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Logic and Computation I� �
• Part 1. Introduction to Theory of Computation

• Part 2. Propositional Logic and Computational Complexity

• Part 3. First Order Logic and Decision Problems� �
Part 3. Schedule� �
• Dec. 8, (1) What is first-order logic?

• Dec.13, (2) Skolem’s theorem

• Dec.15, (3) Gödel’s completeness theorem

• Dec.20, (4) Ehrenfeucht-Fräıssé’s theorem

• Dec.22, (5) Presburger arithmetic

• Dec.27, (6) Peano arithmetic and Gödel’s first incompleteness theorem� �
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Recap
• Formal system of first-order logic: formal system of propositional logic +
∀xφ(x) → φ(t) (the quantification axiom) + the generalization inference rule

• If a sentence σ can be proved from the set of sentences T , then σ is called a theorem
of T , and written as T ⊢ σ.

• A sentence φ is true in A, written as A |= φ is defined by Tarski’s clauses. A is a
model of T , denoted by A |= T , if ∀φ ∈ T (A |= φ).

• φ holds in T , written as T |= φ, if ∀A(A |= T → A |= φ).

• Compactness theorem. If a set T of sentences of first order logic is not satisfiable,
then there exists some finite subset of T which is not satisfiable.

• Gödel’s completeness theorem. In first order logic, T ⊢ φ⇔ T |= φ.

• Application of the compactness theorem
▷ Existence of non-standard models of arithmetic
▷ Existence of arbitrarily large models
▷ Connectivity of graphs cannot be expressed as a first-order formula.
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Introduction

• Model-theoretical research on first-order logic developed rapidly with the new proof of
the completeness theorem by Henkin in 1949.

• One of the most important concepts is elementary equivalence. Two structures are
elementary equivalent if they satisfy the same formulas.

• In the early 1950s, R. Fräısse studied elementary equivalences using the back-forth
argument. In the late 1950s, A. Ehrenfeucht, a student of A. Mostowski’s, further
reformulated it in terms of games.

• We refer the Ehrenfeucht-Fräısse game and related theorems as EF games and EF
theorems. Their results have been attracting a great deal of attention since the 1980s
in relation to theory of computation.
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Relational languages

• In this section we assume that the language have no function symbols (other than
constants).

• Because with function symbols, to make a substructure, we must pay attention to the
closedness of its domain under the functions.

• However, the lack of functions is not a strong restriction. For example, addition + of
(N,+) can replaced by the following relation R.

R(n,m, k) ⇔ n+m = k

• Then, for any set A ⊂ N, (A,R ∩A3) is always a substructure of (N,+).

• Note that for the set A of odd numbers, (A,+) is no longer a (sub)structure.
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• We will consider a language of finitely many relation symbols and constants. So, let L
be {R0, . . . ,Rn−1}, and consider its extensions by adding constants.

• The structure A in L can be expressed as

A = (A,RA
0 , ...,R

A
n−1).

• Then, for any B ⊂ A, we define a substructure

A↾B = (B,RA
0 ∩Bk0 , . . . ,RA

n−1 ∩Bkn−1).

• By naming a⃗ = (a1, · · · , ak) of Ak by constants c⃗, we obtain a structure (A, a⃗) in
language L ∪ {c⃗}.
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The following definition applies to any language L possibly with function symbols.

Definition (Quantifier Rank)

For a formula φ, the (quantifier) rank of φ, denoted as qr(φ), is defined recursively as
follows,

• qr(atomic formulas) = 0,

• qr(¬φ) = qr(φ), qr(φ ∧ ψ) = max{qr(φ), qr(ψ)},
• qr(∀xφ) = qr(∃xφ) = qr(φ) + 1.

Example� �
The rank of the formula ∀y(∀x∃y(x = y) ∧ ∀z(z > 0)) is 3.� �
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Lemma (1)

Consider a finite relational language L = {R0, . . . ,Rl−1}. For a fixed number n, there are
essentially finitely many formulas with rank ≤ n in fixed free variables x1, ..., xk.

Proof.

• We prove by induction on quantifier rank n.

• Suppose n = 0. Then a formula with rank 0 has no quantifiers.

• There are only essentially finitely many atomic formulas R(w1, . . . , wi), since L is
finite and w1, . . . , wi are chosen from x1, ..., xk.

• There are only finitely many clauses (disjunctions ∨ of atomic formulas and their
negations).

• There are only finitely many CNF’s (conjunctions ∧ of clauses).

• Since any formula without quantifiers can be transformed into an equivalent CNF,
there are essentially only finitely many formulas with rank 0 in x1, ..., xk.
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• Induction Step. Assume that given k many variables (k is finite), there are only
finitely many formulas with rank ≤ n in the variables.

• Let φ(x1, ..., xk) be any formula with rank n+ 1 in free variables x1, ..., xk.

• Without loss of generality, we may assume that it is of the form
Qxk+1θ(x1, ..., xk, xk+1), where xk+1 is a variable other than x1, ..., xk.

• Then, θ(x1, ..., xk, xk+1) is a formula of rank n in free variables x1, ..., xk, xk+1. By
induction hypothesis, there are only finitely many such θ(x1, ..., xk, xk+1).

• Therefore, there are only finitely many formulas of the form Qxk+1θ(x1, ..., xk, xk+1).
Since the general formulas of rank n+ 1 in free variables x1, ..., xk are obtained from
formulas of the form Qxk+1θ(x1, ..., xk, xk+1) by propositional connectives, there are
only finitely many formulas with rank n+ 1 in free variables x1, ..., xk, which can be
shown in the same way as a CNF in the case of n = 0. □
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The following definition also applies to a general language L.

Definition

The theory of a structure A in L, denoted Th(A), is the set of sentences in L that hold in
A. Two structures with the same theory are said to be elementary equivalent, denoted
by A ≡ B. That is,

A ≡ B ⇔ Th(A) = Th(B) ⇔ B |= Th(A).

• A is an elementary substructure of B, denoted as A ≺ B, iff Th(AA) = Th(BA),
which implies A ≡ B

Definition

Let Thn(A) denote the subset of Th(A) consisting of sentences with ≤ n. For structures
A,B in the same language L, a relation ≡n between them is defined as follows.

A ≡n B ⇔ Thn(A) = Thn(B).
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Definition

Let A,B be structures in L. A partial function f : A→ B is a partial isomorphism if
A↾dom(f) and B ↾range(f) are isomorphic via f .

If dom(f) = a⃗, then the above definition is equivalent to

(A, a⃗) ≡0 (B, f (⃗a)).

It is obvious that “if A ∼= B, then A ≡ B”. Fräıssé showed a weak version of its reversal by
using quantifier ranks. Ehrenfeucht reformulated Fräıssé’s argument in terms of games.
Now such a technique is referred to as the Ehrenfeucht-Fräıssé game (EF game).
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Definition

Let A0, A1 be structures of L and n be a natural number. In an n-round EF game,
EFn(A0,A1), player I (Spoiler) and player II (Duplicator) alternately choose from Ai

(i = 0, 1) obeying the rules described below, and the winner is determined according to the
winning condition.

• Rules: if I chooses xi ∈ Aj (j = 0, 1), II chooses
yi ∈ A1−j .

• Winning conditions: If the correspondence
xi ↔ yi chosen by the players up to n rounds de-
termines a partial isomorphism of A0 and A1, then
II wins.

𝐴𝐴0 𝐴𝐴1

𝑥𝑥𝑘𝑘 𝑦𝑦𝑘𝑘

𝑥𝑥𝑘𝑘+1𝑦𝑦𝑘𝑘+1

⋮ ⋮

⋮ ⋮
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Example: EF3((Z, <), (R, <))� �
• Consider EF3(A,B) where A = (Z, <),B = (R, <).
• In the following, e ∈ R → 2 ∈ Z represents that player I selects e ∈ R and then
player II chooses 2 ∈ Z.

• For example, if e ∈ R → 2 ∈ Z; 0 ∈ Z → 0 ∈ R; π ∈ R → 5 ∈ Z are produced
in the game, player II wins because {(0, 0), (2, e), (5, π)} is a partial isomorphism
(order preserving).

計算理論と数理論理学
xft0267-03.ps : 0022 : 2022/5/13(12:23:36)

116 第 3章 1階論理と決定問題

が，以下に述べる規則に従って，交互に Aもしくは B の元を選び，nラウン
ドで下記の条件によって勝敗を決めるものである．

（規則） Iが Aまたは Bの元 xi を選ぶときに，IIは逆に Bまたは Aの元
yiを選ぶ．

（勝敗条件） nラウンドまでのプレーによって定まる関数 xi ↔ yi がAと
Bの部分同型であれば，IIが勝つ．

例 5 A = (Z, <), B = (R, <)として，EF3(A,B)を考える．例えば，図 3.1

のように，3ラウンドで e ∈ R → 2 ∈ Z；0 ∈ Z → 0 ∈ R；π ∈ R → 5 ∈ Z
が選ばれた場合，{(0, 0), (2, e), (5, π)}は部分同型（順序を保存する）なので，
プレーヤー IIが勝つ．

図 3.1 EF3((Z, <), (R, <))

定義 3.23 プレーヤー IIが EFn(A,B)において必勝戦略をもつことを，A
�n Bと書く．

まず，A �n Bならば B �n Aであることに注意したい．次の補題も容易に
示せる．

補題 3.24 Aと Bを同じ言語の構造とする．
(1) (A,	a) �0 (B,	b) ⇔ 	a �→ 	bは部分同型⇔ (A,	a) ≡0 (B,	b)．

計算理論と数理論理学
xft0267-03.ps : 0023 : 2022/5/13(12:23:36)

3.3 エーレンフォイヒト・フライセのゲーム 117

(2) (A,	a) �n+1 (B,	b) ⇔ ∀a ∈ A∃b ∈ B(A,	aa) �n (B,	bb)
かつ ∀b ∈ B∃a ∈ A(A,	aa) �n (B,	bb)．

この補題からも予想されるように，A �n BとA ≡n Bは同値になり，これ
が EF定理の核心である．それを示すために，次の定義が有用である．

定義 3.25（スコット・ヒンティッカ論理式）構造Aとその要素の列 	aに対
して，ランク nのスコット・ヒンティッカ論理式 (Scott-Hintikka formula)

ϕnA,�a(	x)を以下のように帰納的に定義する．

ϕ0
A,�a(	x) =

∧
{θ(	x) : (A,	a) |= θ(	c), qr(θ(	x)) = 0}.

ϕn+1
A,�a (	x) =

∧

a∈A
∃xϕnA,�aa(	x, x) ∧ ∀x

∨

a∈A
ϕnA,�aa(	x, x).

上の定義において，Aが無限であっても，補題 3.18により，
∧
,
∨
の中の論理

式は有限個にとれるので，スコット・ヒンティッカ論理式は通常の 1階論理
式として定義できる．また，(A,	a) |= θ(	c)と書くときには，	cは新しい定数
の列で，その解釈が 	aになることは暗黙の了解とする．

補題 3.26 (A,	a) |= ϕnA,�a(	c).

証明 n = 0のときは，定義より明らか．(A,	a) |= ϕn+1
A,�a (	c)をいうため，

ϕn+1
A,�a (	c)の定義における ∧の左の式∧

a∈A ∃xϕnA,�aa(	c, x)をまず調べる．すべ
ての a ∈ Aに対して，x = aとおけば ϕnA,�aa(	c, c)が (A,	aa)で成り立つこと
が帰納法の仮定からいえるので，左の式も (A,	aa)で成り立つ．右の式
∀x∨a∈A ϕ

n
A,�aa(	c, x)については，まず xを任意の a ∈ Aにして，その aに対

して，ϕnA,�aa(	c, c)が成り立つことが帰納法の仮定からいえるので，右の式も
(A,	aa)で成り立つ．よって，両式の連言 ∧も (A,	aa)で成り立つ． □

定理 3.27 （EF定理）次の 3条件は同値である．
(1) (A,	a) ≡n (B,	b), (2) (B,	b) |= ϕnA,�a(	c), (3) (A,	a) �n (B,	b).

証明 (1) ⇒ (2)．qr(ϕnA,�a(	x)) = nだから，補題 3.26から明らか．

� �
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Definition

A ≃n B if player II has a winning strategy in EFn(A,B).

Note that if A ≃n B then B ≃n A. We can easily show the following lemma.

Lemma (2)

Let A and B be structures of the same language.

(A, a⃗) ≃0 (B, b⃗) ⇔ a⃗ 7→ b⃗ is partial isomorphism.

⇔ (A, a⃗) ≡0 (B, b⃗).

(A, a⃗) ≃n+1 (B, b⃗) ⇔ ∀a ∈ A∃b ∈ B(A, a⃗a) ≃n (B, b⃗b) and

∀b ∈ B∃a ∈ A(A, a⃗a) ≃n (B, b⃗b)

15 / 23
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As you might expect from the above lemma, A ≃n B and A ≡n B are equivalent, which is
the essence of the EF theorem. To this end, we introduce the Scott-Hintikka formulas.

Definition (Scott-Hintikka Formula)

For a structure A and a sequence of elements a⃗, the Scott-Hintikka formula of rank n,
φn
A,⃗a(x⃗), is defined inductively as follows.

φ0
A,⃗a(x⃗) =

∧
{θ(x⃗) : (A, a⃗) |= θ(c⃗), qr(θ(x⃗)) = 0} .

φn+1
A,⃗a (x⃗) =

∧

a∈A

∃xφn
A,⃗aa(x⃗, x) ∧ ∀x

∨

a∈A

φn
A,⃗aa(x⃗, x).

• When we write (A, a⃗) |= θ(c⃗), c⃗ are new constants interpreted as a⃗.

• In the above definition, even if A is infinite, by Lemma (1), there are finitely many
formulas in the scopes of

∧
,
∨
. So, the Scott-Hintikka formula can be defined as an

first-order formula.
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Lemma (3)

(A, a⃗) |= φn
A,⃗a(c⃗).

Proof

• When n = 0, it is clear from the definition.

• Then, we want to show (A, a⃗) |= φn+1
A,⃗a (c⃗) from the induction hypothesis. We first

consider
∧

a∈A ∃xφn
A,⃗aa(c⃗, x), which is the left component of the definition formula of

φn+1
A,⃗a (c⃗).

• For every a ∈ A, letting x = a, we have φn
A,⃗aa(c⃗, c), which holds in (A, a⃗a) from the

induction hypothesis. So, the left formula holds for (A, a⃗a).

• We next consider the right formula ∀x
∨

a∈A φ
n
A,⃗aa(c⃗, x). Let x be an arbitrary a ∈ A,

and then select the same a for the
∨

a∈A, we have φn
A,⃗aa(c⃗, c), which also holds from

the induction hypothesis. So, the right formula also holds for (A, a⃗a).

• Therefore, the conjunction of both formulas holds in (A, a⃗a). □

17 / 23
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Theorem (Ehrenfeucht-Fräıss theorem, EF theorem)

For all n ≥ 0, the following are equivalent.
(1) (A, a⃗) ≡n (B, b⃗), (2) (B, b⃗) |= φn

A,⃗a(c⃗), (3) (A, a⃗) ≃n (B, b⃗).

Proof. (1) ⇒(2). It is obvious from the Lemma (3), since qr(φn
A,⃗a(x⃗)) = n.

To show (2) ⇒(3). By induction on n.For n = 0, (2)⇒ (A, a⃗) ≡0 (B, b⃗) ⇒ (3).

For induction step, assume (2) ⇒(3) for n as well as (B, b⃗) |= φn+1
A,⃗a (c⃗). From the definition

of the Scott-Hintikka formula,

∀a ∈ A∃b ∈ B(B, b⃗b) |= φn
A,⃗aa(c⃗, c) ∧ ∀b ∈ B∃a ∈ A(B, b⃗b) |= φn

A,⃗aa(c⃗, c)

By the induction hypothesis, we have

∀a ∈ A∃b ∈ B(A, a⃗a) ≃n (B, b⃗b) ∧ ∀b ∈ B∃a ∈ A(A, a⃗a) ≃n (B, b⃗b).

By the Lemma (2), we obtain

(A, a⃗) ≃n+1 (B, b⃗).

Thus, (3) also holds for n+ 1.

18 / 23
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To show (3) ⇒(1). By induction on n.

• Case n = 0 follows from Lemma (2).

• For induction step, assume (3) ⇒ (1) for n as well as (A, a⃗) ≃n+1 (B, b⃗). To show

(A, a⃗) ≡n+1 (B, b⃗), the essential case to check is a formula φ(x⃗) = ∃xψ(x⃗, x) with
qr(ψ(x⃗, x)) = n.

• Suppose (A, a⃗) |= φ(c⃗). Then, there exists a ∈ A such that (A, a⃗a) |= ψ(c⃗, c).

• Since (A, a⃗) ≃n+1 (B, b⃗), by Lemma (2), there exists a b ∈ B such that

(B, b⃗b) |= ψ(c⃗, c).

• Thus (B, b⃗) |= φ(c⃗). This proves Thn+1(A, a⃗) ⊂ Thn+1(B, b⃗). Similarly, we have

Thn+1(A, a⃗) ⊃ Thn+1(B, b⃗), and so (1) holds. □
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Corollary

A ≡ B ⇔ for any n, A ≃n B.

It is natural to extend the play of the EF game to infinity (ω-round). Such a game is
denoted as EFω(A,B). We write A ≃ω B if player II has a winning strategy in EFω(A,B).

Corollary

Suppose A,B are countable. Then, A ≃ω B ⇔ A ≃ B.

Proof. ⇐ is obvious because the isomorphism is a winning strategy for player II.
⇒ is shown by the back-and-forth argument. Let A = {a0, a1, . . . }, B = {b0, b1, . . . }.
Player II follows the winning strategy, and Player I alternately chooses the smallest element
that have not been selected from A and B, thus a bijection between A and B is produced,
which is a desired isomorphism. □

20 / 23
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Corollary

For each n, there are finitely many equivalence classes of L-structure by ≡n.

Proof By Lemma (1), there are essentially finitely many Scott-Hintikka sentences φn
A,∅

with rank n. By the EF theorem, each ≡n equivalence class is characterized by such a
sentence, and so there are only a finite number of them. □

Corollary

Let K be a set of L-structures. The following are equivalent.

(1) For any n, there exist A ∈ K and B ̸∈ K such that A ≡n B.
(2) K is not an elementary class (K cannot be defined by a first-order formula).

Proof.
• (1) ⇒(2). By way of contraposition, assume K is defined by a first-order sentence φ.
Let n be the rank of φ. If A ∈ K and B ̸∈ K then A ̸≡n B.

• (2) ⇒(1). By way of contraposition, assume that for some n, if A ≡n B then
A ∈ K ⇔ B ∈ K. Since there is a first-order (Scott-Hintikka) sentence φn

A of rank n
such that A ≡n C ⇔ C |= φn

A, K is defined by φn
A. □
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Summary
• We consider a language of finitely many relation symbols and constants.

• The (quantifier) rank of a formula measures the entanglement of quantifiers appearing
in it. For example, the rank of ∀y(∀x∃y(x = y) ∧ ∀z(z > 0)) is 3.

• By A ≡n B, we mean that structures A,B satisfy the same formulas with rank ≤ n.

• There are essentially finitely many formulas with rank ≤ n in fixed free variables
x1, ..., xk. Thus we can define the Scott-Hintikka sentence φn

A of rank n such that
A ≡n C ⇔ C |= φn

A.

• By A ≃n B, we mean that player II has a winning strategy in EFn(A,B).
• EF theorem For all n ≥ 0, A ≡n B iff A ≃n B.
• Corollary The following are equivalent.

(1) For any n, there exist A ∈ K and B ̸∈ K such that A ≡n B.
(2) K is not an elementary class (K cannot be defined by a first-order formula).

Further readings� �
Jouko Väänänen, Models and Games, Cambridge University Press, 2011.� �

22 / 23



Logic and
Computation

K. Tanaka

Recap

Introduction

Relational
languages and
quantifier ranks

Elementary
equivalence and
ranks

Partial
isomorphisms

EF games

Scott-Hintkka
formula

EF theorem

Summary

Thank you for your attention!
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