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® Part 1. Introduction to Theory of Computation
® Part 2. Propositional Logic and Computational Complexity
® Part 3. First Order Logic and Decision Problems

s Part 3. Schedule

N
® Dec. 8, (1) What is first-order logic?
® Dec.13, (2) Skolem's theorem
® Dec.15, (3) Godel's completeness theorem
® Dec.20, (4) Ehrenfeucht-Fraissé's theorem
® Dec.22, (5) Presburger arithmetic
L ® Dec.27, (6) Peano arithmetic and Godel's first incompleteness theorem )
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Recap

Recap

Formal system of first-order logic: formal system of propositional logic +
Vao(x) = o(t) (the quantification axiom) + the generalization inference rule

If a sentence o can be proved from the set of sentences 7', then o is called a theorem
of T', and written as T' I o.

A sentence ¢ is true in A, written as A = ¢ is defined by Tarski's clauses. A is a
model of T, denoted by A =T, if Vo € T (A | ¢).

@ holds in T', written as T' |= ¢, f VAL ET — A E ¢).

Compactness theorem. If a set T of sentences of first order logic is not satisfiable,
then there exists some finite subset of 1" which is not satisfiable.

Godel’s completeness theorem. In first order logic, T FH o < T = .

Application of the compactness theorem

> Existence of non-standard models of arithmetic

> Existence of arbitrarily large models

> Connectivity of graphs cannot be expressed as a first-order formula.
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Introduction

Introduction

Model-theoretical research on first-order logic developed rapidly with the new proof of
the completeness theorem by Henkin in 1949.

One of the most important concepts is elementary equivalence. Two structures are
elementary equivalent if they satisfy the same formulas.

In the early 1950s, R. Fraisse studied elementary equivalences using the back-forth
argument. In the late 1950s, A. Ehrenfeucht, a student of A. Mostowski's, further
reformulated it in terms of games.

We refer the Ehrenfeucht-Fraisse game and related theorems as EF games and EF
theorems. Their results have been attracting a great deal of attention since the 1980s
in relation to theory of computation.
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Relational
languages and
quantifier ranks

Relational languages

In this section we assume that the language have no function symbols (other than

constants).

Because with function symbols, to make a substructure, we must pay attention to the

closedness of its domain under the functions.

However, the lack of functions is not a strong restriction. For example, addition + of

(N,+) can replaced by the following relation R.

R(n,m,k) &n+m=k
Then, for any set A C N, (A4, RN A3) is always a substructure of (N, +).

Note that for the set A of odd numbers, (A, +) is no longer a (sub)structure.
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Relational
languages and
quantifier ranks

We will consider a language of finitely many relation symbols and constants. So, let £

be {Ro,...,Rn-1}, and consider its extensions by adding constants.

The structure A in £ can be expressed as

A= (AR .., RA ).

Then, for any B C A, we define a substructure

AlB = (B,Ry'n B* .

A
R

L N By,

By naming @ = (ay,--- ,ay) of AF by constants ¢, we obtain a structure (A, @) in

language £ U {c}.
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The following definition applies to any language £ possibly with function symbols.

S Definition (Quantifier Rank)

languages and
quantifier ranks

For a formula ¢, the (quantifier) rank of ¢, denoted as qr(y), is defined recursively as
follows,

® gr(atomic formulas) = 0,

* ar(—p) =ar(e),  ar(eAy) = max{ar(p), ar(y)},

* ar(Vay) = qr(3ze) = ar(e) + 1.

Example
[The rank of the formula Vy(Vz3y(z = y) AVz(z > 0)) is 3. ]
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Consider a finite relational language £ = {Ro,...,Ri_1}. For a fixed number n, there are
essentially finitely many formulas with rank < n in fixed free variables x1, ..., .

Relational

languages and Proof

quantifier ranks

® We prove by induction on quantifier rank n.
® Suppose n = 0. Then a formula with rank 0 has no quantifiers.

® There are only essentially finitely many atomic formulas R(wy, ..., w;), since L is
finite and w1, ..., w; are chosen from xz1, ..., x}.

® There are only finitely many clauses (disjunctions V of atomic formulas and their
negations).

® There are only finitely many CNF's (conjunctions A of clauses).

® Since any formula without quantifiers can be transformed into an equivalent CNF,
there are essentially only finitely many formulas with rank 0 in zq, ..., k.
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Relational
languages and
quantifier ranks

Induction Step. Assume that given k many variables (k is finite), there are only
finitely many formulas with rank < n in the variables.

Let ¢(x1, ..., k) be any formula with rank n 4 1 in free variables 1, ..., 2.

Without loss of generality, we may assume that it is of the form
Qzi410(21, ..., Tk, Tht1), Where x4 1 is a variable other than x1, ..., zy.

Then, (x4, ..., 2k, Tk4+1) is a formula of rank n in free variables x4, ..., xg, Tx11. By
induction hypothesis, there are only finitely many such (z1, ..., Tk, Tgp41).

Therefore, there are only finitely many formulas of the form Qzp410(z1, ..., Tk, Tit1)-
Since the general formulas of rank n + 1 in free variables 1, ...,z are obtained from
formulas of the form Qxy4+16(z1, ..., Tk, Xx4+1) by propositional connectives, there are
only finitely many formulas with rank n + 1 in free variables 1, ..., x, which can be
shown in the same way as a CNF in the case of n = 0. g
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Elementary
equivalence and
ranks

The following definition also applies to a general language L.
Definition

The theory of a structure A in £, denoted Th(.A), is the set of sentences in £ that hold in

A. Two structures with the same theory are said to be elementary equivalent, denoted
by A= B. That is,
A=B & Th(A)=Th(B) < BETh(A).

® Ais an elementary substructure of B, denoted as A < B, iff Th(A4) = Th(B4),
which implies A = B

Definition
Let Th, (A) denote the subset of Th(.A) consisting of sentences with < n. For structures
A, B in the same language L, a relation =,, between them is defined as follows.

A=, B Thy(A) = Th,(B).
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Partial
isomorphisms

Definition
Let A, B be structures in £. A partial function f: A — B is a partial isomorphism if
A [dom(f) and B|range(f) are isomorphic via f.

If dom(f) = @, then the above definition is equivalent to

It is obvious that “if A = B, then A = B". Fraissé showed a weak version of its reversal by
using quantifier ranks. Ehrenfeucht reformulated Fraissé's argument in terms of games.
Now such a technique is referred to as the Ehrenfeucht-Fraissé game (EF game).
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Definition
Let Ag, Ay be structures of £ and n be a natural number. In an n-round EF game,
EF,, (Ao, A1), player | (Spoiler) and player Il (Duplicator) alternately choose from A;
(¢ =0,1) obeying the rules described below, and the winner is determined according to the
winning condition.
¢ Rules: if | chooses z; € A; (j =0,1), Il chooses
Yi € Alfj.

EF games

e Winning conditions: If the correspondence
x; <> y; chosen by the players up to n rounds de-
termines a partial isomorphism of Ay and Ay, then
Il wins.
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EF games

~ Example: EF3((Z, <), (R, <))

~
e Consider EF5(A, B) where A = (Z,<),B = (R, <).
® In the following, ¢ € R — 2 € Z represents that player | selects ¢ € R and then
player Il chooses 2 € Z.
® Forexample,ifec R—=2€Z; 06¢Z—0€R; m€R—5 € Z are produced
in the game, player Il wins because {(0,0), (2,¢e), (5,7)} is a partial isomorphism
(order preserving).
0 2 5 7
0 em E
- J
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Definition
A ~™ B if player Il has a winning strategy in EF,,(A, B).

Note that if A ~™ B then B ~™ A. We can easily show the following lemma.

Lemma (2)

Let A and B be structures of the same language.

o (A, @) ~° (B,b) & @+ bis partial isomorphism.
& (A,3) =0 (B,b).
(A, @) ~" (B,b) & Va e A3b € B(A,da) ~" (B,bb) and

Vb € Ba € A(A,da) ~" (B, bb)
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Scott-Hintkka
formula

As you might expect from the above lemma, A ~" B and A =,, BB are equivalent, which is
the essence of the EF theorem. To this end, we introduce the Scott-Hintikka formulas.

Definition (Scott-Hintikka Formula)

For a structure A and a sequence of elements @, the Scott-Hintikka formula of rank n,
@7 a(Z), is defined inductively as follows.

Pha(@ = \{6(@) : (A4,3) F 6(9), ar(6(2)) = 0}

(JDT_,ZJrl /\ HxSD.A aa(‘r .’L‘ /\VLL‘ \/ QD.A aa :E .’IJ)
acA a€A

® When we write (A, @) = 0(¢), € are new constants interpreted as d.

® In the above definition, even if A is infinite, by Lemma (1), there are finitely many

formulas in the scopes of A,\/. So, the Scott-Hintikka formula can be defined as an
first-order formula.
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Scott-Hintkka
formula

Lemma (3)
(A, @) ¢ 7(0).
Proof

When n = 0, it is clear from the definition.
Then, we want to show (A, d) = go%”al (€) from the induction hypothesis. We first

consider A\ ¢ 4 31¢" 4, (C, ), which is the left component of the definition formula of
Pz (©):

For every a € A, letting © = a, we have @ﬁ@a(cf ¢), which holds in (A, da) from the
induction hypothesis. So, the left formula holds for (A, da).

We next consider the right formula Va'\/ . 4 7 ,(¢.2). Let = be an arbitrary a € A,
and then select the same a for the \/,_ 4, we have ¢ (¢, c), which also holds from
the induction hypothesis. So, the right formula also holds for (A, da).

Therefore, the conjunction of both formulas holds in (A, da). O
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EF theorem

Theorem (Ehrenfeucht-Fraiss theorem, EF theorem)
For all n > 0, the following are equivalent.

(1) (A @) =, (B,b), (2) (B,b) = ¢ 4(0), (3) (A, @) =" (B,b).

Proof. (1) =(2). It is obvious from the Lemma (3), since qr(¢”y (7)) =

To show (2) =(3). By induction on n.For n =0, (2)= (A @) =o (B,b) = ( ).

For induction step, assume (2) =(3) for n as well as (B,b) |= go"“(é’) From the definition
of the Scott-Hintikka formula,

Va € A3b € B(B,bb) |= ¢y 40(Gc) A Vb€ Bla € A(B,bb) | " 44(C.c)
By the induction hypothesis, we have
Va € A3b € B(A,da) ~" (B,bb) A Vb e Bla € A(A,da) ~" (B,bb).

By the Lemma (2), we obtain
(A, @) ="t (B,b).
Thus, (3) also holds for n + 1.
18/23
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To show (3) =(1). By induction on n.
® Case n = 0 follows from Lemma (2).

e For induction step, assume (3) = (1) for n as well as (A, @) ~"*! (B,b). To show
(A, @) =n41 (B,b), the essential case to check is a formula ¢(Z) = Jzp (&, ) with

qr((Z,x)) = n.
® Suppose (A, @) = ¢(¢). Then, there exists a € A such that (A, da) = (¢, c).

e Since (A, @) ~"*! (B,b), by Lemma (2), there exists a b € B such that
e (B,Bb) = (Z.)

-,

e Thus (B,b) = (). This proves Thy,41(A,@) C Thy,,1(B,b). Similarly, we have

-,

Thy,41(A, @) D Thy,1(B,b), and so (1) holds. O
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EF theorem

Corollary
A =B & forany n, A~"B.

It is natural to extend the play of the EF game to infinity (w-round). Such a game is
denoted as EF, (A, B). We write A ~* B if player |l has a winning strategy in EF (A, B).

Corollary
Suppose A, B are countable. Then, A~ B & A~ B.

Proof. < is obvious because the isomorphism is a winning strategy for player II.

= is shown by the back-and-forth argument. Let A = {ag,a1,...}, B = {bo,b1,...}.
Player Il follows the winning strategy, and Player | alternately chooses the smallest element
that have not been selected from A and B, thus a bijection between A and B is produced,
which is a desired isomorphism. O
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e For each n, there are finitely many equivalence classes of L-structure by =,,.

Proof By Lemma (1), there are essentially finitely many Scott-Hintikka sentences ¢’}
with rank n. By the EF theorem, each =,, equivalence class is characterized by such a
sentence, and so there are only a finite number of them. O

Corollary

Let K be a set of L-structures. The following are equivalent.
(1) For any n, there exist A € K and B ¢ K such that A=, B.

(2) K is not an elementary class (K cannot be defined by a first-order formula).

EF theorem
Proof.
® (1) =(2). By way of contraposition, assume K is defined by a first-order sentence ¢.
Let n be the rank of . If A € K and B ¢ K then A %, B.

® (2) =(1). By way of contraposition, assume that for some n, if A =,, B then
A€ K & B e K. Since there is a first-order (Scott-Hintikka) sentence ¢ of rank n
such that A =, C & C = ¢", K is defined by ¢7. O
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® We consider a language of finitely many relation symbols and constants.

® The (quantifier) rank of a formula measures the entanglement of quantifiers appearing
in it. For example, the rank of Vy(Vz3y(x = y) AVz(z > 0)) is 3.

® By A =, B, we mean that structures A, B satisfy the same formulas with rank < n.

® There are essentially finitely many formulas with rank < n in fixed free variables
Z1,...,Tk. Thus we can define the Scott-Hintikka sentence ¢’} of rank n such that
A=,C&CE ¢y

® By A ~" 3, we mean that player Il has a winning strategy in EF,,(A, B).

® EF theorem For alln >0, A=, Biff A~" B.

Summary °

Corollary The following are equivalent.
(1) For any n, there exist A € K and B ¢ K such that A=, B.

(2) K is not an elementary class (K cannot be defined by a first-order formula).

Further readings

Jouko Vaananen, Models and Games, Cambridge University Press, 2011.
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Thank you for your attention!
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