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Logic and Computation I� �
• Part 1. Introduction to Theory of Computation

• Part 2. Propositional Logic and Computational Complexity

• Part 3. First Order Logic and Decision Problems� �
Part 3. Schedule� �
• Dec. 8, (1) What is first-order logic?

• Dec.13, (2) Skolem’s theorem

• Dec.15, (3) Gödel’s completeness theorem

• Dec.20, (4) Ehrenfeucht-Fräıssé’s theorem

• Dec.22, (5) Presburger arithmetic

• Dec.27, (6) Peano arithmetic and Gödel’s first incompleteness theorem� �
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Recap
• First-order logic is developed in the common logical symbols and specific mathematical
symbols. Major logical symbols are propositional connectives, quantifiers ∀x and ∃x
and equality =. The set of mathematical symbols to use is called a language.

• A structure in language L (simply, a L-structure) is defined as a non-empty set A
equipped with an interpretation of the symbols in L.

• A term is a symbol string to denote an element of a structure. A formula is a symbol
string to describe a property of a structure. A formula without free variables is called a
sentence.

• “A sentence φ is true in A, written as A |= φ” is defined by Tarski’s clauses. The
truth of a formula with free variables is defined by the truth of its universal closure.

• A set of sentences in the language L is called a theory. A is a model of T , denoted
by A |= T , if ∀φ ∈ T (A |= φ).

• We say that φ holds in T , written as T |= φ, if ∀A(A |= T → A |= φ).
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Introduction

• In the original proof of K. Gödel’s completeness theorem, he reduced the
nesting depth of quantifiers by introducing new relation symbols. Finally,
the satisfiability of first-order logic is reduced to that of propositional
logic.

• Before Gödel’s, T. Skolem performed a similar operation using function
symbols instead of relation symbols.

• Since Skolem did not consider formal deductive systems, he did not
derive the completeness theorem, but his results are equivalent to those
of the completeness theorem and its applications in model theory.

• Conversely, J. Herbrand, in the same era, obtained a result equivalent to
the completeness theorem independent from the viewpoint of the model.

• In this lecture, we will review Skolem’s arguments by adding Herbrand’s
perspective.

K. Gödel’s

T. Skolem

J. Herbrand
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In the following, unless otherwise stated, the language L is arbitrarily fixed.

Definition

Let φ be a formula without quantifiers and Qi be quantifiers (∀ or ∃).

Q1x1Q2x2 . . . Qnxnφ

is in prenex normal form, abbreviated as PNF.
In particular, if all Qi are ∀, we call it ∀-formula (universal formula); if all Qi are ∃, we
call it ∃-formula (existential formula).

Theorem (1)

For any formula φ, there exists an equivalent PNF formula φ′, that is, the universal closure
of φ ↔ φ′ (i.e., (φ → φ′) ∧ (φ′ → φ)) is valid.
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Proof idea of Thm (1).

• For any formula φ, we perform the following transformation to push an inner
quantifier in φ outside one by one.

• For example, consider a formula φ ≡ θ ∧ ∀xξ(x).
• If θ does not have x as a free variable, we have the following equivalent transformation.

θ ∧ ∀xξ(x) ↔ ∀x(θ ∧ ξ(x)).

• To show the equivalence, we take an arbitrary L-structure and any assignment of its
elements to free variables other than x. Then check the equivalence. Since θ does not
have x as a free variable, it has the same truth value on both sides. Although the
positions of ∀x are different, both sides require ξ(a) to hold for all elements a.

• If θ has x as a free variable, we replace the bound variable x of ∀xξ(x) by a new
variable y and then obtain the following equivalent transformation.

θ ∧ ∀xξ(x) ↔ ∀y(θ ∧ ξ(y)).

• For other combinations of logical symbols, we also have a similar equivalent
transformation.
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Löwenheim-
Skolem’s
downward
theorem

Herbrand’s
theorem

Skolem
Fundamental
Theorem

Summary

In the following, assume that in a PNF formula Q1x1Q2x2 . . . Qnxnθ, all the variables xi’s
are distinct. In fact, in · · ·Qx · · ·Q′x · · ·φ , the outer Qx is meaningless and is
automatically deleted.

Definition

Given a formula φ, we first transform it into a equivalent PNF formula

φ′ ≡ Q1x1Q2x2 . . . Qnxnθ.

Then, by repeating the following operations as much as possible, we finally obtain a
∀-formula, which is called the Skolem normal form of φ, abbreviated as SNF.

• Let Qi be the outermost (leftmost) existential symbol in φ′. Remove Qixi and replace
all occurrences of xi on its right side (inside) of Qixi with f(x1, . . . , xi−1), where f is
a new function symbol and is called a Skolem function.

In the above definition, when Q1 is existential, x1 is replaced by a “constant” (or a 0-ary
function symbol). In this lecture, constants are treated as 0-ary function symbols.
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Example 1� �
For a PNF formula

∀w∃x∀y∃zθ(w, x, y, z),

first remove ∃x and replace x with f(w),

∀w∀y∃zθ(w, f(w), y, z).

Remove ∃z, replace z with g(w, y),

∀w∀yθ(w, f(w), y, g(w, y)).

This is a ∀-formula and thus the SNF of the given formula.� �
We here note that the following implications holds:

∀w∀yθ(w, f(w), y, g(w, y)) → ∀w∀y∃zθ(w, f(w), y, z) → ∀w∃x∀y∃zθ(w, x, y, z).
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• The equivalence between φ and its SNF formula φS does not hold in general.
• φS → φ is always true, while φ → φS is not. (∵) A Skolem function of φS can be
interpreted arbitrarily.

• But φ is satisfiable ⇔ φS is satisfiable.

Theorem (2)

Let T be a theory in L and TS be the collection of SNF σS for a sentence σ of T . For a
formula φ in L (i.e., not containing a skolem function),

T |= φ ⇔ TS |= φ.

Remark 1� �
• Let T be a theory in L and T ′ be a theory of an extended language L′ ⊃ L.
• T ′ is said to be a conservative extension of T if for any formula φ in L,

T |= φ ⇔ T ′ |= φ.

• The above theorem asserts that TS is a conservative extension of T .� �
10 / 23
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Proof of Thm(2).
⇒ is obvious because σS → σ.
To show ⇐
• Assume TS |= φ and let A be any model of T . We want to show A |= φ.

• Choose any sentence σ in T . We suppose that it is of the form ∀w∃x∀y∃zθ(w, x, y, z).
(General cases can be treated similarly).

• Since this sentence σ holds in A, then by the axiom of choice, we construct a
functions fA(w) and gA(w, y) such that (A, fA, gA) satisfies
∀w∀yθ(w, f(w), y, g(w, y)), namely, σS .

• Similarly, we can extend A to a model AS by giving an appropriate interpretation to
every Skolem function in every sentence σ in T . Then, obviously AS |= TS .

• Since TS |= φ, AS |= φ. So, we get A |= φ because φ contains no Skolem functions.
Thus, T |= φ since A is an arbitrary model of T . □
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• In Theorem (2), if φ is a contradiction ⊥,

“ T is not satisfiable” ⇔ “ TS is not satisfiable”

• So “ T is satisfiable” ⇔ “ TS is satisfiable”.

• For any sentence σ,

|= ¬σ ⇔ “σ is not satisfiable” ⇔ “σS is not satisfiable” ⇔ |= ¬σS .

Lemma (3)

In a countable language, if a formula φ holds in a structure A, it holds in some countable
substructure A′ ⊂ A.
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Proof.

• Let fi(x1, . . . , xki
)(1 ≤ i ≤ n) be the Skolem functions of φ.

• Let A ∪ {fAi } be a model of SNF φS of φ. Note that this model is equipped with
countable many functions.

• Choose an element a ∈ A, and construct the smallest subset A′ of A that includes a
and is closed under all functions. Then A′ is a countable subset of A.

• Let A′ ∪{fA′

i } be a substructure of A∪{fAi } obtained by restricting the domain to A′.

• Since φS is a ∀-formula, if it holds in A ∪ {fAi }, then also holds in A′ ∪ {fA′

i }.
Thus φ also holds for A′. □
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The theorem above holds even if we replace a formula φ with a set of formulas.
Thus we obtain the following theorem.

Theorem (Countable version of Löwenheim-Skolem’s downward theorem)

For a structure A in a countable language L, there exists a countable substructure A′ ⊂ A
such that

A′ |= φ ⇔ A |= φ, for any LA′ sentence φ.

Such A′ is called an elementary substructure of A, denoted as A′ ≺ A.

14 / 23



Logic and
Computation

K. Tanaka

Recap

Introduction

Prenex normal
form

Skolem normal
form

Conservative
extension
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Proof.
• Let T be the theory of A, that is, the set of sentences true in A.

• The set of Skolem functions (without duplication) for all sentences in T is a countable
set. Therefore, there exists a countable set A1 ⊂ A which is closed under the
functions of L and all Skolem functions.

• Let A1 be a substructure of A obtained by restricting the domain A to A1. Then,
A1 |= TS and so A1 |= T .

• Let TA1 be the LA1 -theory of A, that is, the set of LA1-sentences true in A.

• Construct a countable A2 ⊂ A such that A2 |= TA1
.Then A1 ≺ A2.

• Similarly, there is a countable A3 ⊂ A such that A2 ≺ A3 |= TA2
.

• By repeating this ω times and taking the limit sum, we obtain a countable
substructure A′ of A such that An ≺ A′ for all n.

• Then any LA′ sentence φ is a LAn
sentence for some n, so

A′ |= φ ⇔ An |= φ ⇔ A |= φ.

• Thus A′ is a countable elementary substructure of A. □15 / 23
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• By the countable version of Löwenheim-Skolem’s downward theorem, real number
theory and set theory, if they are described by countably many axioms, have a
countable model. This fact is known as Skolem’s paradox.

• Skolem also considered a structure, which is later be called the “Herbrand model”.

• For simplicity, we assume that every language has at least one constant.

• Herbrand domain U is the collection of terms (without variables) constructed by
function symbols, including Skolem functions.

• Herbrand structure U is defined by interpreting each function symbol on U : for
t1, . . . , tn ∈ U ,

fU (t1, . . . , tn) ≡ term“f(t1, . . . , tn)”.

• There are no restrictions on the interpretation of relational symbols, except for the
equality symbol =. We first consider a language without equality.
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Lemma (4)

Let Σ be a set of sentences without quantifiers and equality. The following three
statements are equivalent.

1. Σ is satisfiable in the first-order sense, i.e., Σ has a model.

2. Σ is satisfiable in the sense of propositional logic (regarding atomic sentences as
atomic propositions).

3. Σ has a Herbrand structure as its model.

Proof.
(1 ⇒ 2) If the truth-value of atomic propositions is determined by the model given by 1,
then we get a truth-value function that makes all propositions in Σ true.
(2 ⇒ 3) Assume there exists a truth-value function V that makes all statements of Σ true.
Then, the interpretation of the relation symbol R in the Herbrand structure U is
determined as follows. For t1, . . . , tn ∈ U ,

RU (t1, . . . , tn) ⇔ V (R(t1, . . . , tn)) = T(true).

By induction on the complexity of formulas, we can say that all sentences that are true
with V hold in U . In particular, U is a model of Σ.
(3 ⇒ 1) trivial
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Let L(φ) denote the set of mathematical symbols of formula φ. For simplicity, let
∃x⃗φ(x⃗) := ∃x1 . . . ∃xnφ(x1, . . . , xn). When we write ∃x⃗φ(x⃗), φ(x⃗) has no quantifiers.

Lemma (Herbrand’s theorem (Skolem version))

In first-order logic without equality, ∃-formula ∃x⃗φ(x⃗) is valid if and only if

• there exist n-tuples t⃗i ∈ Un (i < k) from the Herbrand domain U of L(φ) and
• φ(⃗t1) ∨ · · · ∨ φ(⃗tk) is a tautology.

If L(φ) does not have a constant, add a new constant to U .

Proof.
(⇐) The tautology φ(⃗t1) ∨ · · · ∨ φ(⃗tk) is also true in first-order logic. φ(⃗ti) → ∃x⃗φ(x⃗) is

valid, so ∃x⃗φ(x⃗) is valid.
(⇒) By contraposition.

• For any n-tuple t⃗i(i < k) of the Herbrand domain U , φ(⃗t1) ∨ · · · ∨ φ(⃗tk) is not a
tautology.

• Then ¬φ(⃗t1) ∧ · · · ∧ ¬φ(⃗tk) is satisfiable in propositional logic.
• By the compactness theorem of propositional logic, Σ = {¬φ(⃗t) : t⃗ ∈ Un} is
satisfiable.

• From Lemma (4), Herbrand structure U is a model of Σ. By the definition of Σ,
U |= ¬∃x⃗φ(x⃗). So the given ∃ sentence ∃x⃗φ(x⃗) is not valid. □18 / 23
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Theorem (Skolem Fundamental Theorem)

In first-order logic without equality, let σS ≡ ∀x⃗φ(x⃗) be a SNF of sentence σ.
Then, ¬σ is valid if and only if

• there exist n-tuples t⃗i ∈ Un(i < k) from Herbrand domain U of L(φ), and
• ¬φ(⃗t1) ∨ · · · ∨ ¬φ(⃗tk) is a tautology.

If L(φ) does not contain a constant, add a new constant to U .

Proof. By Remark 1 after Theorem (2), and Herbrand’s theorem.
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Example 3� �
∃w∀x∃y∀z¬θ(w, x, y, z) is true ⇔ ∃w∃y¬θ(w, f(w), y, g(w, y)) is true ⇔ there exist
closed terms s1, . . . , sn and t1, . . . , tn such that

¬θ(s1, f(s1), t1, g(s1, t1)) ∨ · · · ∨ ¬θ(sn, f(sn), tn, g(sn, tn))

is a tautology.� �
• In response to Skolem’s argument above, Herbrand

presented a more constructive assertion by replacing
validness with provability.

• In particular, there is Herbrand’s Fundamental Theorem,
which corresponds to Skolem’s Fundamental Theorem.

• For the proof of Herbrand’s Fundamental Theorem, rf. the
Appendix of the right hand side book.
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What happens if equality “=” is considered?

• Suppose we are given an arbitrary sentence σ with an equality “=”.

• Let σ be a formula constructed with symbols f,R ∈ L(σ), and the conservation axiom
for “=”

∀x⃗ ∀y⃗ (x⃗ = y⃗ → f(x⃗) = f(y⃗)), ∀x⃗ ∀y⃗ (x⃗ = y⃗ → R(x⃗) ↔ R(y⃗)).

• Since each of the reflexivity, symmetricity, and transitivity of “=” can be expressed by
a ∀ sentence, their conjunction, denote Eq(σ), can also be regarded as a ∀-sentence.

• Therefore, an ∃-sentence σ is valid in first-order logic with “=” iff

Eq(σ) → σ

is valid without the equality axioms.

• Since the above expression is a ∃ statement, applying the Herbrand’s theorem to this,
we obtain the equivalent condition as a tautology.
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Summary

• We first transform a formula φ into a equivalent PNF formula

φ′ ≡ Q1x1Q2x2 . . . Qnxnθ.

Then remove ∃x and replace x in θ with a new function f. For a PNF formula
∀w∃x∀y∃zθ(w, x, y, z), we obtain a SNF φS ≡ ∀w∀yθ(w, f(w), y, g(w, y)).

• Theorem (2). TS = {σS : σ ∈ T} is a conservative extension of T .

• Löwenheim-Skolem’s downward theorem. For a structure A in a countable language
L, there exists a countable substructure A′ ⊂ A s.t. A′ |= φ ⇔ A |= φ for any
LA′ -sentence φ. Such A′ is called an elementary substructure of A, denote A′ ≺ A.

• Herbrand’s theorem (Skolem version). In first-order logic (without equality), ∃-formula
∃x⃗φ(x⃗) is valid if and only if

• there exist n-tuples of terms, t⃗1, . . . , t⃗k, from L(φ) and
• φ(⃗t1) ∨ · · · ∨ φ(⃗tk) is a tautology.
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Thank you for your attention!
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