K. Tanaka

[Recap](#page-3-0)

[Formal system of](#page-5-0) first-order logic

[Compactness](#page-8-0)

Gödel's

[Application of the](#page-14-0) compactness

[Summary](#page-19-0)

Logic and Computation: I Part 3 First order logic and decision problems

Kazuyuki Tanaka

BIMSA

December 16, 2022

 $1/21$

 \Rightarrow

 298

 $A \equiv \mathbf{1} + A \pmb{\beta} + A \pmb{\beta} + A \pmb{\beta} + A \pmb{\beta} + A$

K. Tanaka

[Recap](#page-3-0)

[Formal system of](#page-5-0) first-order logic

[Compactness](#page-8-0)

[Summary](#page-19-0)

Logic and Computation I

- Part 1. Introduction to Theory of Computation
- Part 2. Propositional Logic and Computational Complexity

✒ ✑

✒ ✑

• Part 3. First Order Logic and Decision Problems

Part 3. Schedule

- Dec. 8, (1) What is first-order logic?
- Dec.13, (2) Skolem's theorem
- Dec.15, (3) Gödel's completeness theorem
- Dec.20, (4) Ehrenfeucht-Fraïssé's theorem
- Dec.22, (5) Presburger arithmetic
- Dec.27, (6) Peano arithmetic and Gödel's first incompleteness theorem

K. Tanaka

[Recap](#page-3-0)

- [Formal system of](#page-5-0) first-order logic
- [Compactness](#page-8-0)
- Gödel's
- [Application of the](#page-14-0) compactness
- [Summary](#page-19-0)

1 [Recap](#page-3-0)

2 [Introduction](#page-4-0)

- **3** [Formal system of first-order logic](#page-5-0)
- 4 [Compactness theorem](#page-8-0)
- 6 Gödel's completeness theorem
- 6 [Application of the compactness theorem](#page-14-0)

2 [Summary](#page-19-0)

First order logic

K. Tanaka

[Recap](#page-3-0)

[Formal system of](#page-5-0) first-order logic

[Compactness](#page-8-0)

[Summary](#page-19-0)

- $\bullet \;\varphi$ can be transformed into an equivalent $\mathrm{PNF} \quad \varphi' \equiv Q_1 x_1 Q_2 x_2 \ldots Q_n x_n \theta.$ Then remove $\exists x$ and replace x in θ with a new function f. For a PNF formula $\forall w \exists x \forall y \exists z \theta(w, x, y, z)$, we obtain a $\text{SNF}\ \varphi^S \equiv \forall w \forall y \theta(w, \text{f}(w), y, \text{g}(w, y)).$
- $\bullet\,$ For a formula φ of ${\cal L}$ (i.e., not containing a skolem function), $T \models \varphi \Leftrightarrow T^S \models \varphi.$ $T^S = \{\sigma^S : \sigma \in T\}$ is a **conservative extension** of $T.$
- Löwenheim-Skolem's downward theorem. For a structure A in a countable language \mathcal{L} , there exists a countable substructure $\mathcal{A}'\subset\mathcal{A}$ s.t. $\mathcal{A}'\models\varphi\Leftrightarrow\mathcal{A}\models\varphi$ for any $\mathcal{L}_{A'}$ -sentence $\varphi.$ Such \mathcal{A}' is called an elementary substructure of A, denoted as $A' \prec A$.
- Herbrand's theorem (Skolem version). In first-order logic (without equality), ∃-formula $\exists \vec{x} \varphi(\vec{x})$ is valid if and only if
	- there exist *n*-tuples of terms, $\vec{t}_1, \ldots, \vec{t}_k$, from $\mathcal{L}(\varphi)$ and
	- $\varphi(\vec{t}_1) \vee \cdots \vee \varphi(\vec{t}_k)$ is a tautology.

Recap

 $4/21$

KORK EXTERNS ORA

K. Tanaka

[Recap](#page-3-0)

[Introduction](#page-4-0)

- [Formal system of](#page-5-0) first-order logic
- [Compactness](#page-8-0)
- Gödel's
- [Application of the](#page-14-0)

[Summary](#page-19-0)

Application: P. Bernays, M. Shönfinkel, F. Ramsey

- Let $\theta(\vec{x}, \vec{y})$ be a formula without quantifiers. A formula of the form $\forall \vec{x} \exists \vec{y} \theta(\vec{x}, \vec{y})$ is called a $\forall \exists$ formula; a formula of the form $\exists \vec{x} \forall \vec{y} \theta(\vec{x}, \vec{y})$ is called a $\exists \forall$ formula. In this page, we assume a formula contains no function symbols except constants.
- Then, we can check in finite steps the $\forall \exists$ sentence σ (with $=$) is valid or not. Let \vec{a} be Skolem functions (constants) for $\neg \sigma \equiv \exists \vec{x} \forall \vec{y} \neg \theta(\vec{x}, \vec{y})$. Then,
	- σ is valid \Leftrightarrow $\exists \vec{y} \theta(\vec{a}, \vec{y})$ is valid \Leftrightarrow Eq $(\theta(\vec{a}, \vec{y})) \rightarrow \exists \vec{y} \theta(a, \vec{y})$ is valid without =.
- Let $\exists \vec{z} \varphi(\vec{z})$ denote $\text{Eq}(\theta(\vec{a}, \vec{y})) \to \exists \vec{y} \theta(a, \vec{y})$. $\mathcal{L}(\varphi(\vec{z}))$ consists of a finite number of constants in the Herbrand domain.
- We substitute all combinations of these constants for \vec{z} in $\varphi(\vec{z})$, combine them with disjunction ∨. We can check whether the proposition is a tautology or not.

5 / 21

KORK EXTERNS ORA

• Such a decision problem is NEXPTIME complete.

K. Tanaka

[Recap](#page-3-0)

[Formal system of](#page-5-0) first-order logic

[Compactness](#page-8-0)

[Application of the](#page-14-0) compactness

[Summary](#page-19-0)

Formal system of first-order logic

- • Before introducing Gödel's completeness theorem, we define the the formal system of first-order logic.
- Among the various formal systems, we consider an formal system by extending that of propositional logic in part 2 of this course.

Axiom system P1. $\varphi \to (\psi \to \varphi)$ P2. $(\varphi \to (\psi \to \theta)) \to ((\varphi \to \psi) \to (\varphi \to \theta))$ P3. $(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$ P4. $\forall x \varphi(x) \rightarrow \varphi(t)$ (the quantification axiom)

 $\qquad \qquad \qquad$

 $\qquad \qquad \qquad$

K. Tanaka

[Recap](#page-3-0)

-
- [Formal system of](#page-5-0) first-order logic
- [Compactness](#page-8-0)
- Gödel's
-

[Summary](#page-19-0)

- The existential quantifiers $\exists x \varphi(x) := \neg \forall x \neg \varphi(x)$.
- \bullet In languages with equality, the axiom Eq is assumed (reflexive, symmetrical, transitive, and for each symbol f or R , its value is preserved with equality).
- If a sentence σ can be proved from the set of sentences T, then σ is called a **theorem** of T, and written as $T \vdash \sigma$.
- The quantification axiom and the equality axiom hold trivially in any structure, and the generalization rule also clearly preserves truth (because the free variable x of a formula is interpreted by universal closure).
- So if $T \vdash \sigma$ then $T \models \sigma$. This means that the deductive system does not derive any strange theorems, and is called the soundness theorem.
- The completeness theorem (a weak version) asserts the opposite, that the system derives all true propositions.

7 / 21

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (º

K. Tanaka

[Recap](#page-3-0)

[Formal system of](#page-5-0) first-order logic

[Compactness](#page-8-0)

Gödel's

[Application of the](#page-14-0)

[Summary](#page-19-0)

\leftarrow Homework \longrightarrow

(1) For any formula $\varphi(x_1,\ldots,x_n)$, prove that the truth value must be preserved with equality $((x_1 = y_1 \land \cdots \land x_n = y_n) \rightarrow \varphi(x_1, \ldots, x_n) \leftrightarrow \varphi(y_1, \ldots, y_n)).$

✒ ✑

 $8/21$

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

(2) Let $\psi(\varphi)$ be the formula obtained by replacing the relation symbol $R(\vec{x})$ in formula ψ with formula $\varphi(\vec{x})$. Show $\forall \vec{x}(\varphi_1(\vec{x}) \leftrightarrow \varphi_2(\vec{x})) \rightarrow (\psi(\varphi_1) \leftrightarrow \psi(\varphi_2))$.

K. Tanaka

[Recap](#page-3-0)

[Formal system of](#page-5-0) first-order logic

[Compactness](#page-8-0) theorem

Gödel's

[Summary](#page-19-0)

Completeness theorem (a weak version)

- • The theorem asserts that for any sentence σ , if $\models \sigma$ then $\vdash \sigma$. So, assuming $\models \neg \sigma$, we will show $\vdash \neg \sigma$.
- $\bullet\,$ By Skolem's Fundamental Theorem, let $\forall\vec{x}\varphi(\vec{x})$ be the $\mathrm{SNF}\sigma^S$ of $\sigma\,.$ If $\neg\sigma$ is valid, there are n pairs of terms \vec{t}_i such that $\neg \varphi(\vec{t}_1) \vee \cdots \vee \neg \varphi(\vec{t}_k)$ is a tautology.
- By the completeness theorem of propositional logic, the tautology is a theorem of propositional logic. So, it is also a theorem of first-order logic, by regarding the atomic propositions as atomic formulas of first-order logic.
- Since $\neg\varphi(\vec{t}_i) \to \exists \vec{x} \neg \varphi(\vec{x})$ can be proved in first-order logic, we can deduce $\exists \vec{x} \neg \varphi(\vec{x})$ from the theorem $\neg \varphi(\vec{t}_1) \vee \cdots \vee \neg \varphi(\vec{t}_k)$. Thus, $\neg \sigma$ is provable.

✒ ✑

9 / 21

Skolem Fundamental Theorem, revisited

In first-order logic without equality, let $\sigma^S \equiv \forall \vec{x} \varphi(\vec{x})$ be a SNF of σ . Then, $\neg \sigma$ is valid iff

- there exist *n*-tuples $\vec{t}_i \in U^n (i < k)$ from Herbrand domain U of $\mathcal{L}(\varphi)$, and
- $\neg \varphi(\vec{t}_1) \vee \cdots \vee \neg \varphi(\vec{t}_k)$ is a tautology.

K. Tanaka

- [Recap](#page-3-0)
- [Introduction](#page-4-0)
- [Formal system of](#page-5-0) first-order logic
- **[Compactness](#page-8-0)** theorem
-
- [Application of the](#page-14-0)
- [Summary](#page-19-0)
- To show the completeness theorem, Gödel introduced new relation symbols instead of Skolem functions, and transformed any sentence into a ∀∃ sentence.
- Subsequently, L. Henkin introduced a constant $c_{\exists x \varphi(x)}$ (Henkin constant) for each sentence $\exists x \varphi(x)$, and assume the following formula as a axiom. By the Henkin axioms, any sentence can be rewritten as a formula without quantifiers.

$\exists x \varphi(x) \rightarrow \varphi(c_{\exists x \varphi(x)})$ Henkin axiom

• The compactness theorem of first order logic is also deduced from the compactness of propositional logic.

10 / 21

KOD KARD KED KED BI YOUN

Theorem (Compactness theorem)

If a set T of sentences of first order logic is not satisfiable, then there exists some finite subset of T which is not satisfiable.

K. Tanaka

- [Recap](#page-3-0)
-
- [Formal system of](#page-5-0) first-order logic
- **[Compactness](#page-8-0)** theorem
-
-
- [Summary](#page-19-0)

Proof

- $\bullet\,$ Let T^S be the collection of $\text{SNF}\;\sigma^S$ of each sentence σ in $T.$ (Notice that all the Skolem functions should be distinct. Regarding the equality, you can add the equality axiom Eq if necessary)
- From theorem below, we see that the satisfiability of T is equivalent to the satisfiability of $T^S.$

Recall: Theorem (2) of Lecture-03-02

For a formula φ in $\mathcal L$ (i.e., not containing a skolem function),

$$
T \models \varphi \Leftrightarrow T^S \models \varphi.
$$

✒ ✑

11 / 21

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A \Rightarrow A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A$

- Construct the Herbrand domain U using all function symbols contained in T^{S} .
- Let Σ be the set of all the sentences obtained from $\varphi(\vec{x})$ such that $\forall \vec{x} \varphi(\vec{x})$ in T^S by substituting terms in U to \vec{x} .

K. Tanaka

[Recap](#page-3-0)

[Formal system of](#page-5-0) first-order logic

[Compactness](#page-8-0) theorem

Gödel's

[Summary](#page-19-0)

• Now, if Σ is satisfiable, then from the folowing lemma, Σ has a Herbrand structure $\mathcal U$ as its model.

Recall: Lemma (4) of Lecture-03-02

Let Σ be a set of sentences without quantifiers and equality. The following three statements are equivalent.

- 1. Σ is satisfiable in the first-order sense, *i.e.*, Σ has a model.
- 2. Σ is satisfiable in the sense of propositional logic (regarding atomic sentences as atomic propositions).

 $\qquad \qquad \qquad$

12 / 21

- $3. \Sigma$ has a Herbrand structure as its model.
- Since $\mathcal{U} \models \Sigma$, all the substitution instances of $\varphi(\vec{x})$ hold in \mathcal{U} , and so $\forall \vec{x} \varphi(\vec{x})$ also holds in $\mathcal U,$ which means that $\mathcal U$ is a model of $T^S.$ hence a model of $T.$ Therefore, Σ is not satisfiable if T is not satisfiable.

K. Tanaka

- [Recap](#page-3-0)
-
- [Formal system of](#page-5-0) first-order logic
- **[Compactness](#page-8-0)** theorem
-
-
- **[Summary](#page-19-0)**
- Now, assume that T is not satisfiable. Therefore, Σ is not satisfiable. Here again, from the Lemma (4) of Lecture-03-02, Σ is not satisfiable in the sense of propositional logic.
- By the compactness of propositional logic, some finite subset Σ' of Σ is not satisfiable, and it is also not satisfiable in the sense of first-order logic.
- $\bullet\,$ Now, let $\overline{\sigma}^S$ denote the \forall formula of T^S which is the source of formula σ of Σ' , and let $\overline{\sigma}$ be the formula of T which is the source of formula $\overline{\sigma}^S.$

13 / 21

KORK EXTERNS ORA

- Moreover, let T'^S and T' be the sets of $\overline{\sigma}^S$ and $\overline{\sigma}$, respectively.
- In general, a model of T'^S is a model of Σ' . So T'^S is not satisfiable.
- Hence, the finite subset T' of T is also not satisfiable.

K. Tanaka

[Recap](#page-3-0)

[Formal system of](#page-5-0) first-order logic

[Compactness](#page-8-0)

Gödel's [completeness](#page-13-0) theorem

[Summary](#page-19-0)

From this we can derive the general completeness theorem.

Theorem (Gödel's completeness theorem)

In first order logic, $T \vdash \varphi \Leftrightarrow T \models \varphi$.

Proof.

- $\bullet \Rightarrow$ has been proved as above.
- To show \Leftarrow , assume $T \models \varphi$ and φ is a sentence.
- Then $T \cup \{\neg \varphi\}$ is not satisfiable.
- By the compactness theorem, there exists a finite set $\{\sigma_1, \ldots, \sigma_n\}$ of T such that $\{\sigma_1, \ldots, \sigma_n, \neg \varphi\}$ is not satisfiable.
- Then $(\sigma_1 \wedge \cdots \wedge \sigma_n) \rightarrow \varphi$ is valid.
- From the completeness theorem (a weak version), $(\sigma_1 \wedge \cdots \wedge \sigma_n) \rightarrow \varphi$ is provable, and from MP, $\{\sigma_1, \ldots, \sigma_n\} \vdash \varphi$, hence $T \vdash \varphi$.

14 /

KO KA KO KE KE KE KA KA KA KA KA KA KA A

K. Tanaka

- [Recap](#page-3-0)
-
- [Formal system of](#page-5-0) first-order logic
- [Compactness](#page-8-0)
-
- [Application of the](#page-14-0) compactness theorem

[Summary](#page-19-0)

Existence of non-standard models of arithmetic

- • Let $\mathcal{N} = (\mathbb{N}, 0, 1, +, \cdot, <)$ be the standard model of arithmetic (natural number theory).
- Let Th $(N) := \{\sigma : \mathcal{N} \models \sigma\}$. N is naturally a model of Th (N) , but there also exist models of Th(\mathcal{N}) that are not isomorphic to \mathcal{N} , which are called **nonstandard** models of arithmetic.
- Using the compactness theorem, we construct a nonstandard model of arithmetic as follows. First, with c as a new constant, for each $k \in \mathbb{N}$

$$
T_k = \text{Th}(\mathcal{N}) \cup \{0 < c, 1 < c, 1 + 1 < c, 1 + 1 + 1 < c, \dots, \underbrace{1 + 1 + \dots + 1}_{1 + 1 + \dots + 1} < c\}
$$

- The structure of N plus the interpretation of the constant c as $k+1$ is a model of T_k .
- $\bullet\hbox{ Let }T=\bigcup_{k\in\omega}T_k.$ Any finite subset of T is contained in some T_k and so satisfiable. Hence, by the compactness theorem, T also has a model M , where the value of c is larger than any standard natural number.
- That is, M has elements that are not standard natural numbers.
- By [re](#page-13-0)moving the constant c from the structure, M can be re[ga](#page-15-0)[rd](#page-13-0)[ed](#page-14-0)[as](#page-13-0) [a](#page-18-0) [n](#page-19-0)[o](#page-13-0)[n](#page-14-0)[-](#page-18-0)[s](#page-19-0)[ta](#page-0-0)[nda](#page-20-0)rd model of arithmetic in the language \mathcal{L}_{OR} . 15 / 21

K. Tanaka

- [Recap](#page-3-0)
-
- [Formal system of](#page-5-0) first-order logic
- [Compactness](#page-8-0)
- Gödel's
- [Application of the](#page-14-0) compactness theorem

[Summary](#page-19-0)

Existence of arbitrarily large models

16 / 21

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (º

- If T has an arbitrarily large finite model, then T has a model of arbitrarily large infinite cardinality.
- Let $\{c_i : i \in \kappa\}$ be a set of constants with infinite cardinality κ . We consider

 $T' = T \cup \{ \mathrm{c}_i \neq \mathrm{c}_j : i \neq j \text{ and } i,j \in \kappa \}$

- $\bullet\,$ For any finite subset of T' , it is satisfiable if we take a finite model of T with at least the number of constants \mathbf{c}_i in it, and interpret each constant as a distinct element.
- Therefore, from the compactness theorem, T' also has a model, which is a model of T with more than κ elements.
- To construct a model with exactly the same cardinality as T , we use a generalized version of the Löwenheim-Skolem's downward theorem.

K. Tanaka

[Recap](#page-3-0)

- [Formal system of](#page-5-0) first-order logic
- [Compactness](#page-8-0)
- Gödel's
- [Application of the](#page-14-0) compactness theorem

[Summary](#page-19-0)

\frown Remark \frown

- By the above example, there is no first-order theory that has arbitrarily large finite models and has no infinite models.
- Thus the relation $T \models_{\text{finite}} \varphi$ asserting that a formula φ is true for any finite model M of theory T cannot be captured by the first order system (Trakhtenbrot theorem, which will be introduced in next semester).

✒ ✑

17 / 21

 Ω

 $\mathbf{A} \sqsubseteq \mathbf{A} \rightarrow \mathbf{A} \boxplus \mathbf{B} \rightarrow \mathbf{A} \boxplus \mathbf{B} \rightarrow \mathbf{A} \boxplus \mathbf{B}$

K. Tanaka

- [Recap](#page-3-0)
-
- [Formal system of](#page-5-0) first-order logic
- [Compactness](#page-8-0)
- Gödel's
- [Application of the](#page-14-0) compactness theorem

[Summary](#page-19-0)

- • The graph $G = (V, E)$ consists of set V of vertices and the relation $E \subset V \times V$ representing the edges.
- We consider an undirected graph (a directed graph can be treated similarly).
- Let c_1 and c_2 be constants, and for each $n \in \mathbb{N}$, define φ_n as follows

 $\varphi_n \equiv \neg \exists x_1 \exists x_2 \dots \exists x_n (E(c_1, x_1) \wedge E(x_1, x_2) \wedge \dots \wedge E(x_n, c_2))$

Connectivity of graphs

where φ_n means there is no path of length $n+1$ from c_1 to c_2 , and φ_0 is $\neg E(c_1, c_2)$.

- Suppose there is a first order sentence σ expressing the connectivity of a graph (there is a path between any two vertices).
- At this time, the following T has a model by compactness theorem.

$$
T = \{\sigma\} \cup \{\varphi_n : n \in \mathbb{N}\} \cup \{c_1 \neq c_2\}
$$

- But in that model there is no finite-length path from c_1 to c_2 , which contradicts with the connectivity that σ represents.
- That is, there is no sentence of first-order logic expressing [co](#page-16-0)[nn](#page-18-0)[ec](#page-16-0)[ti](#page-17-0)[vi](#page-18-0)[ty](#page-13-0)[.](#page-14-0)

18 / 21

 η are

K. Tanaka

- [Recap](#page-3-0)
-
- [Formal system of](#page-5-0) first-order logic
- [Compactness](#page-8-0)
-
- [Application of the](#page-14-0) compactness theorem

[Summary](#page-19-0)

• In this way, for all graphs including infinite graphs, connectivity cannot be formulated by a first-order logic formula.

19 / 21

 2990

 $A \cap B \rightarrow A \cap B$

- But what if we restrict ourselves to finite graphs?
- Even in this case, connectivity cannot be formulated. For that purpose, the Ehrenfeucht-Fraïssé game introduced in the next lecture is effective.

K. Tanaka

- [Recap](#page-3-0)
-
- [Formal system of](#page-5-0) first-order logic
- [Compactness](#page-8-0)
-
-

[Summary](#page-19-0)

- • Formal system of first-order logic: formal system of propositional logic $+$ $\forall x \varphi(x) \rightarrow \varphi(t)$ (the quantification axiom) + the generalization inference rule
- Henkin axiom $\exists x \varphi(x) \rightarrow \varphi(c_{\exists x \varphi(x)})$, by which any sentence can be rewritten as a formula without quantifiers.
- Compactness theorem. If a set T of sentences of first order logic is not satisfiable, then there exists some finite subset of T which is not satisfiable.
- Gödel's completeness theorem. In first order logic, $T \vdash \varphi \Leftrightarrow T \models \varphi$.
- Application of the compactness theorem
	- \triangleright Existence of non-standard models of arithmetic
	- \triangleright Existence of arbitrarily large models
	- \triangleright Connectivity of graphs
- Further readings -

Mathematical Logic. H.-D. Ebbinghaus, J. Flum, w. Thomas, Springer New York, NY.

Summary

K. Tanaka

[Recap](#page-3-0)

[Formal system of](#page-5-0) first-order logic

[Compactness](#page-8-0)

Gödel's

[Application of the](#page-14-0)

[Summary](#page-19-0)

Thank you for your attention!

