and

Elementary equivalence and ranks

Partial isomorphisms

EE games

Scott-Hintkk

EF theorem

Summary

Logic and Computation: I

Part 3 First order logic and decision problems

Kazuyuki Tanaka

BIMSA

December 20, 2022

Introduct

Relational languages and quantifier rank

Elementary equivalence an ranks

Partial isomorphism

EF game

Scott-Hi formula

EF theore

Summary

Logic and Computation I -

- Part 1. Introduction to Theory of Computation
- Part 2. Propositional Logic and Computational Complexity
- Part 3. First Order Logic and Decision Problems

Part 3. Schedule

- Dec. 8, (1) What is first-order logic?
- Dec.13, (2) Skolem's theorem
- Dec.15, (3) Gödel's completeness theorem
- Dec.20, (4) Ehrenfeucht-Fraïssé's theorem
- Dec.22, (5) Presburger arithmetic
- Dec.27, (6) Peano arithmetic and Gödel's first incompleteness theorem

Ehrenfeucht-Fraïssé's theorem

K. Tanaka

troduction

Kelational languages and quantifier ran

Elementary equivalence a ranks

isomorphism

EE comos

Scott-Hintkl

formula

EF theore

Summa

Recap

2 Introduction

3 Relational languages and quantifier ranks

4 Elementary equivalence and ranks

5 Partial isomorphisms

6 EF games

Scott-Hintkka formula

8 EF theorem

9 Summary

Recap

Recap

ntroduct

Relational languages and quantifier rank

Elementary equivalence arranks

isomorphism

__

Scott-Hintk

EF theore

•

Elementary

• If a sentence σ can be proved from the set of sentences T, then σ is called a **theorem** of T, and written as $T \vdash \sigma$.

• A sentence φ is **true** in \mathcal{A} , written as $\mathcal{A} \models \varphi$ is defined by Tarski's clauses. \mathcal{A} is a **model** of T, denoted by $\mathcal{A} \models T$, if $\forall \varphi \in T \ (\mathcal{A} \models \varphi)$.

• Formal system of first-order logic: formal system of propositional logic + $\forall x \varphi(x) \rightarrow \varphi(t)$ (the quantification axiom) + the generalization inference rule

- φ holds in T, written as $T \models \varphi$, if $\forall \mathcal{A}(\mathcal{A} \models T \to \mathcal{A} \models \varphi)$.
- Compactness theorem. If a set T of sentences of first order logic is not satisfiable, then there exists some finite subset of T which is not satisfiable.
- Gödel's completeness theorem. In first order logic, $T \vdash \varphi \Leftrightarrow T \models \varphi$.
- Application of the compactness theorem

 - Connectivity of graphs cannot be expressed as a first-order formula.

Introduction

Relational languages and quantifier ranks

Elementary equivalence and ranks

Partial isomorphism

isomor pinisi

Er game

formula

EF theore

Summary

Introduction

- Model-theoretical research on first-order logic developed rapidly with the new proof of the completeness theorem by Henkin in 1949.
- One of the most important concepts is **elementary equivalence**. Two structures are elementary equivalent if they satisfy the same formulas.
- In the early 1950s, R. Fraïsse studied elementary equivalences using the back-forth argument. In the late 1950s, A. Ehrenfeucht, a student of A. Mostowski's, further reformulated it in terms of games.
- We refer the Ehrenfeucht-Fraïsse game and related theorems as EF games and EF theorems. Their results have been attracting a great deal of attention since the 1980s in relation to theory of computation.

Relational languages and quantifier ranks

Elementary equivalence and ranks

Partial isomorphism

--

Scott-Hintk formula

formula

Summanı

Relational languages

- In this section we assume that the language have <u>no function symbols</u> (other than constants).
- Because with function symbols, to make a substructure, we must pay attention to the closedness of its domain under the functions.
- However, the lack of functions is not a strong restriction. For example, addition + of $(\mathbb{N},+)$ can replaced by the following relation R.

$$R(n, m, k) \Leftrightarrow n + m = k$$

- Then, for any set $A \subset \mathbb{N}$, $(A, R \cap A^3)$ is always a substructure of $(\mathbb{N}, +)$.
- Note that for the set A of odd numbers, (A, +) is no longer a (sub)structure.

Recap

Introducti

Relational languages and quantifier ranks

Elementary equivalence and ranks

Partial isomorphisms

FF games

Summary

• We will consider a language of finitely many relation symbols and constants. So, let \mathcal{L} be $\{R_0, \ldots, R_{n-1}\}$, and consider its extensions by adding constants.

• The structure A in L can be expressed as

$$\mathcal{A} = (A, \mathbf{R}_0^{\mathcal{A}}, ..., \mathbf{R}_{n-1}^{\mathcal{A}}).$$

• Then, for any $B \subset A$, we define a substructure

$$\mathcal{A} \upharpoonright B = (B, \mathbf{R}_0^{\mathcal{A}} \cap B^{k_0}, \dots, \mathbf{R}_{n-1}^{\mathcal{A}} \cap B^{k_{n-1}}).$$

• By naming $\vec{a} = (a_1, \dots, a_k)$ of A^k by constants \vec{c} , we obtain a structure (\mathcal{A}, \vec{a}) in language $\mathcal{L} \cup \{\vec{c}\}$.

Relational

Relational languages and quantifier ranks

Elementary equivalence an ranks

isomorphism

rsomorphism ==

Scott-Hintk

Scott-Hintkk formula

EF theorer

Summa

The following definition applies to any language \mathcal{L} possibly with function symbols.

Definition (Quantifier Rank)

For a formula φ , the **(quantifier) rank** of φ , denoted as $qr(\varphi)$, is defined recursively as follows,

- qr(atomic formulas) = 0,
- $qr(\neg \varphi) = qr(\varphi), \qquad qr(\varphi \wedge \psi) = max\{qr(\varphi), qr(\psi)\},$
- $qr(\forall x\varphi) = qr(\exists x\varphi) = qr(\varphi) + 1.$

Example

The rank of the formula $\forall y(\forall x\exists y(x=y) \land \forall z(z>0))$ is 3.

Logic and Computation

K. Tanaka

Rec

ntroducti

Relational languages and quantifier ranks

Elementary equivalence a ranks

Partial isomorphism

--

Scott-Hint

FF theorem

Summary

Lemma (1)

Consider a finite relational language $\mathcal{L} = \{R_0, \dots, R_{l-1}\}$. For a fixed number n, there are essentially finitely many formulas with rank $\leq n$ in fixed free variables x_1, \dots, x_k .

Proof.

- We prove by induction on quantifier rank n.
- Suppose n = 0. Then a formula with rank 0 has no quantifiers.
- There are only essentially finitely many atomic formulas $R(w_1, \ldots, w_i)$, since \mathcal{L} is finite and w_1, \ldots, w_i are chosen from x_1, \ldots, x_k .
- There are only finitely many clauses (disjunctions ∨ of atomic formulas and their negations).
- There are only finitely many CNF's (conjunctions ∧ of clauses).
- Since any formula without quantifiers can be transformed into an equivalent CNF, there are essentially only finitely many formulas with rank 0 in $x_1, ..., x_k$.

Relational languages and quantifier ranks

Elementary equivalence arranks

isomorphism

EF games

Scott-Hin formula

EF theorem

Summary

- Induction Step. Assume that given k many variables (k is finite), there are only finitely many formulas with rank $\leq n$ in the variables.
- Let $\varphi(x_1,...,x_k)$ be any formula with rank n+1 in free variables $x_1,...,x_k$.
- Without loss of generality, we may assume that it is of the form $Qx_{k+1}\theta(x_1,...,x_k,x_{k+1})$, where x_{k+1} is a variable other than $x_1,...,x_k$.
- Then, $\theta(x_1,...,x_k,x_{k+1})$ is a formula of rank n in free variables $x_1,...,x_k,x_{k+1}$. By induction hypothesis, there are only finitely many such $\theta(x_1,...,x_k,x_{k+1})$.
- Therefore, there are only finitely many formulas of the form $Qx_{k+1}\theta(x_1,...,x_k,x_{k+1})$. Since the general formulas of rank n+1 in free variables $x_1,...,x_k$ are obtained from formulas of the form $Qx_{k+1}\theta(x_1,...,x_k,x_{k+1})$ by propositional connectives, there are only finitely many formulas with rank n+1 in free variables $x_1,...,x_k$, which can be shown in the same way as a CNF in the case of n=0.

The following definition also applies to a general language \mathcal{L} .

Definition

The **theory** of a structure \mathcal{A} in \mathcal{L} , denoted $\mathrm{Th}(\mathcal{A})$, is the set of sentences in \mathcal{L} that hold in \mathcal{A} . Two structures with the same theory are said to be **elementary equivalent**, denoted by $A \equiv B$. That is,

$$\mathcal{A} \equiv \mathcal{B} \quad \Leftrightarrow \quad \operatorname{Th}(\mathcal{A}) = \operatorname{Th}(\mathcal{B}) \quad \Leftrightarrow \quad \mathcal{B} \models \operatorname{Th}(\mathcal{A}).$$

• \mathcal{A} is an elementary substructure of \mathcal{B} , denoted as $\mathcal{A} \prec \mathcal{B}$, iff $\mathrm{Th}(\mathcal{A}_A) = \mathrm{Th}(\mathcal{B}_A)$, which implies $A \equiv B$

Definition

Let $Th_n(A)$ denote the subset of Th(A) consisting of sentences with $\leq n$. For structures \mathcal{A}, \mathcal{B} in the same language \mathcal{L} , a relation \equiv_n between them is defined as follows.

$$\mathcal{A} \equiv_n \mathcal{B} \Leftrightarrow \operatorname{Th}_n(\mathcal{A}) = \operatorname{Th}_n(\mathcal{B}).$$

Introducti

Relational languages and

Elementary equivalence an ranks

Partial isomorphisms

EF games

Scott-Hin

EF theore

Li tileorei

Summa

Definition

Let \mathcal{A}, \mathcal{B} be structures in \mathcal{L} . A partial function $f: A \to B$ is a **partial isomorphism** if $\mathcal{A} \upharpoonright \mathrm{dom}(f)$ and $\mathcal{B} \upharpoonright \mathrm{range}(f)$ are isomorphic via f.

If $dom(f) = \vec{a}$, then the above definition is equivalent to

$$(\mathcal{A}, \vec{a}) \equiv_0 (\mathcal{B}, f(\vec{a})).$$

It is obvious that "if $A \cong \mathcal{B}$, then $A \equiv \mathcal{B}$ ". Fraïssé showed a weak version of its reversal by using quantifier ranks. Ehrenfeucht reformulated Fraïssé's argument in terms of games. Now such a technique is referred to as the Ehrenfeucht-Fraïssé game (EF game).

Rec

Introduct

Relational languages and quantifier rank

Elementary equivalence and ranks

isomorphism

EF games

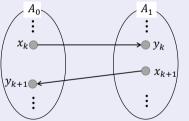
EF theore

Summa

Definition

Let A_0 , A_1 be structures of \mathcal{L} and n be a natural number. In an n-round **EF game**, $\mathrm{EF}_n(A_0,A_1)$, player I (Spoiler) and player II (Duplicator) alternately choose from A_i (i=0,1) obeying the rules described below, and the winner is determined according to the winning condition.

- ullet Rules: if I chooses $x_i \in A_j \ (j=0,1)$, II chooses $y_i \in A_{1-j}$.
- Winning conditions: If the correspondence $x_i \leftrightarrow y_i$ chosen by the players up to n rounds determines a partial isomorphism of \mathcal{A}_0 and \mathcal{A}_1 , then II wins.



K. Tanaka

D---

Introduct

Relational languages and

Elementary equivalence and ranks

isomorphisms

EF games

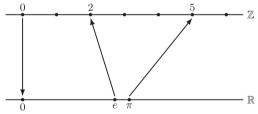
ee a

EF theore

Summary

Example: $\mathsf{EF}_3((\mathbb{Z},<),(\mathbb{R},<))$

- Consider $\mathsf{EF}_3(\mathcal{A},\mathcal{B})$ where $\mathcal{A}=(\mathbb{Z},<),\mathcal{B}=(\mathbb{R},<).$
- In the following, $e \in \mathbb{R} \to 2 \in \mathbb{Z}$ represents that player I selects $e \in \mathbb{R}$ and then player II chooses $2 \in \mathbb{Z}$.
- For example, if $e \in \mathbb{R} \to 2 \in \mathbb{Z}$; $0 \in \mathbb{Z} \to 0 \in \mathbb{R}$; $\pi \in \mathbb{R} \to 5 \in \mathbb{Z}$ are produced in the game, player II wins because $\{(0,0),(2,e),(5,\pi)\}$ is a partial isomorphism (order preserving).



EF games

Definition

 $\mathcal{A} \simeq^n \mathcal{B}$ if player II has a winning strategy in $\mathrm{EF}_n(\mathcal{A},\mathcal{B})$.

Note that if $A \simeq^n B$ then $B \simeq^n A$. We can easily show the following lemma.

Lemma (2)

Let \mathcal{A} and \mathcal{B} be structures of the same language.

$$(\mathcal{A}, \vec{a}) \simeq^0 (\mathcal{B}, \vec{b}) \Leftrightarrow \vec{a} \mapsto \vec{b}$$
 is partial isomorphism.

$$\Leftrightarrow (\mathcal{A}, \vec{a}) \equiv_0 (\mathcal{B}, \vec{b}).$$

$$(\mathcal{A},\vec{a}) \simeq^{n+1} (\mathcal{B},\vec{b}) \Leftrightarrow \ \forall a \in A \exists b \in B(\mathcal{A},\vec{a}a) \simeq^n (\mathcal{B},\vec{b}b) \text{ and }$$

$$\forall b \in B \exists a \in A(\mathcal{A}, \vec{a}a) \simeq^n (\mathcal{B}, \vec{b}b)$$

Logic and Computation

K. Tanaka

Reca

Introduct

Relational languages and

Elementary equivalence an ranks

Partial isomorphism:

EF game

Scott-Hintkka

formula

Summa

As you might expect from the above lemma, $A \simeq^n \mathcal{B}$ and $A \equiv_n \mathcal{B}$ are equivalent, which is the essence of the EF theorem. To this end, we introduce the Scott-Hintikka formulas.

Definition (Scott-Hintikka Formula)

For a structure \mathcal{A} and a sequence of elements \vec{a} , the **Scott-Hintikka formula** of rank n, $\varphi^n_{\mathcal{A},\vec{a}}(\vec{x})$, is defined inductively as follows.

$$\varphi^0_{\mathcal{A},\vec{a}}(\vec{x}) = \bigwedge \{ \theta(\vec{x}) : (\mathcal{A},\vec{a}) \models \theta(\vec{c}), \operatorname{qr}(\theta(\vec{x})) = 0 \}.$$

$$\varphi_{\mathcal{A},\vec{a}}^{n+1}(\vec{x}) = \bigwedge_{a \in A} \exists x \varphi_{\mathcal{A},\vec{a}a}^{n}(\vec{x},x) \land \forall x \bigvee_{a \in A} \varphi_{\mathcal{A},\vec{a}a}^{n}(\vec{x},x).$$

- When we write $(A, \vec{a}) \models \theta(\vec{c})$, \vec{c} are new constants interpreted as \vec{a} .
- In the above definition, even if A is infinite, by Lemma (1), there are finitely many formulas in the scopes of \bigwedge , \bigvee . So, the Scott-Hintikka formula can be defined as an first-order formula.

Elementary equivalence an ranks

isomorphism

EF games

Scott-Hintkka formula

EF theore

EF theore

Lemma (3)

 $(\mathcal{A}, \vec{a}) \models \varphi_{\mathcal{A}, \vec{a}}^n(\vec{c}).$

Proof

- When n=0, it is clear from the definition.
- Then, we want to show $(\mathcal{A}, \vec{a}) \models \varphi_{\mathcal{A}, \vec{a}}^{n+1}(\vec{c})$ from the induction hypothesis. We first consider $\bigwedge_{a \in A} \exists x \varphi_{\mathcal{A}, \vec{a}a}^n(\vec{c}, x)$, which is the left component of the definition formula of $\varphi_{\mathcal{A}, \vec{a}}^{n+1}(\vec{c})$.
- For every $a \in A$, letting x = a, we have $\varphi^n_{\mathcal{A},\vec{a}a}(\vec{c},c)$, which holds in $(\mathcal{A},\vec{a}a)$ from the induction hypothesis. So, the left formula holds for $(\mathcal{A},\vec{a}a)$.
- We next consider the right formula $\forall x \bigvee_{a \in A} \varphi_{\mathcal{A}, \vec{a}a}^n(\vec{c}, x)$. Let x be an arbitrary $a \in A$, and then select the same a for the $\bigvee_{a \in A}$, we have $\varphi_{\mathcal{A}, \vec{a}a}^n(\vec{c}, c)$, which also holds from the induction hypothesis. So, the right formula also holds for $(\mathcal{A}, \vec{a}a)$.
- Therefore, the conjunction of both formulas holds in $(\mathcal{A}, \vec{a}a)$.

Logic and Computation K. Tanaka

Theorem (Ehrenfeucht-Fraiss theorem, EF theorem)

FF theorem

 $\forall a \in A \exists b \in B(\mathcal{B}, \vec{b}b) \models \varphi_{A, \vec{a}a}^{n}(\vec{c}, c) \land \forall b \in B \exists a \in A(\mathcal{B}, \vec{b}b) \models \varphi_{A, \vec{a}a}^{n}(\vec{c}, c)$

By the induction hypothesis, we have

By the Lemma (2), we obtain

of the Scott-Hintikka formula.

Thus, (3) also holds for n+1.

For all $n \ge 0$, the following are equivalent. (1) $(\mathcal{A}, \vec{a}) \equiv_n (\mathcal{B}, \vec{b}),$ (2) $(\mathcal{B}, \vec{b}) \models \varphi^n_{\mathcal{A}, \vec{c}}(\vec{c}),$ (3) $(\mathcal{A}, \vec{a}) \simeq^n (\mathcal{B}, \vec{b}).$

Proof. (1) \Rightarrow (2). It is obvious from the Lemma (3), since $qr(\varphi_{\vec{A}\vec{c}}^n(\vec{x})) = n$.

To show (2) \Rightarrow (3). By induction on n. For n = 0, (2) \Rightarrow (\mathcal{A}, \vec{a}) $\equiv_0 (\mathcal{B}, \vec{b}) \Rightarrow$ (3).

For induction step, assume (2) \Rightarrow (3) for n as well as $(\mathcal{B}, \vec{b}) \models \varphi_{A\vec{d}}^{n+1}(\vec{c})$. From the definition

 $\forall a \in A \exists b \in B(\mathcal{A}, \vec{a}a) \simeq^n (\mathcal{B}, \vec{b}b) \land \forall b \in B \exists a \in A(\mathcal{A}, \vec{a}a) \simeq^n (\mathcal{B}, \vec{b}b).$

 $(\mathcal{A}, \vec{a}) \simeq^{n+1} (\mathcal{B}, \vec{b}).$

4 D > 4 D > 4 E > 4 E > E 990

Introduct

Relational

Elementary equivalence and ranks

Partial isomorphisms

isomorphism

Li gaine.

Scott-Hir

EF theorem

Summar

To show (3) \Rightarrow (1). By induction on n.

- Case n = 0 follows from Lemma (2).
- For induction step, assume (3) \Rightarrow (1) for n as well as $(\mathcal{A}, \vec{a}) \simeq^{n+1} (\mathcal{B}, \vec{b})$. To show $(\mathcal{A}, \vec{a}) \equiv_{n+1} (\mathcal{B}, \vec{b})$, the essential case to check is a formula $\varphi(\vec{x}) = \exists x \psi(\vec{x}, x)$ with $\operatorname{qr}(\psi(\vec{x}, x)) = n$.
- Suppose $(\mathcal{A}, \vec{a}) \models \varphi(\vec{c})$. Then, there exists $a \in A$ such that $(\mathcal{A}, \vec{a}a) \models \psi(\vec{c}, c)$.
- Since $(\mathcal{A}, \vec{a}) \simeq^{n+1} (\mathcal{B}, \vec{b})$, by Lemma (2), there exists a $b \in B$ such that $(\mathcal{B}, \vec{b}b) \models \psi(\vec{c}, c)$.
- Thus $(\mathcal{B}, \vec{b}) \models \varphi(\vec{c})$. This proves $\operatorname{Th}_{n+1}(\mathcal{A}, \vec{a}) \subset \operatorname{Th}_{n+1}(\mathcal{B}, \vec{b})$. Similarly, we have $\operatorname{Th}_{n+1}(\mathcal{A}, \vec{a}) \supset \operatorname{Th}_{n+1}(\mathcal{B}, \vec{b})$, and so (1) holds.

K. Tanaka

FF theorem

Corollary

 $\mathcal{A} \equiv \mathcal{B} \Leftrightarrow \text{for any } n, \ \mathcal{A} \simeq^n \mathcal{B}.$

It is natural to extend the play of the EF game to infinity (ω -round). Such a game is denoted as $\mathrm{EF}_{\omega}(\mathcal{A},\mathcal{B})$. We write $\mathcal{A} \simeq^{\omega} \mathcal{B}$ if player II has a winning strategy in $\mathrm{EF}_{\omega}(\mathcal{A},\mathcal{B})$.

Corollary

Suppose \mathcal{A}, \mathcal{B} are countable. Then, $\mathcal{A} \simeq^{\omega} \mathcal{B} \Leftrightarrow \mathcal{A} \simeq \mathcal{B}$.

Proof. \Leftarrow is obvious because the isomorphism is a winning strategy for player II. \Rightarrow is shown by the back-and-forth argument. Let $A = \{a_0, a_1, \dots\}, B = \{b_0, b_1, \dots\}.$ Player II follows the winning strategy, and Player I alternately chooses the smallest element that have not been selected from A and B, thus a bijection between A and B is produced. which is a desired isomorphism.

K. Tanaka

Corollary

For each n, there are finitely many equivalence classes of \mathcal{L} -structure by \equiv_n .

Proof By Lemma (1), there are essentially finitely many Scott-Hintikka sentences $\varphi_{\mathcal{A},\varnothing}^n$ with rank n. By the EF theorem, each \equiv_n equivalence class is characterized by such a sentence, and so there are only a finite number of them.

Corollary

Let K be a set of \mathcal{L} -structures. The following are equivalent.

- (1) For any n, there exist $A \in K$ and $B \notin K$ such that $A \equiv_n B$.
- (2) K is not an elementary class (K cannot be defined by a first-order formula).

Proof.

- (1) \Rightarrow (2). By way of contraposition, assume K is defined by a first-order sentence φ . Let n be the rank of φ . If $A \in K$ and $B \notin K$ then $A \not\equiv_n B$.
- (2) \Rightarrow (1). By way of contraposition, assume that for some n, if $\mathcal{A} \equiv_n \mathcal{B}$ then $\mathcal{A} \in K \Leftrightarrow \mathcal{B} \in K$. Since there is a first-order (Scott-Hintikka) sentence $\varphi^n_{\mathcal{A}}$ of rank n such that $\mathcal{A} \equiv_n \mathcal{C} \Leftrightarrow \mathcal{C} \models \varphi^n_{\mathcal{A}}$, K is defined by $\varphi^n_{\mathcal{A}}$.

FF theorem

ntroducti

Relational languages and

Elementary equivalence an ranks

isomorphism

EF games

formula

EF theorer

Summary

Summary

- We consider a language of finitely many relation symbols and constants.
- The (quantifier) rank of a formula measures the entanglement of quantifiers appearing in it. For example, the rank of $\forall y(\forall x \exists y(x=y) \land \forall z(z>0))$ is 3.
- By $\mathcal{A} \equiv_n \mathcal{B}$, we mean that structures \mathcal{A}, \mathcal{B} satisfy the same formulas with rank $\leq n$.
- There are essentially finitely many formulas with rank $\leq n$ in fixed free variables $x_1,...,x_k$. Thus we can define the **Scott-Hintikka sentence** $\varphi^n_{\mathcal{A}}$ of rank n such that $\mathcal{A} \equiv_n \mathcal{C} \Leftrightarrow \mathcal{C} \models \varphi^n_{\mathcal{A}}$.
- By $A \simeq^n B$, we mean that player II has a winning strategy in $EF_n(A, B)$.
- **EF theorem** For all $n \geq 0$, $A \equiv_n B$ iff $A \simeq^n B$.
- Corollary The following are equivalent.
 - (1) For any n, there exist $A \in K$ and $B \notin K$ such that $A \equiv_n B$.
 - (2) K is not an elementary class (K cannot be defined by a first-order formula).

Further readings

Jouko Väänänen, Models and Games, Cambridge University Press, 2011.

Introduct

Relational languages and

Elementary equivalence and

Partial

isomorphism

EF games

Scott-Hint

EE theeres

Summary

Thank you for your attention!