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Logic and Computation I� �
• Part 1. Introduction to Theory of Computation

• Part 2. Propositional Logic and Computational Complexity

• Part 3. First Order Logic and Decision Problems� �
Part 3. Schedule� �
• Dec. 8, (1) What is first-order logic?

• Dec.13, (2) Skolem’s theorem

• Dec.15, (3) Gödel’s completeness theorem

• Dec.20, (4) Ehrenfeucht-Fräıssé’s theorem

• Dec.22, (5) Presburger arithmetic

• Dec.27, (6) Peano arithmetic and Gödel’s first incompleteness theorem� �
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Recap
• φ can be transformed into an equivalent PNF φ′ ≡ Q1x1Q2x2 . . . Qnxnθ.
Then remove ∃x and replace x in θ with a new function f.
For a PNF formula ∀w∃x∀y∃zθ(w, x, y, z),
we obtain a SNF φS ≡ ∀w∀yθ(w, f(w), y, g(w, y)).

• For a formula φ of L (i.e., not containing a skolem function), T |= φ⇔ TS |= φ.
TS = {σS : σ ∈ T} is a conservative extension of T .

• Löwenheim-Skolem’s downward theorem.
For a structure A in a countable language L, there exists a countable substructure
A′ ⊂ A s.t. A′ |= φ⇔ A |= φ for any LA′ -sentence φ. Such A′ is called an
elementary substructure of A, denoted as A′ ≺ A.

• Herbrand’s theorem (Skolem version). In first-order logic (without equality), ∃-formula
∃x⃗φ(x⃗) is valid if and only if
• there exist n-tuples of terms, t⃗1, . . . , t⃗k, from L(φ) and
• φ(⃗t1) ∨ · · · ∨ φ(⃗tk) is a tautology.
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Application: P. Bernays, M. Shönfinkel, F. Ramsey

• Let θ(x⃗, y⃗) be a formula without quantifiers. A formula of the form ∀x⃗∃y⃗θ(x⃗, y⃗) is
called a ∀∃ formula; a formula of the form ∃x⃗∀y⃗θ(x⃗, y⃗) is called a ∃∀ formula.
In this page, we assume a formula contains no function symbols except constants.

• Then, we can check in finite steps the ∀∃ sentence σ (with =) is valid or not. Let a⃗
be Skolem functions (constants) for ¬σ ≡ ∃x⃗∀y⃗¬θ(x⃗, y⃗). Then,
σ is valid ⇔ ∃y⃗ θ(⃗a, y⃗) is valid

⇔ Eq(θ(⃗a, y⃗)) → ∃y⃗θ(a, y⃗) is valid without =.

• Let ∃z⃗ φ(z⃗) denote Eq(θ(⃗a, y⃗)) → ∃y⃗θ(a, y⃗). L(φ(z⃗)) consists of a finite number of
constants in the Herbrand domain.

• We substitute all combinations of these constants for z⃗ in φ(z⃗), combine them with
disjunction ∨. We can check whether the proposition is a tautology or not.

• Such a decision problem is NEXPTIME complete.
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Formal system of first-order logic

• Before introducing Gödel’s completeness theorem, we define the the formal system of
first-order logic.

• Among the various formal systems, we consider an formal system by extending that of
propositional logic in part 2 of this course.

Axiom system� �
P1. φ→ (ψ → φ)

P2.
(
φ→ (ψ → θ)

)
→

(
(φ→ ψ) → (φ→ θ)

)
P3. (¬ψ → ¬φ) → (φ→ ψ)

P4. ∀xφ(x) → φ(t) (the quantification axiom)� �

Inference rules� �
(1) If φ and φ→ ψ are

theorems, so is ψ

(2) If ψ → φ(x) (where ψ does
not include x) is a theorem,
then so is ψ → ∀xφ(x)
(the generalization rule)� �
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• The existential quantifiers ∃xφ(x) := ¬∀x¬φ(x).

• In languages with equality, the axiom Eq is assumed (reflexive, symmetrical, transitive,
and for each symbol f or R, its value is preserved with equality).

• If a sentence σ can be proved from the set of sentences T , then σ is called a theorem
of T , and written as T ⊢ σ.

• The quantification axiom and the equality axiom hold trivially in any structure, and
the generalization rule also clearly preserves truth (because the free variable x of a
formula is interpreted by universal closure).

• So if T ⊢ σ then T |= σ. This means that the deductive system does not derive any
strange theorems, and is called the soundness theorem.

• The completeness theorem (a weak version) asserts the opposite, that the system
derives all true propositions.
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Homework� �
(1) For any formula φ(x1, . . . , xn), prove that the truth value must be preserved with

equality ((x1 = y1 ∧ · · · ∧ xn = yn) → φ(x1, . . . , xn) ↔ φ(y1, . . . , yn)).

(2) Let ψ(φ) be the formula obtained by replacing the relation symbol R(x⃗) in
formula ψ with formula φ(x⃗). Show ∀x⃗(φ1(x⃗) ↔ φ2(x⃗)) → (ψ(φ1) ↔ ψ(φ2)).� �
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Completeness theorem (a weak version)

• The theorem asserts that for any sentence σ, if |= σ then ⊢ σ. So, assuming |= ¬σ,
we will show ⊢ ¬σ.

• By Skolem’s Fundamental Theorem, let ∀x⃗φ(x⃗) be the SNFσS of σ. If ¬σ is valid,
there are n pairs of terms t⃗i such that ¬φ(⃗t1) ∨ · · · ∨ ¬φ(⃗tk) is a tautology.

• By the completeness theorem of propositional logic, the tautology is a theorem of
propositional logic. So, it is also a theorem of first-order logic, by regarding the atomic
propositions as atomic formulas of first-order logic.

• Since ¬φ(⃗ti) → ∃x⃗¬φ(x⃗) can be proved in first-order logic, we can deduce ∃x⃗¬φ(x⃗)
from the theorem ¬φ(⃗t1) ∨ · · · ∨ ¬φ(⃗tk). Thus, ¬σ is provable.

Skolem Fundamental Theorem, revisited� �
In first-order logic without equality, let σS ≡ ∀x⃗φ(x⃗) be a SNF of σ. Then, ¬σ is valid iff

• there exist n-tuples t⃗i ∈ Un(i < k) from Herbrand domain U of L(φ), and
• ¬φ(⃗t1) ∨ · · · ∨ ¬φ(⃗tk) is a tautology.� �
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• To show the completeness theorem, Gödel introduced new relation symbols instead of
Skolem functions, and transformed any sentence into a ∀∃ sentence.

• Subsequently, L. Henkin introduced a constant c∃xφ(x) (Henkin constant) for each
sentence ∃xφ(x), and assume the following formula as a axiom. By the Henkin
axioms, any sentence can be rewritten as a formula without quantifiers.

∃xφ(x) → φ(c∃xφ(x)) Henkin axiom

• The compactness theorem of first order logic is also deduced from the compactness of
propositional logic.

Theorem (Compactness theorem)

If a set T of sentences of first order logic is not satisfiable, then there exists some finite
subset of T which is not satisfiable.
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Proof

• Let TS be the collection of SNF σS of each sentence σ in T . (Notice that all the
Skolem functions should be distinct. Regarding the equality, you can add the equality
axiom Eq if necessary)

• From theorem below, we see that the satisfiability of T is equivalent to the
satisfiability of TS .

Recall: Theorem (2) of Lecture-03-02� �
For a formula φ in L (i.e., not containing a skolem function),

T |= φ⇔ TS |= φ.� �
• Construct the Herbrand domain U using all function symbols contained in TS .

• Let Σ be the set of all the sentences obtained from φ(x⃗) such that ∀x⃗φ(x⃗) in TSby
substituting terms in U to x⃗.
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• Now, if Σ is satisfiable, then from the folowing lemma, Σ has a Herbrand structure U
as its model.

Recall: Lemma (4) of Lecture-03-02� �
Let Σ be a set of sentences without quantifiers and equality. The following three
statements are equivalent.

1. Σ is satisfiable in the first-order sense, i.e., Σ has a model.

2. Σ is satisfiable in the sense of propositional logic (regarding atomic sentences as
atomic propositions).

3. Σ has a Herbrand structure as its model.� �
• Since U |= Σ, all the substitution instances of φ(x⃗) hold in U , and so ∀x⃗φ(x⃗) also
holds in U , which means that U is a model of TS , hence a model of T . Therefore, Σ
is not satisfiable if T is not satisfiable.

12 / 21



Logic and
Computation

K. Tanaka

Recap

Introduction

Formal system of
first-order logic

Compactness
theorem
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• Now, assume that T is not satisfiable. Therefore, Σ is not satisfiable. Here again, from
the Lemma (4) of Lecture-03-02, Σ is not satisfiable in the sense of propositional logic.

• By the compactness of propositional logic, some finite subset Σ′ of Σ is not satisfiable,
and it is also not satisfiable in the sense of first-order logic.

• Now, let σS denote the ∀ formula of TS which is the source of formula σ of Σ′, and
let σ be the formula of T which is the source of formula σS .

• Moreover, let T ′S and T ′ be the sets of σSand σ, respectively.

• In general, a model of T ′S is a model of Σ′. So T ′S is not satisfiable.

• Hence, the finite subset T ′ of T is also not satisfiable. □
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From this we can derive the general completeness theorem.

Theorem (Gödel’s completeness theorem)

In first order logic, T ⊢ φ⇔ T |= φ.

Proof.

• ⇒ has been proved as above.

• To show ⇐, assume T |= φ and φ is a sentence.

• Then T ∪ {¬φ} is not satisfiable.

• By the compactness theorem, there exists a finite set {σ1, . . . , σn} of T such that
{σ1, . . . , σn,¬φ} is not satisfiable.

• Then (σ1 ∧ · · · ∧ σn) → φ is valid.

• From the completeness theorem (a weak version), (σ1 ∧ · · · ∧ σn) → φ is provable,
and from MP, {σ1, . . . , σn} ⊢ φ, hence T ⊢ φ. □
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Existence of non-standard models of arithmetic
• Let N = (N, 0, 1,+, ·, <) be the standard model of arithmetic (natural number
theory).

• Let Th(N ) := {σ : N |= σ}. N is naturally a model of Th(N ), but there also exist
models of Th(N ) that are not isomorphic to N , which are called nonstandard
models of arithmetic.

• Using the compactness theorem, we construct a nonstandard model of arithmetic as
follows. First, with c as a new constant, for each k ∈ N

Tk = Th(N ) ∪ {0 < c, 1 < c, 1 + 1 < c, 1 + 1 + 1 < c, . . . ,

k times︷ ︸︸ ︷
1 + 1 + · · ·+ 1 < c}

• The structure of N plus the interpretation of the constant c as k+ 1 is a model of Tk.

• Let T =
⋃

k∈ω Tk. Any finite subset of T is contained in some Tk and so satisfiable.
Hence, by the compactness theorem, T also has a model M, where the value of c is
larger than any standard natural number.

• That is, M has elements that are not standard natural numbers.

• By removing the constant c from the structure, M can be regarded as a non-standard
model of arithmetic in the language LOR. 15 / 21
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Existence of arbitrarily large models

• If T has an arbitrarily large finite model, then T has a model of arbitrarily large infinite
cardinality.

• Let {ci : i ∈ κ} be a set of constants with infinite cardinality κ. We consider

T ′ = T ∪ {ci ̸= cj : i ̸= j and i, j ∈ κ}

• For any finite subset of T ′, it is satisfiable if we take a finite model of T with at least
the number of constants ci in it, and interpret each constant as a distinct element.

• Therefore, from the compactness theorem, T ′ also has a model, which is a model of T
with more than κ elements.

• To construct a model with exactly the same cardinality as T , we use a generalized
version of the Löwenheim-Skolem’s downward theorem.
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Remark� �
• By the above example, there is no first-order theory that has arbitrarily large
finite models and has no infinite models.

• Thus the relation T |=finite φ asserting that a formula φ is true for any finite
model M of theory T cannot be captured by the first order system (Trakhtenbrot
theorem, which will be introduced in next semester).� �
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Connectivity of graphs
• The graph G = (V,E) consists of set V of vertices and the relation E ⊂ V × V
representing the edges.

• We consider an undirected graph (a directed graph can be treated similarly).

• Let c1 and c2 be constants, and for each n ∈ N, define φn as follows

φn ≡ ¬∃x1∃x2 . . . ∃xn(E(c1, x1) ∧ E(x1, x2) ∧ · · · ∧ E(xn, c2))

where φn means there is no path of length n+ 1 from c1 to c2, and φ0 is ¬E(c1, c2).

• Suppose there is a first order sentence σ expressing the connectivity of a graph (there
is a path between any two vertices).

• At this time, the following T has a model by compactness theorem.

T = {σ} ∪ {φn : n ∈ N} ∪ {c1 ̸= c2}

• But in that model there is no finite-length path from c1 to c2, which contradicts with
the connectivity that σ represents.

• That is, there is no sentence of first-order logic expressing connectivity.
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• In this way, for all graphs including infinite graphs, connectivity cannot be formulated
by a first-order logic formula.

• But what if we restrict ourselves to finite graphs?

• Even in this case, connectivity cannot be formulated. For that purpose, the
Ehrenfeucht-Fräıssé game introduced in the next lecture is effective.
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Summary
• Formal system of first-order logic: formal system of propositional logic +
∀xφ(x) → φ(t) (the quantification axiom) + the generalization inference rule

• Henkin axiom ∃xφ(x) → φ(c∃xφ(x)), by which any sentence can be rewritten as a
formula without quantifiers.

• Compactness theorem. If a set T of sentences of first order logic is not satisfiable,
then there exists some finite subset of T which is not satisfiable.

• Gödel’s completeness theorem. In first order logic, T ⊢ φ⇔ T |= φ.

• Application of the compactness theorem
▷ Existence of non-standard models of arithmetic
▷ Existence of arbitrarily large models
▷ Connectivity of graphs

Further readings� �
Mathematical Logic. H.-D. Ebbinghaus, J. Flum, w. Thomas, Springer New York, NY.� �
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Gödel’s
completeness
theorem

Application of the
compactness
theorem

Summary

Thank you for your attention!
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