Logic and
Computation

K. Tanaka

Logic and Computation: |

Chapter 2 Propositional logic and computational complexity

Kazuyuki Tanaka

BIMSA

December 1, 2022

gu I BREAE A
%*’) mEERFER
)

YANGI LAKE BELING INSTITUTE OF

1/30

Logic and
Computation

K. Tanaka

Logic and Computation |

® Part 1. Introduction to Theory of Computation

® Part 2. Propositional Logic and Computational Complexity

® Part 3. First Order Logic and Decision Problems

s Part 2. Schedule

Tautologies and proofs

The completeness theorem of propositional logic
SAT and NP-complete problems

NP-complete problems about graph
Time-bound and space-bound complexity classes
PSPACE-completeness and TQBF

2/30

Logic and
Computation

K. Tanaka

Recap
Introduction

Asymptotic

notations

Time-bound and

space-bound

Major Complexity

Classes

Basic relations

Savitch and

Summary

Time-bound and space-bound complexity classes

@ Recap

@® Introduction

© Asymptotic notations

@ Time-bound and space-bound

@ Major Complexity Classes

@ Basic relations

@ Savitch and Immermann-Szelepcsenyi

©® Summary

3/30

Logic and
Computation

K. Tanaka Reca p

Recap

® A Yes/No problem belongs to P if there exists a deterministic TM and a polynomial
p(x) s.t. for an input string of length n, it returns the correct answer within p(n) steps.

® A problem belongs to NP if there is a nondeterministic TM and a polynomial p(x)
s.t. for an input string of length n, it always stops within p(n) steps and answers

> VYes, if at least one accepting computation process admits it;
> No, if all the computation processes reject.

® Q is polynomial (time) reducible to Qa, denoted as Q; <, Qq, if there exists a
polynomial-time algorithm A which solves a problem ¢; in Q; as problem A(g;) in Qa.

® Q is NP-hard if for any NP problem Q’, Q" <, Q.

® An NP-hard NP problem is said to be NP-complete.

Theorem
The following are NP-complete: SAT, CNF-SAT, 3-SAT, VC, ({)HAMCYCLE, TSP.

4/30

Logic and
Computation

% et Introduction

Introduction

® |n last lectures, we defined the P and NP classes by polynomial time constraints on
Turing machines.

® Today, we will consider complexity classes defined by not only polynomials but also
more general function families. We will also treat space (tape usage) constraints, and
discuss their difference in computing power.

® The families of functions we treat as constraints are classified by asymptotic behavior.

5/30

Logic and
Computation

K. Tanaka Asymptotic notations

The followings are introduced to compare the growth rates of number-theoretic functions.

Asymptotic Deflhlthn

notations

For number-theoretic functions f : N — Nand g: N — N,

® f(n)=0(g(n)) 4 there exists some ¢ > 0 and for sufficiently large n,
) < e g(n).

* f(n) =6(g(n) ¥ f(n) = O(g(n)) and g(n) = O(f(n)).

® f(n)=o(g(n)) 4 For any ¢ > 0, for any sufficiently large n,

f(n) <c-g(n).

Here, “for a sufficiently large n" means “there exists IV s.t. for any n > N"; "=" is a
special symbol, different from the usual equal symbol.

6/30

Logic and
Computation

K. Tanaka

® The first"O" is particularly important, which is called the “Big O" notation.

p—— ® Note that in classical mathematics (Bachmann, Landau), “O" is often used in stead of

notations H@H

® |n addition to the above notation,

f

f(n) = Qg(n)) € g(n) = O(f(n))
f(n) = w(g(n)) € g(n) = o(f(n))

are often used. But, we will not use them here, since it is easy to get confused with
another usage: f(n) = Q(g(n)) < “for some ¢ > 0 and infinitely many n,
f(n) > c-g(n)" (Hardy, Littlewood).

7/30

Logic and
Computation

K. Tanaka

Asymptotic
notations

Unless otherwise stated, the base of the logarithmic function log(n) is 2, but for any r > 1,

log, (n) = s log(n) = O(log(n)).

Homework

o Is 27+l = O(2")7 s 227 = O(2")?

® Show max(f(n),g(n)) = O(f(n) + g(n)).

® Show log(n!) = ©(nlogn).

8/30

el ® A number-theoretic function f used for bounding time and space is
> monotonically increasing,
> so simple (time-constructible and space-constructible) that it can be easily
checked at any time during the computation whether it is in the time or space

K. Tanaka

bound.
By the latter condition, we may suppose that any computational process should halt
Jimebound an within the time or space bound even if it is not accepted (as defined below).

® \We assume that a Turing machine has one input tape and an arbitrary number of
working tapes.
® We write |z| for the length of the symbol string .

Definition

> A (deterministic/non-deterministic) Turing machine runs in time f(n) or is f(n)
time-bounded, if for every input (except finitely many), its calculation process ends
within f(|z|) steps.

> A (deterministic/non-deterministic) Turing machine runs in space f(n) or is f(n)
space-bounded, if for every input x (except finitely many), its calculation does not
use more than f(|z|) cells on each working tape.

9/30

Logic and
Computation

K. Tanaka

® We here consider a Turing machine M with time or space-bounding function. For a
simple and contructible function, the machine can check by itself whether it is in the
time or space bound. Otherwise, we need an outside system for measuring the time or

v o space to use.

® As for the space bound, we only measure the used spaces of the working tapes.
Therefore, the space bounding function f(n) can take a value smaller than the input
length n (e.g., f(n) =logn).

® As for the time bound, it is usually necessary to finish reading all the input, so the
time bounding function f(n) will be more than n + 1.

® A complexity class is defined by a family of bounding functions classified by their
asymptotic behavior.

10/30

Logic and
Computation

K. Tanaka

Time-bound and
space-bound

e Before defining complexity classes, we briefly explain the following theorem.

The Linear Speedup Theorem

A language acceptable by a f(n) time/space-bounded TM is also acceptable by cf(n)
time/space-bounded TM, for any constant ¢ > 0.

® First, consider a Turing machine with space bound (deterministic or non-determ).

® let ¢ be an integer, and a Turing machine M that runs in space ¢S(n). We construct
a Turing machine M’ that emulates it in space S(n). To this end, divide each working
tape of M into segments with length ¢, and treat each segment as one symbol.

® For speedup, M’ also treats a segment of ¢ symbols of M as one symbol. To
guarantee the time reduction, let 8 be a segment where the head is placed, and « and
v be the left and right of 5.

a pi 14

A

BEREnn 832 Benna

® A series of movements until the head of M moves to the leftmost of « or v should be
taken as one step of M’. If you need m steps for this, you may first divide the tape
into segments of mc symbols.
11 / 30

Logic and
Computation

K. Tanaka

Time-bound and
space-bound

In the following, we often omit “bound” or “bounded” for short. For instance, we just say
a f(n) time TM for a f(n) time-bounded TM. Also by “in O(f(n)) time (space)”, we

”

mean “for some g(n) = O(f(n)), g(n) time (space)”.

Definition

For the function f : N — N, we define the following four complexity classes.

DTIME(f(n)) % {L(M) | M is O(f(n)) time deterministic TM},

NTIME(f(n)) def {L(M) | M is O(f(n)) time non-deterministic TM},
DSPACE(f(n)) def {L(M) | M is O(f(n)) space deterministic TM},
NSPACE(f(n)) % {L(M)|M is O(f(n)) space non-deterministic TM}.

12/ 30

Logic and

Computation By using O(f(n)) for bounding, we have a stable class that does not depend on the
K. Tanaka detailed definition of the Turing machine. For important number-theoretic functions f, we
have the following classes.

Definition (Major Complexity Classes 1)

. L (or LOGSPACE) = DSPACE(logn),
o NL (or NLOGSPACE) % NSPACE(logn),
P ¥ DTIME(n®®Y) =|JDTIME(n"),
k
NP € NTIME(n®®) =| JNTIME(n"),
k
PSPACE ' DSPACE(n®W) = | JDSPACE(n"),
k

NPSPACE ' NSPACE(n®() = | JNSPACE(n").
k

13/30

Logic and
Computation

K. Tanaka

Major Complexity
Classes

Definition (Major Complexity Classes 2)

EXP (or EXPTIME) % DTIME(2""") =| JDTIME(2""),
k
NEXP (or NEXPTIME) < NTIME(2""") =| JNTIME(2""),
k
EXPSPACE % DSPACE(2"”") = | JDSPACE(2"),
k
NEXPSPACE %' NspAcCE(2"”"

Although not introduced here, the class E def DTIME(

should not be confused with EXP and NEXP.

20(”))

) = | JNSPACE(2™).
k

and NE %' NTIME(

QO(n))

14 /30

Logic and
Computation

K. Tanaka

Major Complexity
Classes

-~ Example 1

® The problem STCon(nect) is to determine whether there is a path from s to ¢
for two vertices s and ¢ of a directed graph G.
® Non-deterministic space complexity: STcon € NL.
® Let n be the number of vertices of G. Extend a path from s non-deterministically,

and accept it when it reaches t. Because it does not need to record the history,
2log n space is enough for the information on the end node of the current path
and the next node. In order to terminate the algorithm, another logn space may
be used to count the length of the path. So it is determined non-deterministically
in 3logn space.

® For non-deterministic time complexity, STCon(nect) is roughly linear time
(strictly, we need more rigorous definitions for machines and graphs).

® For deterministic case, STCon is in P and DSPACE(log2 n), which is shown by
Theorem (2) and Savich's Theorem of this lecture.

\

J

15 /30

Computaton We now examine the inclusion relationships between various complexity classes. Note that

K. Tanaka the functions f that define the major complexity classes are all constructible.

-~ Time-constructible / Space-constructible functions ~

> f(n) is time-constructible if there is a deterministic machine that count f(n) in
O(f(n)) steps with input 1™.

> f(n) is space-constructible if there is a deterministic machine that, for input
1™, marks S(n) cells and stops without using more than S(n) cells of the working
tape.

- J

~ Example 2 ~

Basic relations

® logn, (logn)? are space-constructible.

® n, nlogn, n3, 2(1°g")2, 27 nl, 22" are time and space constructible.
\ J

From now on, unless otherwise stated,

> T'(n) is a time-constructible number-theoretic function, and T'(n) > n.
> S(n) is a space-constructible number-theoretic function, and S(n) > logn.

16 /30

Logic and
Computation

K. Tanaka

Basic relations

First, the following are clear from the definition of a (non-)deterministic Turing machine.

DTIME(T(n)) C NTIME(T(n)),
DSPACE(S(n)) C NSPACE(S(n)).

The following are also clear from the fact that a machine can only move the head on each
tape by one cell.

DTIME(T(n)) C DSPACE(T(n)),
NTIME(T(n)) € NSPACE(T(n)).

17 /30

Logic and
Computation

K Tanska Theorem (1)

For any space-constructible function S(n) > logn,

DSPACE(S(n)) C DTIME(QO(S("))) _ UDTIME(ZK‘S(n))7
k

NSPACE(S(n)) C NTIME(2°65(™)) = | JNTIME(2"5(™).
k

Basic relations

In particular, L C P, and NL C NP.

Proof.

® \We only consider the deterministic case. The proof for the non-deterministic case is
almost the same.

® lLet M be a machine running in space S(n). Assume M has only a single working tape
with a separate track. We use the track for a clock so that it will stop in ¢5(") steps.

18 /30

Logic and
Computation

K. Tanaka Proof.(continued)

® (2 and Q are the set of symbols and of states for M. Let || =d, and |Q] = g¢.

® For an input of length n, at most d°(™ sequences of symbols can be written on the
working tape before stopping.

® A computational configuration of M is determined by such a sequence on the working
tape together with a state, an input head position, a working head position. Thus, the
Basic relations number of configurations is < gnS(n)d®™ < ¢3(™ for a sufficiently large constant ¢
(.- S(n) > logn).
® So, a computational process longer than ¢*(™ includes a repetition of the same
configuration. Hence, we may only consider computational processes shorter than this.
® With the counting track, the computation will stop in ¢°(™) whatever it accepts or not.

® Since the counter takes O(S(n)) steps for one step of mimicking M, the total time is
O(S(n)c®™), which is also 20(5(%) >

19/30

Logic and
Computation

K. Tanaka We have shown

NTIME(T(n))
NSPACE(S(n))

NSPACE(T'(n))

C
C NTIME(2°(5(m))

The following theorem is obtained from these relation by strengthening the right-hand sides
to deterministic.

Basic relations Theorem (2)
For any T'(n) and S(n) > logn,

NTIME(T'(n)) € DSPACE(T(n)),
NSPACE(S(n)) C DTIME(20(5() (%)

In particular, NP C PSPACE, and NL C P.

20 /30

Logic and
Computation

K. Tanaka

Basic relations

Proof.
~ NTIME(T(n)) € DSPACE(T(n)) ~

® Given a T'(n) time non-deterministic machine M, perform a depth-first search on
its computation tree deterministically.

® The T'(n) space of M can be used repeatedly for calculation, and its track is also
used to remember which calculation processes have been searched.

o J
~ NSPACE(S(n)) € DTIME(29(5()) N

® |mitate the non-deterministic machine M with width-first search deterministically.

® The proof is almost the same as that of Theorem (1).

- J

21/30

Logic and
Computation

K. Tanaka

Savitch and
Immermann-
Szelepcsenyi

Theorem (Savitch's theorem)

For any S(n) > logn,

NSPACE(S(n)) € DSPACE(S(n)?).

In particular, PSPACE = NPSPACE, and EXPSPACE = NEXPSPACE.
By Example 1, STcon € DSPACE(log?(n)).

22 /30

Logic and
Computation

K. Tanaka

Savitch and
Immermann-
Szelepcsenyi

Proof.

By the proof of (&) in Theorem (2), for a S(n) space non-deterministic machine M ,
there exists some constant ¢ such that M can be mimicked by a ¢°(™ time
deterministic machine.

Since ¢3(") space is used for this imitation, we will improve as below.

For S(n) space machine M, the existence of a transition from a configuration « to a
configuration 8 within k steps is represented by Reach(a, 8, k).
Next we determine Reach(c, 3, k) recursively.

> If K =0, check whether a = .
> If £ =1, check whether it can move from « to 3 in one step.
> If k > 2, check whether there is a computational configuration ~ that satisfies

both Reach (a,fy, S) and Reach (7,/8,];) If so, Reach(«, 3, k) also holds.

If 5 is not an integer, one side is rounded up and the other rounded down.

23 /30

Logic and
Computation

K. Tanaka
Proof(continued).

k k
> For 5 > 2, first check the existence of v/ such that Reach <a7’y’, 22) and

k
Reach (7’, ~, 22)
: , , k
> Then check the existence of 7/ such that Reach | v, 52 and
Savitch and

k
Immermann Reach (7’, B, 22) .

Szelepcsenyi

® By repeating recursive branchings in this way, we obtain a binary tree with a height of
about logy, k = O(S(n)). In each stage, O(S(n)) space is necessary to memorize the
configuration. In total, it can be executed in O(S(n)?) space.
O

24 /30

Logic and
Computation

K. Tanaka The following theorem due to N. Immerman! and R. Szelepcsényi? gives an evidence that
the space complexity class is easier to handle than the time complexity class.

1

Theorem (Immermann- Szelepcsényi theorem)
For any S(n)(> logn), NSPACE(S(n)) is closed under complement.

Proof.
® Suppose a nondeterministic machine M accepts a language A with S(n) space, we
Saichlzn] will construct a nondeterministic machine M that accepts the complement A€ with
Szelepcsenyi S(n) Space

® A configuration of M can be represented by a string of length S(n), and the total
number is ¢5(") for some constant c.

IN. Immerman, Nondeterministic space is closed under complementation, SIAM Journal on Computing
17 (1988), 935-938.

2R. Szelepcsény, The method of forced enumeration for nondeterministic automata, Acta Informatica 26
(1988), 279-284.

25 /30

Logic and
Computation

K. Tanaka Proof(contanEd)

® Consider the directed graph G with the configurations as vertices and the transition
relations as directed edges.

® |t is sufficient to determine whether there is a path from the initial state to the final
state in the graph G. Note that we may assume that M has a unique accepting
configuration, by making M erase its worktape and return its heads to the starting
positions after the computation and then entering a unique accept state.

Savitch and

mmermann- H H H H H S —
mmerman * To che<.:k whether the answer is yes, it is possible in log(c®(™) = O(S(n)) space as
shown in Example 1.

® To get No, it is necessary to exhaustively examine all possible paths. It seems to
require a huge space at first glance, but there is a surprisingly simple process. By
counting the number m(i) of vertices that can be reached within i steps from the
initial state, it is possible to check whether all paths are examined.

26 /30

Logic and
Computation

K. Tanaka

Savitch and
Immermann-
Szelepcsenyi

Proof(continued).

® Let V; be the set of vertices reachable within i steps from the initial configuration. Let

m(i) = |Vil.
® o € Vi iff there exists § € V; such that there is edge from 3 to a.

® To compute m(i 4 1), we successively check a vertex o € V41 in some order.
increment a counter by one. The final value of the counter is m(i + 1).

If so,

® To check a vertex a € V41, non-deterministically
guess m(i) elements 3 of V; in some order and check

if there is an edge from [to a.

® Finally, for some i < ¢, m(i 4 1) = m(i).

® If the final configuration does not appear before 4, i.e.,
if the final configuration does not enter V;, then M

will not accept the input, so M will accept it.

O

27 /30

Logic and
Computation

K. Tanaka

Savitch and
Immermann-
Szelepcsenyi

Since NSPACE(n) matches the class of context-sensitive languages, this also solved the
long-standing open question: Is the complement of a context-sensitive language is still
context-sensitive?

Highlights of the above results are:
PSPACE = NPSPACE, EXPSPACE = NEXPSPACE

and
L C NL C P C NP C PSPACE C EXP C NEXP C EXPSPACE

Among them, topic on which is/are a proper inclusion relation will be discussed in the next
lecture.

28 /30

Logic and
Computation

K. Tanaka

Summary

{

Further readings

Summary

For the function f : N — N, we define the following four complexity classes.

DTIME(f(n)
NTIME(f(n)
DSPACE(f(n)

)
)
)
NSPACE(f(n))

For major functions f,

o) time deterministic TM},

n)
def . N
= ()) time non-deterministic TM},
‘(n)) space deterministic TM},
(n))

space non-deterministic TM}.

L € NL C P C NP C PSPACE C EXP C NEXP C EXPSPACE

Savitch’ theorem: for any S(n) > logn, NSPACE(S(n)) C DSPACE(S(n)?).

Immermann-Szelepcsényi's theorem: for any S(n)(> logn), NSPACE(S(n)) is closed

under complement.

D.C. Kozen, Theory of Computation, Springer, 2006.]

29 /30

Thank you for your attention!

mmmmmm

30/30

	Recap
	Introduction
	Asymptotic notations
	Time-bound and space-bound
	Major Complexity Classes
	Basic relations
	Savitch and Immermann-Szelepcsenyi
	Summary

