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® Part 1. Introduction to Theory of Computation
® Part 2. Propositional Logic and Computational Complexity
® Part 3. First Order Logic and Decision Problems

s Part 3. Schedule

N
® Dec. 8, (1) What is first-order logic?
® Dec.13, (2) Skolem's theorem
® Dec.15, (3) Godel's completeness theorem
® Dec.20, (4) Ehrenfeucht-Fraissé's theorem
® Dec.22, (5) Presburger arithmetic
L ® Dec.27, (6) Peano arithmetic and Godel's first incompleteness theorem )
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Recap

@ can be transformed into an equivalent PNF ¢’ = Q121Q2xs . .. Qpx,0.
Then remove Jx and replace x in 8 with a new function f.

For a PNF formula Yw3zVy3z60(w, x, y, 2),

we obtain a SNF ¢° = Vwvyd(w, f(w),y, g(w,y)).

For a formula ¢ of £ (i.e., not containing a skolem function), T |= ¢ < T7 |= ¢.
T9 = {0° : 0 € T} is a conservative extension of 7.

Lowenheim-Skolem’s downward theorem.

For a structure A in a countable language L, there exists a countable substructure
A ' CcAst. A E o Al ¢ for any L -sentence . Such A’ is called an
elementary substructure of A, denoted as A’ < A.

Herbrand's theorem (Skolem version). In first-order logic (without equality), 3-formula
IZp(Z) is valid if and only if

® there exist n-tuples of terms, t1,..., %, from £(y) and

® o(t1) V- -V p(ty) is a tautology.
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Application: P. Bernays, M. Shonfinkel, F. Ramsey

Let 6(Z, §) be a formula without quantifiers. A formula of the form VZ350(Z, 7) is
called a V3 formula; a formula of the form 3ZVy0(Z, ) is called a IV formula.
In this page, we assume a formula contains no function symbols except constants.

Then, we can check in finite steps the V3 sentence o (with =) is valid or not. Let @
be Skolem functions (constants) for —o = 3ZVy—-0(Z, 7). Then,
oisvalid <« 37 6(d,y) is valid
< Eq(0(d,y)) — 3y0(a,y) is valid without =.

Let 32 p(2) denote Eq(6(d,y)) — 358(a,y). L(p(Z)) consists of a finite number of
constants in the Herbrand domain.

We substitute all combinations of these constants for Z'in ¢(Z), combine them with
disjunction V. We can check whether the proposition is a tautology or not.

Such a decision problem is NEXPTIME complete.
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Formal system of first-order logic

® Before introducing Godel's completeness theorem, we define the the formal system of

first-order logic.

® Among the various formal systems, we consider an formal system by extending that of

propositional logic in part 2 of this course.

/~ Axiom system
PL o= (=)
P2 (= (W =9)) = ((p=¥) = (¢ 0))
P3. (= = —p) = (¢ = ¥)

P4. VYzp(x) — ¢(t) (the quantification axiom)

~

~ Inference rules

-

(1) If p and ¢ — ¥ are
theorems, so is ¥

(2) If ¥ — @(x) (where ¢ does
not include z) is a theorem,
then so is ¢ — Vap(x)
(the generalization rule)

\

J

6/21



Logic and
Computation

K. Tanaka

Formal system of
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The existential quantifiers Jzp(z) := “Vr—p(x).

In languages with equality, the axiom Eq is assumed (reflexive, symmetrical, transitive,
and for each symbol f or R, its value is preserved with equality).

If a sentence o can be proved from the set of sentences T', then ¢ is called a theorem
of T', and written as T o.

The quantification axiom and the equality axiom hold trivially in any structure, and
the generalization rule also clearly preserves truth (because the free variable x of a
formula is interpreted by universal closure).

So if T+ o then T |= 0. This means that the deductive system does not derive any
strange theorems, and is called the soundness theorem.

The completeness theorem (a weak version) asserts the opposite, that the system
derives all true propositions.
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Homework
(1) For any formula ¢(z1,...,x,), prove that the truth value must be preserved with
equality ((z1 =y1 A Azn =yn) = (@1, ., 20) € ©(Y1,--., Yn)).

(2) Let ¥(yp) be the formula obtained by replacmg the relation symbol R( z) in

formula 1 with formula o(Z). Show VZ(p1(T) <> ©2(T)) — (V(e1

< Plp

2))-

8/21



Logic and
Computation

K. Tanaka

Compactness
theorem

Completeness theorem (a weak version)

® The theorem asserts that for any sentence o, if |= o then - o. So, assuming | —o,

we will show F —o.

® By Skolem's Fundamental Theorem, let VZp(Z) be the SNFo® of 0. If =0 is valid,

there are n pairs of terms #; such that - () V - - V =(f%) is a tautology.

® By the completeness theorem of propositional logic, the tautology is a theorem of

propositional logic. So, it is also a theorem of first-order logic, by regarding the atomic
propositions as atomic formulas of first-order logic.

® Since —(t;) — 3T—(F) can be proved in first-order logic, we can deduce 3z-y(7)

from the theorem —(t1) V - -+ V =¢(t}). Thus, o is provable.

Skolem Fundamental Theorem, revisited

In first-order logic without equality, let 5 = V(&) be a SNF of . Then, —o is valid iff

® there exist n-tuples £; € U™ (i < k) from Herbrand domain U of £(y), and
® —p(f1) V-V —p(fy) is a tautology.
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Skolem functions, and transformed any sentence into a V3 sentence.

® Subsequently, L. Henkin introduced a constant c3,,(,) (Henkin constant) for each
. sentence Jxp(x), and assume the following formula as a axiom. By the Henkin
ompactness . . . e
o axioms, any sentence can be rewritten as a formula without quantifiers.

Jrp(r) = 0(Cazp(z)) Henkin axiom

® The compactness theorem of first order logic is also deduced from the compactness of
propositional logic.

Theorem (Compactness theorem)

If a set T" of sentences of first order logic is not satisfiable, then there exists some finite
subset of T" which is not satisfiable.
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® Let 77 be the collection of SNF o of each sentence o in T. (Notice that all the
Skolem functions should be distinct. Regarding the equality, you can add the equality
axiom Eq if necessary)

Compacines ® From theorem below, we see that the satisfiability of T is equivalent to the
theorem . . e
satisfiability of 7.

Recall: Theorem (2) of Lecture-03-02

For a formula ¢ in L (i.e., not containing a skolem function),

TEeeT e

® Construct the Herbrand domain U using all function symbols contained in 7.

® Let ¥ be the set of all the sentences obtained from ¢(Z) such that Y@y (%) in T by
substituting terms in U to .
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® Now, if X is satisfiable, then from the folowing lemma, ¥ has a Herbrand structure U

as its model.
~ Recall: Lemma (4) of Lecture-03-02 ~
Compactness Let X be a set of sentences without quantifiers and equality. The following three

theorem

statements are equivalent.
1. X is satisfiable in the first-order sense, i.e., ¥ has a model.

2. X is satisfiable in the sense of propositional logic (regarding atomic sentences as
atomic propositions).

3. X has a Herbrand structure as its model.

J

® Since U [= %, all the substitution instances of ¢(Z) hold in U, and so YZp(Z) also
holds in U, which means that U is a model of T°, hence a model of T'. Therefore, &
is not satisfiable if T" is not satisfiable.
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® Now, assume that 7' is not satisfiable. Therefore, X is not satisfiable. Here again, from
the Lemma (4) of Lecture-03-02, X is not satisfiable in the sense of propositional logic.

PR ® By the compactness of propositional logic, some finite subset ¥’ of X is not satisfiable,
fheerem and it is also not satisfiable in the sense of first-order logic.

e Now, let @° denote the V formula of T° which is the source of formula o of ¥, and
let & be the formula of T' which is the source of formula °.

® Moreover, let 7% and T" be the sets of 7°and @, respectively.
® In general, a model of 7% is a model of X’. So T"“is not satisfiable.

® Hence, the finite subset 7" of T is also not satisfiable. O
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From this we can derive the general completeness theorem.
Theorem (Godel's completeness theorem)
In first order logic, T+ ¢ < T |= .

Proof.

® = has been proved as above.

® To show <, assume T |= ¢ and ¢ is a sentence.

Then T U {—y} is not satisfiable.

® By the compactness theorem, there exists a finite set {o1,...,0,} of T such that
{01,...,0n, 7} is not satisfiable.

® Then (o1 A+ Aoy) — s valid.

® From the completeness theorem (a weak version), (o1 A -+ A g,) — ¢ is provable,
and from MP, {o1,...,0,} F ¢, hence T I . O
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e Let NV =(N,0,1,+,-,<) be the standard model of arithmetic (natural number
theory).

® Let Th(N) :={o: N |Eo}. N is naturally a model of Th(N), but there also exist
models of Th(A) that are not isomorphic to A/, which are called nonstandard
models of arithmetic.

® Using the compactness theorem, we construct a nonstandard model of arithmetic as

Pyt o e follows. First, with ¢ as a new constant, for each k € N

themem k times
—
T, =Th(M)U{0<c,1<cl+1l<cl4+14+1<c,...;,1+1+---+1<c}

® The structure of A/ plus the interpretation of the constant ¢ as k + 1 is a model of Ty.

® |etT = UkEW Tr. Any finite subset of T' is contained in some T}, and so satisfiable.
Hence, by the compactness theorem, 1" also has a model M, where the value of ¢ is
larger than any standard natural number.

® That is, M has elements that are not standard natural numbers.

® By removing the constant ¢ from the structure, M can be regarded as a non-standard
model of arithmetic in the language Lor. 15 / 21
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Existence of arbitrarily large models

If T has an arbitrarily large finite model, then T has a model of arbitrarily large infinite
cardinality.

Let {c; : i € k} be a set of constants with infinite cardinality k. We consider
T'=TU{c;,#cj:i#jand i, j€ K}

For any finite subset of T”, it is satisfiable if we take a finite model of T" with at least
the number of constants c¢; in it, and interpret each constant as a distinct element.

Therefore, from the compactness theorem, T” also has a model, which is a model of T'
with more than s elements.

To construct a model with exactly the same cardinality as T, we use a generalized
version of the Lowenheim-Skolem's downward theorem.
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Application of the
compactness
theorem

~ Remark ~
® By the above example, there is no first-order theory that has arbitrarily large
finite models and has no infinite models.
® Thus the relation T' [=¢iite % asserting that a formula ¢ is true for any finite
model M of theory T cannot be captured by the first order system (Trakhtenbrot
theorem, which will be introduced in next semester).
J

-
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Connectivity of graphs

The graph G = (V, E) consists of set V' of vertices and the relation E C V x V
representing the edges.

We consider an undirected graph (a directed graph can be treated similarly).
Let c; and co be constants, and for each n € N, define ,, as follows

on = ~Jr1320 ... Fzn (E(cr, 21) A E(z1,22) A+ - - A B2, c2))

where ,, means there is no path of length n 4+ 1 from c; to ca, and ¢g is = FE(cq, c2).

Suppose there is a first order sentence o expressing the connectivity of a graph (there
is a path between any two vertices).

At this time, the following T has a model by compactness theorem.

T={oc}tU{pn:neN}U{c1 #ca}
But in that model there is no finite-length path from c; to cs, which contradicts with
the connectivity that o represents.
That is, there is no sentence of first-order logic expressing connectivity.
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® In this way, for all graphs including infinite graphs, connectivity cannot be formulated
by a first-order logic formula.

® But what if we restrict ourselves to finite graphs?

Application of the

compactness ® Even in this case, connectivity cannot be formulated. For that purpose, the
theorem o, . . . .
Ehrenfeucht-Fraissé game introduced in the next lecture is effective.
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® Formal system of first-order logic: formal system of propositional logic +
Vzp(z) — o(t) (the quantification axiom) + the generalization inference rule

® Henkin axiom 3zp(x) — ©(c3z4(z)), by which any sentence can be rewritten as a
formula without quantifiers.

e Compactness theorem. If a set T of sentences of first order logic is not satisfiable,
then there exists some finite subset of T which is not satisfiable.

¢ Godel’s completeness theorem. In first order logic, TH o & T = .

Summary

® Application of the compactness theorem
> Existence of non-standard models of arithmetic
> Existence of arbitrarily large models
> Connectivity of graphs

Further readings
Mathematical Logic. H.-D. Ebbinghaus, J. Flum, w. Thomas, Springer New York, NY.]
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Thank you for your attention!
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