K. Tanaka

Reca

Introduction

Formal system o first-order logic

Compactness theorem

Gödel's completenes theorem

Application of th compactness theorem

Summary

Logic and Computation: I Part 3 First order logic and decision problems

Kazuyuki Tanaka

BIMSA

December 16, 2022

イロト 不得 トイヨト イヨト

ъ

K. Tanaka

Recap

ntroduction

Formal system of first-order logic

Compactness theorem

Gödel's completeness theorem

Application of the compactness theorem

Summary

Logic and Computation I

- Part 1. Introduction to Theory of Computation
- Part 2. Propositional Logic and Computational Complexity
- Part 3. First Order Logic and Decision Problems

- Part 3. Schedule

- Dec. 8, (1) What is first-order logic?
- Dec.13, (2) Skolem's theorem
- Dec.15, (3) Gödel's completeness theorem
- Dec.20, (4) Ehrenfeucht-Fraïssé's theorem
- Dec.22, (5) Presburger arithmetic
- Dec.27, (6) Peano arithmetic and Gödel's first incompleteness theorem

K. Tanaka

Recap

ntroduction

- Formal system o first-order logic
- Compactness theorem
- Gödel's completeness theorem
- Application of the compactness theorem

Summary

1 Recap

2 Introduction

- **3** Formal system of first-order logic
- **4** Compactness theorem
- **5** Gödel's completeness theorem
- 6 Application of the compactness theorem

7 Summary

First order logic

K. Tanaka

Recap

ntroduction

Formal system of first-order logic

Compactness theorem

Gödel's completeness theorem

Application of t compactness theorem

Summary

- φ can be transformed into an equivalent PNF $\varphi' \equiv Q_1 x_1 Q_2 x_2 \dots Q_n x_n \theta$. Then remove $\exists x$ and replace x in θ with a new function f. For a PNF formula $\forall w \exists x \forall y \exists z \theta(w, x, y, z)$, we obtain a SNF $\varphi^S \equiv \forall w \forall y \theta(w, f(w), y, g(w, y))$.
- For a formula φ of \mathcal{L} (i.e., not containing a skolem function), $T \models \varphi \Leftrightarrow T^S \models \varphi$. $T^S = \{\sigma^S : \sigma \in T\}$ is a **conservative extension** of T.
- Löwenheim-Skolem's downward theorem.
 For a structure A in a countable language L, there exists a countable substructure A' ⊂ A s.t. A' ⊨ φ ⇔ A ⊨ φ for any L_{A'}-sentence φ. Such A' is called an elementary substructure of A, denoted as A' ≺ A.
- Herbrand's theorem (Skolem version). In first-order logic (without equality), \exists -formula $\exists \vec{x} \varphi(\vec{x})$ is valid if and only if
 - there exist n-tuples of terms, $\vec{t_1},\ldots,\vec{t_k},$ from $\mathcal{L}(\varphi)$ and
 - $\varphi(\vec{t}_1) \lor \cdots \lor \varphi(\vec{t}_k)$ is a tautology.

Recap

K. Tanaka

Recap

Introduction

Formal system of first-order logic

Compactness theorem

Gödel's completeness theorem

Application of th compactness theorem

Summary

Application: P. Bernays, M. Shönfinkel, F. Ramsey

- Let $\theta(\vec{x}, \vec{y})$ be a formula without quantifiers. A formula of the form $\forall \vec{x} \exists \vec{y} \theta(\vec{x}, \vec{y})$ is called a $\forall \exists$ formula; a formula of the form $\exists \vec{x} \forall \vec{y} \theta(\vec{x}, \vec{y})$ is called a $\exists \forall$ formula. In this page, we assume a formula contains no function symbols except constants.
- Then, we can check in finite steps the $\forall \exists$ sentence σ (with =) is valid or not. Let \vec{a} be Skolem functions (constants) for $\neg \sigma \equiv \exists \vec{x} \forall \vec{y} \neg \theta(\vec{x}, \vec{y})$. Then,
 - $\begin{array}{ll} \sigma \mbox{ is valid } & \Leftrightarrow & \exists \vec{y} \ \theta(\vec{a},\vec{y}) \mbox{ is valid } \\ & \Leftrightarrow & \mathrm{Eq}(\theta(\vec{a},\vec{y})) \rightarrow \exists \vec{y} \theta(a,\vec{y}) \mbox{ is valid without } =. \end{array}$
- Let $\exists \vec{z} \ \varphi(\vec{z})$ denote $\operatorname{Eq}(\theta(\vec{a}, \vec{y})) \rightarrow \exists \vec{y} \theta(a, \vec{y}). \ \mathcal{L}(\varphi(\vec{z}))$ consists of a finite number of constants in the Herbrand domain.
- We substitute all combinations of these constants for \vec{z} in $\varphi(\vec{z})$, combine them with disjunction \lor . We can check whether the proposition is a tautology or not.

5 / 21

• Such a decision problem is NEXPTIME complete.

K. Tanaka

Recap

Introduction

Formal system of first-order logic

Compactness theorem

Gödel's completeness theorem

Application of the compactness theorem

Summary

Formal system of first-order logic

- Before introducing Gödel's completeness theorem, we define the the formal system of first-order logic.
- Among the various formal systems, we consider an formal system by extending that of propositional logic in part 2 of this course.

Axiom system P1. $\varphi \rightarrow (\psi \rightarrow \varphi)$ P2. $(\varphi \rightarrow (\psi \rightarrow \theta)) \rightarrow ((\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \theta))$ P3. $(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$ P4. $\forall x \varphi(x) \rightarrow \varphi(t)$ (the quantification axiom) Inference rules
(1) If φ and $\varphi \rightarrow \psi$ are theorems, so is ψ (2) If $\psi \rightarrow \varphi(x)$ (where ψ does not include x) is a theorem, then so is $\psi \rightarrow \forall x \varphi(x)$ (the generalization rule)

K. Tanaka

Recap

- ntroduction
- Formal system of first-order logic
- Compactness theorem
- Gödel's completeness theorem
- Application of th compactness theorem

Summary

- The existential quantifiers $\exists x \varphi(x) := \neg \forall x \neg \varphi(x)$.
- In languages with equality, the axiom $\rm Eq$ is assumed (reflexive, symmetrical, transitive, and for each symbol f or R, its value is preserved with equality).
- If a sentence σ can be proved from the set of sentences T, then σ is called a theorem of T, and written as T ⊢ σ.
- The quantification axiom and the equality axiom hold trivially in any structure, and the generalization rule also clearly preserves truth (because the free variable x of a formula is interpreted by universal closure).
- So if $T \vdash \sigma$ then $T \models \sigma$. This means that the deductive system does not derive any strange theorems, and is called the **soundness theorem**.
- The completeness theorem (a weak version) asserts the opposite, that the system derives all true propositions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

K. Tanaka

Recap

Introduction

Formal system of first-order logic

Compactnes theorem

Gödel's completeness theorem

Application of th compactness theorem

Summary

Homework

(1) For any formula $\varphi(x_1, \ldots, x_n)$, prove that the truth value must be preserved with equality $((x_1 = y_1 \land \cdots \land x_n = y_n) \rightarrow \varphi(x_1, \ldots, x_n) \leftrightarrow \varphi(y_1, \ldots, y_n))$.

イロト 不良 とうけん ぼう

(2) Let $\psi(\varphi)$ be the formula obtained by replacing the relation symbol $R(\vec{x})$ in formula ψ with formula $\varphi(\vec{x})$. Show $\forall \vec{x}(\varphi_1(\vec{x}) \leftrightarrow \varphi_2(\vec{x})) \rightarrow (\psi(\varphi_1) \leftrightarrow \psi(\varphi_2))$.

K. Tanaka

Recap

ntroduction

Formal system of first-order logic

Compactness theorem

Gödel's completeness theorem

Application of th compactness theorem

Summary

Completeness theorem (a weak version)

3

- The theorem asserts that for any sentence σ , if $\models \sigma$ then $\vdash \sigma$. So, assuming $\models \neg \sigma$, we will show $\vdash \neg \sigma$.
- By Skolem's Fundamental Theorem, let $\forall \vec{x} \varphi(\vec{x})$ be the SNF σ^S of σ . If $\neg \sigma$ is valid, there are n pairs of terms \vec{t}_i such that $\neg \varphi(\vec{t}_1) \lor \cdots \lor \neg \varphi(\vec{t}_k)$ is a tautology.
- By the completeness theorem of propositional logic, the tautology is a theorem of propositional logic. So, it is also a theorem of first-order logic, by regarding the atomic propositions as atomic formulas of first-order logic.
- Since $\neg \varphi(\vec{t}_i) \rightarrow \exists \vec{x} \neg \varphi(\vec{x})$ can be proved in first-order logic, we can deduce $\exists \vec{x} \neg \varphi(\vec{x})$ from the theorem $\neg \varphi(\vec{t}_1) \lor \cdots \lor \neg \varphi(\vec{t}_k)$. Thus, $\neg \sigma$ is provable.

- Skolem Fundamental Theorem, revisited

In first-order logic without equality, let $\sigma^S \equiv \forall \vec{x} \varphi(\vec{x})$ be a SNF of σ . Then, $\neg \sigma$ is valid iff

- there exist n-tuples $ec{t_i} \in U^n (i < k)$ from Herbrand domain U of $\mathcal{L}(arphi)$, and
- $\neg \varphi(\vec{t}_1) \lor \cdots \lor \neg \varphi(\vec{t}_k)$ is a tautology.

K. Tanaka

- Recap
- ntroduction
- Formal system of first-order logic
- Compactness theorem
- Gödel's completeness theorem
- Application of th compactness theorem
- Summary

- To show the completeness theorem, Gödel introduced new relation symbols instead of Skolem functions, and transformed any sentence into a ∀∃ sentence.
- Subsequently, L. Henkin introduced a constant c_{∃xφ(x)} (Henkin constant) for each sentence ∃xφ(x), and assume the following formula as a axiom. By the Henkin axioms, any sentence can be rewritten as a formula without quantifiers.

 $\exists x \varphi(x) \rightarrow \varphi(c_{\exists x \varphi(x)}) \qquad \text{Henkin axiom}$

• The compactness theorem of first order logic is also deduced from the compactness of propositional logic.

Theorem (Compactness theorem)

If a set T of sentences of first order logic is not satisfiable, then there exists some finite subset of T which is not satisfiable.

K. Tanaka

Recap

ntroduction

Formal system of first-order logic

Compactness theorem

Gödel's completeness theorem

Application of th compactness theorem

Summary

- Proof
 - Let T^S be the collection of SNF σ^S of each sentence σ in T. (Notice that all the Skolem functions should be distinct. Regarding the equality, you can add the equality axiom Eq if necessary)
 - From theorem below, we see that the satisfiability of T is equivalent to the satisfiability of $T^{S}.$

Recall: Theorem (2) of Lecture-03-02 –

For a formula φ in \mathcal{L} (i.e., not containing a skolem function),

$$T \models \varphi \Leftrightarrow T^S \models \varphi.$$

- Construct the Herbrand domain U using all function symbols contained in T^S .
- Let Σ be the set of all the sentences obtained from $\varphi(\vec{x})$ such that $\forall \vec{x} \varphi(\vec{x})$ in T^S by substituting terms in U to \vec{x} .

化白豆 化间面 化医原油 医原生素

K. Tanaka

Recap

ntroduction

Formal system of first-order logic

Compactness theorem

Gödel's completenes theorem

Application of t compactness theorem

Summary

• Now, if Σ is satisfiable, then from the following lemma, Σ has a Herbrand structure ${\cal U}$ as its model.

Recall: Lemma (4) of Lecture-03-02

Let Σ be a set of sentences without quantifiers and equality. The following three statements are equivalent.

- $1.~\Sigma$ is satisfiable in the first-order sense, i.e., Σ has a model.
- 2. Σ is satisfiable in the sense of propositional logic (regarding atomic sentences as atomic propositions).
- $3.\ \Sigma$ has a Herbrand structure as its model.
- Since $\mathcal{U} \models \Sigma$, all the substitution instances of $\varphi(\vec{x})$ hold in \mathcal{U} , and so $\forall \vec{x}\varphi(\vec{x})$ also holds in \mathcal{U} , which means that \mathcal{U} is a model of T^S , hence a model of T. Therefore, Σ is not satisfiable if T is not satisfiable.

化口水 化塑料 化医水化医水合 医

K. Tanaka

- Recap
- ntroduction
- Formal system of first-order logic
- Compactness theorem
- Gödel's completeness theorem
- Application of the compactness theorem
- Summary

- Now, assume that T is not satisfiable. Therefore, Σ is not satisfiable. Here again, from the Lemma (4) of Lecture-03-02, Σ is not satisfiable in the sense of propositional logic.
- By the compactness of propositional logic, some finite subset Σ' of Σ is not satisfiable, and it is also not satisfiable in the sense of first-order logic.
- Now, let $\overline{\sigma}^S$ denote the \forall formula of T^S which is the source of formula σ of Σ' , and let $\overline{\sigma}$ be the formula of T which is the source of formula $\overline{\sigma}^S$.

13 / 21

- Moreover, let T'^S and T' be the sets of $\overline{\sigma}^S {\rm and}\ \overline{\sigma},$ respectively.
- In general, a model of T'^S is a model of Σ' . So T'^S is not satisfiable.
- Hence, the finite subset T' of T is also not satisfiable.

K. Tanaka

Recap

ntroduction

Formal system of first-order logic

Compactness theorem

Gödel's completeness theorem

Application of th compactness theorem

Summary

From this we can derive the general completeness theorem.

Theorem (Gödel's completeness theorem)

In first order logic, $T \vdash \varphi \Leftrightarrow T \models \varphi$.

Proof.

- \Rightarrow has been proved as above.
- To show \Leftarrow , assume $T \models \varphi$ and φ is a sentence.
- Then $T \cup \{\neg \varphi\}$ is not satisfiable.
- By the compactness theorem, there exists a finite set $\{\sigma_1, \ldots, \sigma_n\}$ of T such that $\{\sigma_1, \ldots, \sigma_n, \neg \varphi\}$ is not satisfiable.
- Then $(\sigma_1 \wedge \cdots \wedge \sigma_n) \rightarrow \varphi$ is valid.
- From the completeness theorem (a weak version), $(\sigma_1 \wedge \cdots \wedge \sigma_n) \rightarrow \varphi$ is provable, and from MP, $\{\sigma_1, \ldots, \sigma_n\} \vdash \varphi$, hence $T \vdash \varphi$.

Γ

14 / 21

K. Tanaka

- Recap
- Introduction
- Formal system of first-order logic
- Compactnes theorem
- Gödel's completeness theorem
- Application of the compactness theorem

Summary

Existence of non-standard models of arithmetic

- Let $\mathcal{N} = (\mathbb{N}, 0, 1, +, \cdot, <)$ be the standard model of arithmetic (natural number theory).
- Let Th(N) := {σ : N ⊨ σ}. N is naturally a model of Th(N), but there also exist models of Th(N) that are not isomorphic to N, which are called nonstandard models of arithmetic.
- Using the compactness theorem, we construct a nonstandard model of arithmetic as follows. First, with c as a new constant, for each $k\in\mathbb{N}$

$$T_k = \text{Th}(\mathcal{N}) \cup \{0 < c, 1 < c, 1+1 < c, 1+1+1 < c, \dots, \underbrace{1+1+\dots+1}_{k \text{ times}} < c\}$$

- The structure of \mathcal{N} plus the interpretation of the constant c as k+1 is a model of T_k .
- Let $T = \bigcup_{k \in \omega} T_k$. Any finite subset of T is contained in some T_k and so satisfiable. Hence, by the compactness theorem, T also has a model \mathcal{M} , where the value of c is larger than any standard natural number.
- $\bullet\,$ That is, ${\cal M}$ has elements that are not standard natural numbers.
- By removing the constant c from the structure, \mathcal{M} can be regarded as a non-standard model of arithmetic in the language \mathcal{L}_{OR} . 15 / 21

K. Tanaka

- Recap
- ntroduction
- Formal system of first-order logic
- Compactnes theorem
- Gödel's completeness theorem
- Application of the compactness theorem

Summary

Existence of arbitrarily large models

16 / 21

- If T has an arbitrarily large finite model, then T has a model of arbitrarily large infinite cardinality.
- Let $\{c_i : i \in \kappa\}$ be a set of constants with infinite cardinality κ . We consider

 $T' = T \cup \{ c_i \neq c_j : i \neq j \text{ and } i, j \in \kappa \}$

- For any finite subset of T', it is satisfiable if we take a finite model of T with at least the number of constants c_i in it, and interpret each constant as a distinct element.
- Therefore, from the compactness theorem, T' also has a model, which is a model of T with more than κ elements.
- To construct a model with exactly the same cardinality as T, we use a generalized version of the Löwenheim-Skolem's downward theorem.

K. Tanaka

Recap

Introduction

Formal system of first-order logic

Compactness theorem

Gödel's completeness theorem

Application of the compactness theorem

Summary

🔶 Remark

- By the above example, there is no first-order theory that has arbitrarily large finite models and has no infinite models.
- Thus the relation T ⊨_{finite} φ asserting that a formula φ is true for any finite model M of theory T cannot be captured by the first order system (Trakhtenbrot theorem, which will be introduced in next semester).

K. Tanaka

- Recap
- ntroduction
- Formal system of first-order logic
- Compactness theorem
- Gödel's completeness theorem
- Application of the compactness theorem

Summary

- The graph G = (V, E) consists of set V of vertices and the relation $E \subset V \times V$ representing the edges.
- We consider an undirected graph (a directed graph can be treated similarly).
- Let c_1 and c_2 be constants, and for each $n \in \mathbb{N}$, define φ_n as follows

 $\varphi_n \equiv \neg \exists x_1 \exists x_2 \dots \exists x_n (E(\mathbf{c}_1, x_1) \land E(x_1, x_2) \land \dots \land E(x_n, \mathbf{c}_2))$

where φ_n means there is no path of length n+1 from c_1 to c_2 , and φ_0 is $\neg E(c_1, c_2)$.

- Suppose there is a first order sentence *σ* expressing the connectivity of a graph (there is a path between any two vertices).
- At this time, the following T has a model by compactness theorem.

$$T = \{\sigma\} \cup \{\varphi_n : n \in \mathbb{N}\} \cup \{c_1 \neq c_2\}$$

- But in that model there is no finite-length path from c_1 to c_2 , which contradicts with the connectivity that σ represents.
- That is, there is no sentence of first-order logic expressing connectivity.

Connectivity of graphs

18 / 21

K. Tanaka

- Recap
- Introduction
- Formal system of first-order logic
- Compactnes theorem
- Gödel's completeness theorem
- Application of the compactness theorem

Summary

• In this way, for all graphs including infinite graphs, connectivity cannot be formulated by a first-order logic formula.

イロト イボト イヨト イヨト ニヨー

19

- But what if we restrict ourselves to finite graphs?
- Even in this case, connectivity cannot be formulated. For that purpose, the Ehrenfeucht-Fraïssé game introduced in the next lecture is effective.

K. Tanaka

- Recap
- ntroduction
- Formal system of first-order logic
- Compactnes theorem
- Gödel's completeness theorem
- Application of th compactness theorem
- Summary

- Formal system of first-order logic: formal system of propositional logic + $\forall x \varphi(x) \rightarrow \varphi(t)$ (the quantification axiom) + the generalization inference rule
- Henkin axiom $\exists x \varphi(x) \rightarrow \varphi(c_{\exists x \varphi(x)})$, by which any sentence can be rewritten as a formula without quantifiers.
- Compactness theorem. If a set T of sentences of first order logic is not satisfiable, then there exists some finite subset of T which is not satisfiable.
- Gödel's completeness theorem. In first order logic, $T \vdash \varphi \Leftrightarrow T \models \varphi$.
- Application of the compactness theorem
 - \triangleright Existence of non-standard models of arithmetic
 - \triangleright Existence of arbitrarily large models
 - $\,\vartriangleright\,$ Connectivity of graphs
- Further readings

Mathematical Logic. H.-D. Ebbinghaus, J. Flum, w. Thomas, Springer New York, NY.

Summarv

K. Tanaka

Recap

Introduction

Formal system of first-order logic

Compactnes theorem

Gödel's completenes theorem

Application of the compactness theorem

Summary

Thank you for your attention!

<ロト 4回ト 4 Eト 4 Eト E のQで 21 / 21