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Logic and Computation I� �
• Part 1. Introduction to Theory of Computation

• Part 2. Propositional Logic and Computational Complexity

• Part 3. First Order Logic and Decision Problems� �
Part 2. Schedule� �
• Nov.17, (1) Tautologies and proofs

• Nov.22, (2) The completeness theorem of propositional logic

• Nov.24, (3) SAT and NP-complete problems

• Nov.29, (4) NP-complete problems about graphs

• Dec. 1, (5) Time-bound and space-bound complexity classes

• Dec. 6, (6) PSPACE-completeness and TQBF� �
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Recap
• A Yes/No problem belongs to P if there exists a deterministic TM and a polynomial
p(x) s.t. for an input string of length n, it returns the correct answer within p(n) steps.

• A problem belongs to NP if there is a nondeterministic TM and a polynomial p(x)
s.t. for an input string of length n, it always stops within p(n) steps and answers

▷ Yes, if at least one accepting computation process admits it;
▷ No, if all the computation processes reject.

• Q1 is polynomial (time) reducible to Q2, denoted as Q1 ≤p Q2, if there exists a
polynomial-time algorithm A which solves a problem q1 in Q1 as problem A(q1) in Q2.

• Q is NP-hard if for any NP problem Q′, Q′ ≤p Q.

• An NP-hard NP problem is said to be NP-complete.

Theorem

The Cook-Levin theorem: SAT is NP-complete.
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We also showed the satifiablity problem SAT restricted to some special Boolean formulas
remains NP-complete.

• A variable x and its negation ¬x are called literals. A disjunction (∨) of literals is
called a clause. A conjunction (∧) of clauses is called a CNF (conjunctive normal
form).

• CNF-SAT is the satisfiability problem for conjunctive normal forms.

Theorem

CNF-SAT is NP-complete.

• A CNF with exactly 3 literals in each clause is called a 3-CNF. 3-SAT is the
satisfiability problem for 3-CNF.

Theorem

3-SAT is NP-complete.
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Proof.
• To show CNF-SAT ≤p 3-SAT, let ϕ be a CNF formula.

• If ϕ has a clause l1 ∨ · · · ∨ lk(k ≥ 4), replace it with the following:

(l1∨l2∨x1)∧(l3∨x̄1∨x2)∧(l4∨x̄2∨x3)∧· · ·∧(lk−2∨x̄k−4∨xk−3)∧(lk−1∨lk∨x̄k−3)

where x̄ represents ¬x.

• For a clause with only one literal l1, replace it with

(l1 ∨ x1 ∨ x2) ∧ (l1 ∨ x1 ∨ x̄2) ∧ (l1 ∨ x̄1 ∨ x2) ∧ (l1 ∨ x̄1 ∨ x̄2).

• For a clause with only two literals l1 ∨ l2, replace it with

(l1 ∨ l2 ∨ x1) ∧ (l1 ∨ l2 ∨ x̄1).

• It is easy to see that the satisfiability condition does not change by these
transformations.

• Since the above transformations can be performed by polynomial-time algorithms,
CNF-SAT is polynomial-time reducible to 3-SAT.
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• Following Cook’s work on SAT, in 1972 R. Karp published a list of 21
NP-complete problems. In addition to 3-SAT, there are Hamiltonian
cycle problem, graph coloring problem, knapsap problem.

• Today, we focus on vertex cover and Hamiltonian cycle problems. Richard Karp

Source: R. Karp (1972) Reducibility Among Combinatorial Problems 7 / 19
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Definition

A directed graph G = (V,E) consists of a set of vertices V and a set of edges
E ⊆ V × V . A graph such that (u, v) ∈ E ⇔ (v, u) ∈ E is called an undirected graph.

Here we only consider finite graphs.

Definition

A vertex cover of an undirected graph G = (V,E) is a subset S ⊆ V of vertices such that
for any edge (u, v) ∈ E of G, u ∈ S or v ∈ S.

Edge

Vetex

The set of ⊚ is the vertex cover. Every edge has one endpoint in the vertex cover.
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Definition

• The vertex cover problem VC: Given an undirected graph G and a natural number
k, decide whether there exists a vertex cover S of G consisting of k vertices.

• The problem of finding the minimum vertex cover size k for an undirected graph G is
called minimum vertex cover problem.

Theorem

The vertex cover problem for undirected graphs is NP-complete.

Consider to input G = (V,E) to the TM� �
• If the cardinality of V is n, E can be represented by an n× n matrix with
components 0, 1, which is called adjacency matrix. Then graph G can be
represented by a 0, 1 sequence of length n2.

• Thus, a polynomial size of the graph G can be regarded as a polynomial of V .� �
9 / 19
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Proof.
VC is an NP problem� �
• Choose a arbitrary set S of k vertices and check whether it is a vertex cover.

• It is easy to decide (in polynomial time) whether S is a vertex cover, since we
only need to check that for each edge, one of its endpoints belongs to S.� �

3-SAT ≤p VC� �
• Consider a 3-CNF formula φ =

∧
j≤m

(lj1 ∨ lj2 ∨ lj3).

• Let {x1, . . . , xn} be the variables in φ. That is, lj1 (j ≤ m, s ≤ 3) is xi or xi.

• Then construct the graph G = (V,E) such that
• V = {xi, x̄i : i ≤ n} ∪ {Lj

1, L
j
2, L

j
3 : j ≤ m},

• E = {(xi, x̄i) : i ≤ n} ∪ {(Lj
1, L

j
2), (L

j
2, L

j
3), (L

j
3, L

j
1) : j ≤ m}

∪{(ljs, Lj
s) : j ≤ m, s ≤ 3}.� �
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Proof. (continued) Consider a graph for φ = (x1 ∨ x2 ∨ x̄3) ∧ (x̄2 ∨ x3 ∨ x̄4):

• Check whether there is a v.c. S of
size k = n+ 2m for the graph
thus constructed (k = 8 for φ).

• A v.c. must contain xi or x̄i for
each i ≤ n and at least two of
Lj
1, L

j
2, L

j
3. for each j ≤ m.

• Hence, a v.c. of size k = n+ 2m
will contain exactly one of xi or
x̄i and exactly two of Lj

1, L
j
2, L

j
3.

• Namely, one of Lj
1, L

j
2,L

j
3 is not in S, and it must connect with either xi or x̄i in S.

• Now, put V (xi) = T if xi ∈ S, and V (xi) = F; otherwise, V (lj1 ∨ lj2 ∨ lj3) = T for all j
and so V (φ) = T.

• Conversely, suppose there is a V such that V (φ) = T. We construct a v.c. S of size
n+ 2m. First, put xi (or x̄i) into S if V (xi) = T (or V (x̄i) = T). Then at least one
of Lj

1, L
j
2, L

j
3 connects to xi or x̄i in S. Except one of such, put the other two in S.

• In short, φ is satisfiable ⇔ the graph has a vertex cover of size k = n+ 2m
• That is, 3-SAT is polynomial-time reducible to VC.
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Hamiltonian cycles

Only finite connected graphs are considered.

Recall: Eulerian cycles in an undirected graph� �
• A Eulerian path passes through every edge exactly once. A Eulerian cycle is a

Eulerian path whose start and end points coincide.

• An Eulerian cycle exists iff the degree of each vertex is even.� �
• A Hamiltonian cycle is a cycle passing through every vertex exactly once.

• There is no known simple criterion for the existence of Hamiltonian path.

• R. Karp showed that this problem is NP-complete and clarified it is difficult in
principle to find such a criterion.

12 / 19
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Definition

Directed Hamiltonian cycle problem (dHAMCYCLE): for a directed connected graph,
decide whether there is a Hamiltonian cycle (passing every vertex exactly once, following
the direction of the edges)

Theorem

dHAMCYCLE is NP-complete.

Proof. To show dHAMCYCLE ∈ NP, choose an arbitrary path of the directed graph and
check whether it is a Hamiltonian cycle.

For its NP-completeness, we prove that VC is polynomial reducible to it.

• Assume an undirected graphs G = (V,E) and k. We construct a directed graph
G∗ = (V ∗, E∗).

• We show the following are equivalent:

▷ G∗ has a Hamiltonian cycle.
▷ G has a vertex cover of size k.

13 / 19
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Proof. (VC≤pdHAMCYCLE, continued) Consider
the graph G in the right figure with k = 2.
The construction of G∗:

▷ For k = 2, two points K1,K2 are fixed at the top.

▷ Since G consists of 4 vertices vi(i = 1, 2, 3, 4), 4

downward lines
−−−→
V s
i V

t
i are drawn.

▷ If there is an edge between vi and vj in G, then a
pair of double bridges are built so that it can go

back and forth between
−−−→
V s
i V

t
i and

−−−→
V s
j V

t
j .

▷ Finally, draw a line from each Kl to each V s
i and

from each V t
i to each Kl.

• In a Hamiltonian cycle on G∗, if a vertex V s
i has

an edge from a point Kl, then vi is in the vertex
cover of G.

• Since there are only m = 2 upper points Kl,
there are exactly m such vi’s, i.e., the size of the
vertex cover corresponding to the Hamiltonian
cycle is always 2. 14 / 19
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Proof. (VC≤pdHAMCYCLE, continued)

• From the selected vertex V s
i , go down toward V t

i

in one of the two ways shown in the right figures
(straight and detour).

• Consider a Hamiltonian cycle C entering V s
i from

K1.

• If C does not include the edge from K2 to
V s
j (j ̸= i) and there is a bridge between V s

i V
t
i

and V s
j V

t
j , C detours from V s

i V
t
i to V s

j V
t
j and

returns to V s
i V

t
i . Otherwise, go down straight.

• If C makes a detour, just one end of the
corresponding edge belongs to the vertex cover;
otherwise, both endpoints are in the vertex cover.

• In any case, if G∗ has a Hamiltonian cycle, the
set of vertices vi such that V s

i connects with
some Kl is a vertex cover of k vertices.

計算理論と数理論理学
xft0267-02.ps : 0027 : 2022/5/13(12:23:22)

76 第 2章 命題論理と計算の複雑さ

図 2.4 Gに対する G∗

G∗ 上のハミルトン閉路において，頂点 V si がある点Kl から入る辺をもつ
ことは，Gの頂点被覆の中に vi が入ることを表す．上部の点Kl はm = 2個
しかないので，そのような V si ，そして vi もそれぞれちょうどm個しかない．
つまり，ハミルトン閉路に対応する頂点被覆の大きさは必ず 2になる．
選ばれた頂点 V si からは，図 2.5のどちらかのコースで下に進んで，V ti に
到達することになる．

図 2.5 V s
i から V t

i への進み方

例えば，まずK1 から V si に入る場合を考える．他のKl から V sj に入る予
定がなく，かつ V s

i から下る道と V sj から下る道の間に橋があれば，寄り道し
て橋を渡って元の路に戻る．もし他のKl から V sj に入る予定があれば，寄り
道せずに下に降りる．寄り道の橋はGの辺を表しており，G∗ のハミルトン閉

計算理論と数理論理学
xft0267-02.ps : 0028 : 2022/5/13(12:23:22)

2.4 グラフに関する NP完全問題 77

路がその橋を渡るのは，辺の一方だけが頂点被覆に属する場合で，渡らないと
きは両方が頂点被覆に属する場合である．いずれにしても，G∗ がハミルトン
閉路をもつなら，どれかのKl とつながる（k個の）頂点 V si に対応した vi で
Gは被覆されていることになる．すなわち，

Gが大きさ kの頂点被覆をもつ ⇔ G∗ がハミルトン閉路をもつ

が成り立つ．
以上の議論を一般のグラフに書き換えるのはルーチンであるから省略する．
最後にもう一度，GとG∗ の関係を眺めると，G∗ はGよりかなり大きく見え
るが，G∗ の頂点の個数はGの辺の個数の定数倍程度であり，多項式時間アル
ゴリズムで得られる．すなわち，VCは dHAMCYCLEに多項式時間還元可
能である． □

この結果から，無向グラフに対するハミルトン閉路の存在判定問題が NP完
全であることも示せる．

問題 5 無向グラフに対するハミルトン閉路の存在判定問題 HAMCYCLE が
NP完全であることを示せ．

問題 5のハミルトン閉路問題のバリエーションに巡回セールスマン問題
(traveling salesman problem) TSPがある．無向グラフの各辺に重み（距離）
が定義されていて，通る辺の重みの総和が制限 kを越えないようにしながら，
すべての点を巡回できるかを問う問題である．言い換えると，辺の重みの総和
が k以下であるようなハミルトン閉路の存在を判定する問題が TSPで，やは
り NP完全であることが示せる．実際，TSPが NPであることを調べるには，
ランダムに路を選んで，それが条件を満たすハミルトン閉路になることを調べ
ればよい．また，任意の無向グラフに対して，各辺の重みを 1として十分大
きな kをとれば，TSPの解の存在はハミルトン閉路の存在と同値条件になる．
よって，HAMCYCLE ≤p TSPである．つまり，TSPも NP完全になる．

問題 6 NPでない計算可能な問題の例をあげ，そうなる理由を説明せよ．

That is,
G has a vertex cover of size k ⇔G∗ has a Hamiltonian cycle.
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Proof. (VC ≤p dHAMCYCLE, continued)

• The above argument can be generalized to any graphs. We omit this routine work.

• Although G∗ looks much larger than G, it can be obtained by a polynomial-time
algorithm. In fact, the number of vertices of G∗ is a constant multiple of the number
of edges of G.

• That is, VC is polynomial-time reducible to dHAMCYCLE.
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From this result, we can also show that decision problem on the existence of Hamiltonian
cycles for undirected graphs is NP-complete.

Homework� �
Show that the decision problem of the existence of Hamiltonian cycles for undirected
graphs (HAMCYCLE) is NP-complete.� �
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• The Traveling Salesman Problem (TSP) is a variation of the Hamiltonian cycle
problem.
• A weight (distance) assigned for each edge of an undirected graph.

• Is it possible to traverse all the points so that the sum of the weights of the
passed edges does not exceed a given limit k?

• Equivalently, does there exist a Hamiltonian cycle such that the sum of edge
weights is less than or equal to k?

It can be shown that TSPis also NP-complete.
• For TSP to be NP, choose an arbitrary path and check whether it satisfies the
condition or not.

• For the reversal, the existence of a Hamiltonian cycle is the existence of a TSP
solution with edge weight 1 and sufficiently large k, and so

HAMCYCLE ≤p TSP.

18 / 19
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Summary

• We have shown that the vertex cover problem VC and the directed Hamiltonian cycle
problem dHAMCYCLE are NP-complete.

Further readings� �
M. Sipser, Introduction to the Theory of Computation, 3rd ed., Course Technology,
2012� �

Thank you for your attention!
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