Logic and
Computation

K. Tanaka

Logic and Computation: |

Chapter 2 Propositional logic and computational complexity

Kazuyuki Tanaka

BIMSA

November 29, 2022

gu I BREAE A
%*’ ) mEERFER
)

YANGI LAKE BELING INSTITUTE OF

1/19



Logic and
Computation

K. Tanaka

Logic and Computation |

® Part 1. Introduction to Theory of Computation

® Part 2. Propositional Logic and Computational Complexity

® Part 3. First Order Logic and Decision Problems

s Part 2. Schedule

Tautologies and proofs

The completeness theorem of propositional logic
SAT and NP-complete problems

NP-complete problems about graphs
Time-bound and space-bound complexity classes
PSPACE-completeness and TQBF

2/19



Logic and
Computation

K. Tanaka

@ Recap

@® Introduction

© Vertex cover

@ Hamiltonian cycle

@ Summary
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Recap

® A Yes/No problem belongs to P if there exists a deterministic TM and a polynomial
p(x) s.t. for an input string of length n, it returns the correct answer within p(n) steps.

® A problem belongs to NP if there is a nondeterministic TM and a polynomial p(x)
s.t. for an input string of length n, it always stops within p(n) steps and answers

> VYes, if at least one accepting computation process admits it;
> No, if all the computation processes reject.

® Qq is polynomial (time) reducible to Qa, denoted as Q; <, Qq, if there exists a
polynomial-time algorithm A which solves a problem ¢; in Q; as problem A(g;) in Qa.

® Q is NP-hard if for any NP problem Q’, Q" <, Q.

® An NP-hard NP problem is said to be NP-complete.

Theorem
The Cook-Levin theorem: SAT is NP-complete.
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Recap

We also showed the satifiablity problem SAT restricted to some special Boolean formulas
remains NP-complete.

® A variable = and its negation —z are called literals. A disjunction (V) of literals is
called a clause. A conjunction (A) of clauses is called a CNF (conjunctive normal
form).

® CNF-SAT is the satisfiability problem for conjunctive normal forms.

Theorem
CNF-SAT is NP-complete.

® A CNF with exactly 3 literals in each clause is called a 3-CNF. 3-SAT is the
satisfiability problem for 3-CNF.

Theorem
3-SAT is NP-complete.
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Proof.

To show CNF-SAT <, 3-SAT, let ¢ be a CNF formula.
If ¢ has a clause I V --- VI (k > 4), replace it with the following:
(W VIaVa ) AIsVE V) A(IgVE V) A A(lg—oVEr—aVTr_3) Alg_1 VIRV Zp_3)
where T represents —x.
For a clause with only one literal Iy, replace it with

(Ve Va) AL Ve V)AL VTV x) ALV ZV Ts).
For a clause with only two literals I; V I3, replace it with

(IiVia V) AL ViV Zy).

It is easy to see that the satisfiability condition does not change by these
transformations.

Since the above transformations can be performed by polynomial-time algorithms,
CNF-SAT is polynomial-time reducible to 3-SAT.
]

6/19



e * Following Cook’s work on SAT, in 1972 R. Karp published a list of 21

Computation

K. Tanaka NP-complete problems. In addition to 3-SAT, there are Hamiltonian
cycle problem, graph coloring problem, knapsap problem.
sl ® Today, we focus on vertex cover and Hamiltonian cycle problems. Richard Karp
SATISFIABILITY\
CLIQUE 0-1 INTEGER SATISFIABILITY WITH AT
PROGRAMMING MOST 3 LITERALS PER CLAUSE
NODE SET
COVER PACKING CHROMATIC NUMBER
FEEDBACK FEEDBACK DIRECTED EXACT CLIQUE
NODE SET ARC SET  HAMILTON COVER COVER
CIRCUIT COVERING
3-DIMENSIONAL HITTING STEINER
KNAPSACK
UNDIRECTED MATCHING SET TREE
HAMILTON
CIRCUIT

SEQUENCING PARTITION

MAX CUT

Source: R. Karp (1972) Reducibility Among Combinatorial Problems 7/ 19
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ol A directed graph G = (V, F) consists of a set of vertices V and a set of edges
E CV x V. A graph such that (u,v) € E < (v,u) € E is called an undirected graph.

Vertex cover Here we only consider finite graphs.
Definition

A vertex cover of an undirected graph G = (V, E) is a subset S C V of vertices such that
for any edge (u,v) € E of G, ue€ SorveSs.
\Vetex

\ Edge

The set of ® is the vertex cover. Every edge has one endpoint in the vertex cover.
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Vertex cover

Definition
® The vertex cover problem VC: Given an undirected graph G and a natural number
k, decide whether there exists a vertex cover S of GG consisting of k vertices.

® The problem of finding the minimum vertex cover size k for an undirected graph G is
called minimum vertex cover problem.

Theorem

The vertex cover problem for undirected graphs is NP-complete.

Consider to input G = (V, E) to the TM

e [f the cardinality of V is n, E can be represented by an n x n matrix with
components 0, 1, which is called adjacency matrix. Then graph G can be
represented by a 0, 1 sequence of length n?.

® Thus, a polynomial size of the graph G can be regarded as a polynomial of V.
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Vertex cover

Proof.
/-VC is an NP problem ~
® Choose a arbitrary set S of k vertices and check whether it is a vertex cover.
® |t is easy to decide (in polynomial time) whether S is a vertex cover, since we
only need to check that for each edge, one of its endpoints belongs to S.
J
3-SAT <, VC
e =P N
® Consider a 3-CNF formula ¢ = /\ (VI VI).
j<m
e Let {y,...,2,} be the variables in ¢. Thatis, IJ (j < m,s < 3)is z; or T;.
® Then construct the graph G = (V, E) such that
® V={x;,z;:i<n}U{L],L}, L} :j <m},
* E= {(miaii) 11 < n} U {(L{ng)v (L%’Lg)v (Lé’L{) IS m}
U{(, LY) : j <m,s < 3}
J
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xT

Proof. (continued) Consider a graph for ¢ = (21 V22 V Z3) A (T2 V 23V T4):

o 2 2 & & “4e Check whether there is a v.c. S of
size k = n + 2m for the graph
thus constructed (k = 8 for ).

® A v.c. must contain xz; or T; for
each ¢ < n and at least two of

L3 L}, L}, L. for each j < m.

® Hence, a v.c. of size k =n+2m
will contain exactly one of z; or
L} L L3 L3 z; and exactly two of L], L}, L.

® Namely, one of LiLg,Lg is not in S, and it must connect with either x; or Z; in S.

® Now, put V(z;) = T if z; € S, and V(z;) = F; otherwise, V(I VI3V %) = T for all j
and so V(p) =T.

e Conversely, suppose there is a V such that V(¢) = T. We construct a v.c. S of size
n + 2m. First, put x; (or Z;) into S if V(x;) =T (or V(Z;) = T). Then at least one
of L, L}, L} connects to x; or Z; in S. Except one of such, put the other two in S.

® In short, ¢ is satisfiable < the graph has a vertex cover of size k = n + 2m

® That is, 3-SAT is polynomial-time reducible to VC.

[]
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Only finite connected graphs are considered.

A Recall: Eulerian cycles in an undirected graph

® A Eulerian path passes through every edge exactly once. A Eulerian cycle is a
Eulerian path whose start and end points coincide.

® An Eulerian cycle exists iff the degree of each vertex is even.

® A Hamiltonian cycle is a cycle passing through every vertex exactly once.
® There is no known simple criterion for the existence of Hamiltonian path.

® R. Karp showed that this problem is NP-complete and clarified it is difficult in
principle to find such a criterion.

12/19



Logic and
Computation

K. Tanaka

Hamiltonian cycle

Definition
Directed Hamiltonian cycle problem ({HAMCYCLE): for a directed connected graph,

decide whether there is a Hamiltonian cycle (passing every vertex exactly once, following
the direction of the edges)

Theorem
dHAMCYCLE is NP-complete.

Proof. To show dHAMCYCLE € NP, choose an arbitrary path of the directed graph and
check whether it is a Hamiltonian cycle.

For its NP-completeness, we prove that VC is polynomial reducible to it.
® Assume an undirected graphs G = (V| E) and k. We construct a directed graph
G* = (V* E*).
® We show the following are equivalent:

> G™ has a Hamiltonian cycle.
> G has a vertex cover of size k.
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legaE: Proof. (VC<,dHAMCYCLE, continued) Consider v,

Computation
% Trele the graph G in the right figure with k = 2. e es
The construction of G*:
12
> For k = 2, two points K1, K5 are fixed at the top. ! e v

€2

> Since G consists of 4 vertices v;(i = 1,2,3,4), 4
Hamiltonian cycle

downward lines V;*V;' are drawn.
> If there is an edge between v; and v; in G, then a
pair of double bridges are built so that it can go
S e
back and forth between V;°*V! and V V7.

> Finally, draw a line from each K to each V;? and
from each V! to each K.

® In a Hamiltonian cycle on G*, if a vertex V;® has
an edge from a point K, then v; is in the vertex
cover of GG.

® Since there are only m = 2 upper points K,
there are exactly m such v;'s, i.e., the size of the
vertex cover corresponding to the Hamiltonian
cycle is always 2.
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Proof. (VC<,dHAMCYCLE, continued)

® From the selected vertex V;°, go down toward V!
in one of the two ways shown in the right figures
(straight and detour).

® Consider a Hamiltonian cycle C entering V,* from
Kl-

® |f C does not include the edge from K> to
V?(j # i) and there is a bridge between V;*V}}
and VV/, C detours from V*V/ to V7V and
returns to V;*V!. Otherwise, go down straight.

® |f C' makes a detour, just one end of the
corresponding edge belongs to the vertex cover;
otherwise, both endpoints are in the vertex cover.

® |n any case, if G* has a Hamiltonian cycle, the
set of vertices v; such that V;° connects with

some K is a vertex cover of k vertices.
That is,

K K

G has a vertex cover of size k <G* has a Hamiltonian cycle.



Logic and
Computation

K. Tanaka

Hamiltonian cycle

Proof. (VC <, dHAMCYCLE, continued)
® The above argument can be generalized to any graphs. We omit this routine work.

® Although G* looks much larger than G, it can be obtained by a polynomial-time
algorithm. In fact, the number of vertices of G* is a constant multiple of the number
of edges of G.

® That is, VC is polynomial-time reducible to dHAMCYCLE.
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From this result, we can also show that decision problem on the existence of Hamiltonian
cycles for undirected graphs is NP-complete.

Hamiltonian cycle

Homework

Show that the decision problem of the existence of Hamiltonian cycles for undirected
graphs (HAMCYCLE) is NP-complete.
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K Tanaka problem.

® A weight (distance) assigned for each edge of an undirected graph.

® |s it possible to traverse all the points so that the sum of the weights of the
IHesEE @ate passed edges does not exceed a given limit k7?7

® Equivalently, does there exist a Hamiltonian cycle such that the sum of edge
weights is less than or equal to k7

It can be shown that TSPis also NP-complete.

® For TSP to be NP, choose an arbitrary path and check whether it satisfies the
condition or not.

® For the reversal, the existence of a Hamiltonian cycle is the existence of a TSP
solution with edge weight 1 and sufficiently large k&, and so

HAMCYCLE <, TSP.
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® We have shown that the vertex cover problem VC and the directed Hamiltonian cycle
problem dHAMCYCLE are NP-complete.

Summary

Further readings

M. Sipser, Introduction to the Theory of Computation, 3rd ed., Course Technology,
2012

Thank you for your attention!
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