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Logic and Computation I� �
• Part 1. Introduction to Theory of Computation

• Part 2. Propositional Logic and Computational Complexity

• Part 3. First Order Logic and Decision Problems� �
Part 2. Schedule� �
• Nov.17, (1) Tautologies and proofs

• Nov.22, (2) The completeness theorem of propositional logic

• Nov.24, (3) SAT and NP-complete problems

• Nov.29, (4) NP-complete problems about graph

• Dec. 1, (5) Time-bound and space-bound complexity classes

• Dec. 6, (6) PSPACE-completeness and TQBF� �
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Recap

• For a function f : N→ N, we define the following four complexity classes.

DTIME(f(n))
def
= {L(M) | M is O(f(n)) time deterministic TM},

NTIME(f(n))
def
= {L(M) | M is O(f(n)) time non-deterministic TM},

DSPACE(f(n))
def
= {L(M) | M is O(f(n)) space deterministic TM},

NSPACE(f(n))
def
= {L(M) | M is O(f(n)) space non-deterministic TM}.

• For major functions f , we have

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP ⊆ EXPSPACE

• Savitch’s theorem: for any S(n) ≥ log n, NSPACE(S(n)) ⊆ DSPACE(S(n)2).
• Immermann-Szelepcsényi’s theorem: for any S(n)(≥ log n), NSPACE(S(n)) is closed

under complement.
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Hierarchy theorems
• In the first half of this lecture, we will show that some complexity classes are not
equivalent, that is, the existence of a hierarchy of complexity classes.

• As in the previous lectures, T (n) is time-constructible with T (n) > n, and S(n) is
space-constructible with S(n) ≥ log n.

Theorem (Space Hierarchy Theorem)

Let S(n) ≥ log n be space constructible. Then for any S′(n) = o(S(n)), there exists a
problem in DSPACE(S(n)) but not in DSPACE(S′(n)).

Proof.
• Prove by a diagonalization argument.
• Let M0,M1, . . . enumerate the deterministic Turing machines with alphabet {0, 1}.
• For a binary string x ∈ {0, 1}∗, let ♯(x) be the natural number represented by x as the
binary representation ignoring 0’s at its head.

• Therefore, for any natural number i, there exists an arbitrarily long sequence x such
that ♯(x) = i.
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Proof (continued) Now, construct a machine M with O(S(n)) space that cannot be
imitated in the o(S(n)) space. For a binary string x of length n,

1 Mark S(n) cells on the working tape (∵ S(n) is constructible),

2 If i = ♯(x), imitate Mi with input x in space S(n).

3 By the imitation, if M is going to run over space S(n), it stops and accepts x.

4 As in the proof of theorem (1) of the last lecture, if Mi runs for a sufficiently long
time 2kS(n), it is already in a roop. So, M stops and accepts x.

5 If Mi accepts/rejects x in space S(n), then M rejects/accepts x (respectively).

This machine M operates in O(S(n)) space.

• By way of contradiction, we assume there exists an Mi mimicking M in space o(S(n)).

• Consider a sufficiently long input x (S′(|x|) < S(|x|)) such that ♯(x) = i.

• By the definition of M , M and Mi give different results for input x in space S(|x|),
which is a contradiction.

Note that S′(n) is not assumed to be space constructible in the theorem.
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Theorem (Time Hierarchy Theorem)

Let T (n) be time constructible and T (n) > n. For any T ′(n) such that

T ′(n) log T ′(n) = o(T (n)),

there exists a problem in DTIME(T (n)) but not in DTIME(T ′(n)).

This proof is similar to that of Space Hierarchy Theorem. Note that a universal machine
for the T ′(n)-time machines operates in time O(T ′(n) log T ′(n)).

Homework� �
Prove the Time Hierarchy Theorem.� �
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From the above hierarchy theorems, we have the following.

L ⊊ PSPACE ⊊ EXPSPACE, P ⊊ EXP.

For nondeterministic classes, we also have hierarchy theorems. Since their arguments are
much more complex, we only state two major theorems and key ideas of the poofs.

Theorem (Ibarra, 1972)

For any real number r > s ≥ 1,

NSPACE(ns) ⊊ NSPACE(nr).

Proof by contradiction. For instance, suppose NSPACE(n4) = NSPACE(n3). Then by the
padding method (due to Cook), we also have NSPACE(n5) = NSPACE(n4) and then
NSPACE(n6) = NSPACE(n5), etc. Thus, NSPACE(n7) = NSPACE(n3). However,

NSPACE(n3) ⊆ DSPACE(n6)(from Savitch’s theorem)

⊊ DSPACE(n7)(from the space hierarchy theorem)

⊆ NSPACE(n7)

which is a contradiction.
8 / 20



Logic and
Computation

K. Tanaka

Recap

Hierarchy
theorems

TQBF

Summary

Theorem (Cook 1973)

For any real number r > s ≥ 1,

NTIME(ns) ⊊ NTIME(nr).

The proof is more cumbersome because there is no counterpart of Savitch’s theorem for
time complexity classes. It uses a technique of so-called lazy diagonalization.

9 / 20



Logic and
Computation

K. Tanaka

Recap

Hierarchy
theorems

TQBF

Summary

As already mentioned,

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP ⊆ EXPSPACE.

From today’s theorems,

NL ⊊ PSPACE, P ⊊ EXP, NP ⊊ NEXP, PSPACE ⊊ EXPSPACE.

For each of the above four relations, there are two complexity classes are sandwiched
between them. E.g., P and NP are sandwiched between NL ⊊ PSPACE. So, in such
consecutive four classes, at lease one of adjacent pairs must be a proper inclusion.
However, it is widely open to decide which pair is proper.
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PSPACE and TQBF

• PSPACE, along with NP, is a complexity class that captures many natural decision
problems.

• R. Karp introduced the notion of PSPACE completeness as well as NP completeness.

• A PSPACE complete problem is a PSPACE problem that any PSPACE problem is
polynomial-time reducible to it.

• Let TQBF (true quantified Boolean formula) denote the problem to decide whether a
QBF (quantified Boolean formula) is true.

• Next we will introduce Stockmeyer et al.’s result on the PSPACE-completeness of
TQBF .
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• QBF(quantified Boolean formula) can be regarded as the first-order theory of the
simple Boolean algebra 2 = {0, 1}.

• When we discussed SAT as a NP-complete problem, we should have taken care to
handle subscripts for variables x0, x1, x2, ..., but PSPACE is a much broader class so
that we may ignore such a coding issue.

• Recall that a Boolean expression is built from variables x0, x1, x2, ... and constants 0, 1
by operations ∧,∨,¬ as usual.

• A QBF (quantified Boolean formula) is built similarly, in addition, by the quantifiers
∀,∃. ∃xA(x) is equivalent to A(0) ∨A(1) and ∀xA(x) is A(0) ∧A(1).

• The TQBF problem is the decision problem of whether a given QBF is true (1), which
is also called simply QBF in some books.

Example 1: An equivalent transformation of QBF� �
∀x∃yA(x, y) ↔ ∃yA(0, y) ∧ ∃yA(1, y) ↔ (A(0, 0) ∨A(0, 1)) ∧ (A(1, 0) ∨A(1, 1)).� �
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• Any QBF can be transformed into a prenex normal form (i.e., a boolean expression
prefixed by a sequence of quantifiers) by the following rule.
(∃yA) ∧B ⇒ ∃y(A ∧B), (∃yA) ∨B ⇒ ∃y(A ∨B) (B does not contain y freely),
¬∃xA ⇒ ∀x¬A, ¬∀xA ⇒ ∃x¬A.

• Note that the elimination of quantifiers, as in Example 1, increases the length of the
expression exponentially, whereas the transformation to the prenex normal form does
not change the length of the expression.

• TQBF is to decide the truth value of a formula A in the form
Q1x1Q2x2...QnxnB(x1, ..., xn) (where B(x1, ..., xn) is a Boolean expression).

• Now, if all Qi are ∃, then
A is true ⇔ B is satisfiable.

• Therefore, TQBF includes SAT as a special case.

• If all Qi are ∀, then
A is true ⇔ B is valid (tautology).
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Theorem

TQBF is PSPACE-complete.

Proof.

• First, we show that TQBF is a PSPACE problem.

• For simplicity, consider the prenex normal form A ≡ ∀x1∃x2∀x3B(x1, x2, x3)
(B(x1, x2, x3) is a Boolean expression).

• To find the value of A by substituting 0, 1 for the variables in B(x1, x2, x3)
appropriately, we need to memorize the current assignment for x1, x2, x3 during the
computation. So, this can be performed in the space of the length of a given formula.
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By B(ba1 , b
e
2, b

a
3), we denote an expression obtained from B(x1, x2, x3) by substituting

(ba1 , b
e
2, b

a
3) for x1, x2, x3, respectively. Here, a value substituted for a variable of ∀ is

denoted as ba, and the value for ∃ is denoted as be.

• The computation proceeds as follows.
1. Examine B(0a, 0e, 0a). If true (value 1), check B(0a, 0e, 1a). If both are true, go
to 3; otherwise, go to 2.
2. Examine B(0a, 1e, 0a). If true, check B(0a, 1e, 1a). If both are true, go to 3;
otherwise, reject (A is false).
3. Examine B(1a, 0e, 0a). If true, check B(1a, 0e, 1a). If both are true, accept (A is
true); otherwise, go to 4.
4. Examine B(1a, 1e, 0a). If true, check B(1a, 1e, 1a). If both are true, accept (A is
true); otherwise, reject (A is false).

• It is easy to generalize the above computation to any QBF. This is a computation in
DSPACE(n).
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• Next we show that TQBF is PSPACE-hard.

• Let L be a PSPACE problem and M a deterministic machine that accepts L in S(n)
space.

• Recall that the NP-hard proof of Cook theorem. Let φ(t, α) represent that α is the
computational configuration at time t. More precisely, φ(t, α) is expressed as a
conjunction of variables xt,i,a, which represents that the ith (≤ p(n)) symbol in the
computation configuration at time t ≤ p(n) is a. The transition of the configuration is
represented by the relation of formula φ(t, ) and φ(t+ 1, ).

• Then, we can express that M accepts input w in polynomial time p(n) by a Boolean
expression Φw of length about p(|w|)3.

• Since S(n)-space is converted to 2O(S(n))-time, the size of Φw is also 2O(S(n)). It is
not polynomial-time reduction.

• This can be improved by the same trick as used for Savitch’s theorem. Let
Reach(α, β, t) be a formula expressing that configuration β can be reached from
configuration α within t steps. More precisely, a configuration is a sequence of
variables xi,a (i < S(n)), and so there are 2S(n) variables in Reach(α, β, t). Then we
will express the computation as the relation between Reach( , , t) and Reach( , , t/2).
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• Definition of Reach(α, β, t).

• Reach(α, β, 0) is equivalent to α = β, which is more precisely a conjunction of
equalities between variables. Let Reach(α, β, 1) denotes that β is reachable from α in
one step. The length of this formula is O(S(n)2).

• For t ≥ 2, if Reach(α, β, t) is defined as ∃γ(Reach(α, γ, t/2) ∧ Reach(γ, β, t/2)), the
size of the final formula is about size t, that is, 2S(n).

• By using ∀,∃, it is also recursively defined as

∃γ∀δ1∀δ2((δ1 = α ∧ δ2 = γ) ∨ (δ1 = γ ∧ δ2 = β) → Reach(δ1, δ2, t/2)).

Without the recursive part, the length is O(S(n)).

• To reach Reach( , , 1), we repeat the recursion S(n) times, and so the final length is
O(S(n)2).

• Thus L ≤p TQBF, and TQBF is PSPACE complete.
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Homework� �
Prove DSPACE(n) ̸= P and DSPACE(n) ̸= NP.� �

18 / 20



Logic and
Computation

K. Tanaka

Recap

Hierarchy
theorems

TQBF

Summary

Summary

• As already mentioned,

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP ⊆ EXPSPACE.

From today’s theorems,

NL ⊊ PSPACE, P ⊊ EXP, NP ⊊ NEXP, PSPACE ⊊ EXPSPACE.

• TQBF is PSPACE-complete.

Further readings� �
M. Sipser, Introduction to the Theory of Computation, 3rd ed., Course Technology,
2012.� �
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Thank you for your attention!
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