Logic and Computation

K. Tanaka

Reca

D....

Deduction theorem

Inconsistend

theorem for propositional

Compactness theorem of propositional logic

Summary

Logic and Computation: I

Chapter 2 Propositional logic and computational complexity

Kazuyuki Tanaka

BIMSA

November 22, 2022

Inconsisten

C

theorem for propositional ogic

theorem of propositional logic

Summary

Logic and Computation I -

- Part 1. Introduction to Theory of Computation
- Part 2. Propositional Logic and Computational Complexity
- Part 3. First Order Logic and Decision Problems

Part 2. Schedule

- Nov.17, (1) Tautologies and proofs
- Nov.22, (2) The completeness theorem of propositional logic
- Nov.24, (3) SAT and NP-complete problems
- Nov.29, (4) NP-complete problems about graph
- Dec. 1, (5) Time-bound and space-bound complexity classes
- Dec. 6, (6) PSPACE-completeness and TQBF

theorem of propositional logic

Summar

- Propositional logic is the study of logical connections between propositions. \neg (not \cdots), \wedge (and), \vee (or), \rightarrow (implies).
- If a proposition φ is always true, i.e., $V(\varphi) = T$ for any truth-value function V, then φ is said to be **valid** or a **tautology**, written as $\models \varphi$.
- The followings are tautologies.

P1.
$$\varphi \to (\psi \to \varphi)$$

P2.
$$(\varphi \to (\psi \to \theta)) \to ((\varphi \to \psi) \to (\varphi \to \theta))$$

P3.
$$(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$$

- P1 was shown on p.11 of the last note. P2 is shown as below.
- V: By way of contradiction, there exists a truth-value function V such that $V((\varphi \to (\psi \to \theta)) \to ((\varphi \to \psi) \to (\varphi \to \theta))) = F$. By condition (2d) of Def. of V,

$$V(\varphi \to (\psi \to \theta)) = T$$
 and $V((\varphi \to \psi) \to (\varphi \to \theta)) = F$. From the latter, $V(\varphi \to \psi) = T$ and $V(\varphi \to \theta) = F$, and then from the latter, $V(\varphi) = T$, $V(\theta) = F$.

Then by the former
$$V(\varphi \to \psi) = T$$
, $V(\psi) = T$. Hence, $V(\varphi) = V(\psi) = T$ and

$$V(\theta)={
m F}$$
, therefore $V(arphi o(\psi o\theta))={
m F}$, a contradiction.

P3 can be proved similarly.

• We consider an axiomatic system that derives all valid propositions only using \neg , \rightarrow . We can omit \vee and \wedge by setting $\varphi \vee \psi := \neg \varphi \rightarrow \psi$, $\varphi \wedge \psi := \neg (\varphi \rightarrow \neg \psi)$.

Recap

• A **proof** is a sequence of propositions $\varphi_0, \varphi_1, \cdots, \varphi_n$ satisfying the following conditions: For $k \leq n$,

Inconsistenc

(1) φ_k is one of axioms P1, P2, P3, or

Completene theorem for propositional logic (2) There exist i, j < k such that $\varphi_j = \varphi_i \to \varphi_k$ (MP). The last component of proof φ_n is called a **theorem**, and we denote $\vdash \varphi_n$.

ullet P1, P2, P3 are theorems by themselves. arphi o arphi was proved on p.18 of the last note.

Compactness theorem of propositional logic

• $\neg \varphi \rightarrow (\varphi \rightarrow \psi)$ (homework) can be proved as follows.

Summary

First, we show that if A is a theorem, then for any B, $B \to A$ is a theorem. By P1, $A \to (B \to A)$. By applying MP to this and A, we have $B \to A$. Now, from this and P3, we have $\neg \varphi \to ((\neg \psi \to \neg \varphi)) \to (\varphi \to \psi))$. By P2, $(\neg \varphi \to ((\neg \psi \to \neg \varphi) \to (\varphi \to \psi))) \to ((\neg \varphi \to (\neg \psi \to \neg \varphi)) \to (\neg \varphi \to (\varphi \to \psi)))$. By MP, we have $(\neg \varphi \to (\neg \psi \to \neg \varphi)) \to (\neg \varphi \to (\varphi \to \psi))$. By applying MP to this and P1, we have $\neg \varphi \to (\varphi \to \psi)$.

• In this lecture, we will prove the completeness theorem: $\vdash \varphi \Leftrightarrow \models \varphi$.

Completeness theorem for propositional logic

Recap

Deductio

Inconsister

Completen

theorem for propositiona logic

theorem of propositional logic

Summai

- Recap
- 2 Proof
- 3 Deduction theorem
- 4 Inconsistency
- **5** Completeness theorem for propositional logic
- 6 Compactness theorem of propositional logic
- Summary

Proof

Definition (Proof)

Given a set of propositions Γ , a sequence of propositions $\psi_0, \psi_1, \cdots, \psi_n$ is said to be a **proof** of ψ_n in Γ if for each k < n.

- (1) ψ_k belongs to $\{P_1, P_2, P_3\} \cup \Gamma$, or
- (2) There exist i, j < k such that $\psi_i = \psi_i \to \psi_k$.

If there exists a proof of ψ in Γ , then ψ is said to be **provable** in Γ , or a **theorem** of Γ . written as $\Gamma \vdash \psi$.

The definitions of a proof and a theorem in the last lecture are obtained as a special case by setting $\Gamma = \emptyset$.

Theorem (Deduction Theorem)

If $\Gamma \cup \{\varphi\} \vdash \psi$, $\Gamma \vdash \varphi \rightarrow \psi$.

Proof. Let $\psi_0, \psi_1, \dots, \psi_k = \psi$ be a proof of ψ in $\Gamma \cup \{\varphi\}$. We prove by induction on the proof length k+1.

(1) If ψ belongs to $\{P_1,P_2,P_3\}\cup\Gamma$, the following is a proof of $\varphi\to\psi$ in Γ .

$$\begin{array}{ll} \varphi_0 = \psi & : \text{ in } \{P_1, P_2, P_3\} \cup \Gamma \\ \varphi_1 = \psi \to (\varphi \to \psi) & : P1 \end{array}$$

$$\varphi_1 = \psi \to (\varphi \to \psi)$$
 : P1

$$\varphi_2 = \varphi \to \psi$$
 : $\varphi_1 = \varphi_0 \to \varphi_2$

(2) If
$$\psi = \varphi$$
, $\varphi \to \psi$ is the same as $\varphi \to \varphi$, which was proved in the last lecture.

Recal

D....

Deduction theorem

Inconsisten

Completenes theorem for propositional logic

theorem of propositiona logic

Summary

Case k > 1

- (1) If $\psi_k = \psi$ belongs to $\{P_1, P_2, P_3\} \cup \Gamma \cup \{\varphi\}$, the same as case k = 0.
- (2) Consider the case where there exist i, j < k and $\psi_j = \psi_i \to \psi_k$.
 - By the induction hypothesis, we have $\Gamma \vdash \varphi \rightarrow \psi_i$ and $\Gamma \vdash \varphi \rightarrow \psi_j$.
 - Let $\varphi_0, \varphi_1, \cdots, \varphi_m$ be a proof of $\varphi \to \psi_i$ in Γ , and let $\varphi_{m+1}, \cdots, \varphi_n$ be a proof of $\varphi \to \psi_j$ in Γ .
 - Then $\varphi_0, \dots, \varphi_m, \varphi_{m+1}, \dots, \varphi_n$ is also a proof of $\varphi \to \psi_j$ in Γ .
 - If we add the following $\varphi_{n+1}, \varphi_{n+2}, \varphi_{n+3}$ after $\varphi_0, \cdots, \varphi_n$, we obtain a proof of $\varphi \to \psi$ in Γ .

$$\varphi_{n+1} = (\varphi \to (\psi_i \to \psi_k)) \to ((\varphi \to \psi_i) \to (\varphi \to \psi_k)) : P2$$

$$\varphi_{n+2} = (\varphi \to \psi_i) \to (\varphi \to \psi_k) : \varphi_{n+1} = \varphi_n \to \varphi_{n+2}$$

$$\varphi_{n+3} = \varphi \to \psi_k : \varphi_{n+2} = \varphi_m \to \varphi_{n+3}$$

The converse of Deduction Theorem "If $\Gamma \vdash \varphi \to \psi$, $\Gamma \cup \{\varphi\} \vdash \psi$ " can be obtained directly by Modus Ponens.

The following example demonstrate the application of Deduction Theorem.

Example: Using the deduction theorem to show $\vdash \neg \varphi \rightarrow (\varphi \rightarrow \psi)$

- By the deduction theorem, it suffices to show $\{\neg \varphi, \varphi\} \vdash \psi$.
- Since $\{\neg \varphi, \varphi\} \vdash \neg \varphi$, then using MP to P1 and this, we have $\{\neg \varphi, \varphi\} \vdash \neg \psi \to \neg \varphi$.
- By applying MP to P3, $\{\neg \varphi, \varphi\} \vdash \varphi \rightarrow \psi$.
- Again by MP, $\{\neg \varphi, \varphi\} \vdash \psi$.

Logic and Computation

K. Tanaka

Reca

Deductio

Inconsistency

Completenes theorem for

logic
Compactnes theorem of

proposition logic

Summary

- This last example asserts that the contradiction $(\neg \varphi \text{ and } \varphi)$ implies any proposition ψ .
 - We investigate this in more detail. Let \bot be a proposition representing "contradiction", say $\neg(p_0\to p_0)$.

Definition (Inconsistent)

The set Γ of propositions is said to be **inconsistent** if \bot is provable from Γ . Otherwise, Γ is said to be **consistent**.

Lemma (1)

 $\Gamma \vdash \psi$ for any ψ if Γ is inconsistent.

 \therefore If Γ is inconsistent, $p_0 \to p_0$ and $\neg (p_0 \to p_0)$ are provable in Γ .

Lemma (2)

If there exists φ such that $\Gamma \vdash \varphi$ and $\Gamma \vdash \neg \varphi$, then Γ is inconsistent. That is, if Γ is consistent, then for any φ , φ or $\neg \varphi$ cannot be proved from Γ .

and contradiction

 $\Gamma \cup \{\neg \varphi\}$ is inconsistent $\Leftrightarrow \Gamma \vdash \varphi$.

Lemma (3)

Proof. To show \Rightarrow .

Assume $\Gamma \cup \{\neg \varphi\} \vdash \neg (p_0 \to p_0)$. By Deduction Theorem, $\Gamma \vdash \neg \varphi \to \neg (p_0 \to p_0)$. So by P3, $\Gamma \vdash (p_0 \to p_0) \to \varphi$. By $\vdash (p_0 \to p_0)$, thus $\Gamma \vdash \varphi$. To show \Leftarrow . If $\Gamma \vdash \varphi$, $\Gamma \cup \{\neg \varphi\}$ can prove both φ and $\neg \varphi$. So $\Gamma \cup \{\neg \varphi\}$ is inconsistent. Therefore, Lemma (4)

4 D > 4 A > 4 B > 4 B > B = 40 0

If Γ is consistent, then for any φ , $\Gamma \cup \{\varphi\}$ or $\Gamma \cup \{\neg \varphi\}$ is consistent.

This lemma lays the basis of the proof for completeness theorem.

The following lemma establishes the basic principle connecting the notions of provability

Completeness theorem for propositional logic

Theorem (Completeness theorem for propositional logic)

$$\vdash \varphi \iff \models \varphi$$

Proof

$$-\vdash \varphi \Longrightarrow \models \varphi$$

- Let V be any truth value function.
- If φ is the axiom P1, P2, P3, $V(\varphi) = T$.
- Also, if $V(\varphi) = T$ and $V(\varphi \to \psi) = T$, then $V(\psi) = T$.
- Thus, for all theorems φ , $V(\varphi) = T$.

Recar

D....

Deductio

Inconsiste

Completeness theorem for propositional logic

theorem of propositional logic

logic

 $\vdash \varphi \longleftarrow \models \varphi$

- Suppose that proposition φ is not a theorem. Goal: prove there exists a truth value function V s.t. $V(\varphi) = F$.
- List all the propositions in an appropriate order as $\varphi_0, \varphi_1, \varphi_2, \cdots$
- Given $\Gamma_0 = {\neg \varphi}^1$, we define an infinitely increasing sequence of consistent sets $\Gamma_0 \subseteq \Gamma_1 \subseteq \Gamma_2 \subseteq \cdots$ as follows. For any $n \ge 0$,
 - if $\Gamma_n \cup \{\varphi_n\}$ is consistent, $\Gamma_{n+1} = \Gamma_n \cup \{\varphi_n\}$;
 - otherwise $\Gamma_{n+1} = \Gamma_n$.
- Then $\Gamma = \bigcup_n \Gamma_n$ is consistent.
 - Suppose Γ were inconsistent. Since the number of elements of Γ used in the proof of \bot is finite, there is a sufficiently large N s.t. Γ_N includes all such elements. Therefore, $\Gamma_N \vdash \bot$, which violates the consistency of Γ_N .

¹: Γ_0 is consistent by Lemma (3)

Recar

Droo

Deductio theorem

Inconsistenc

Completeness theorem for propositional logic

theorem of propositional logic

Summary

 $\vdash \varphi \Longleftarrow \models \varphi \text{ (continued)}$

- Furthermore, Γ is a maximal consistent set. That is, either $\varphi_n \in \Gamma$ or $\neg \varphi_n \in \Gamma$ holds for any φ_n .
- Suppose $\Gamma \not\vdash \varphi_n$. Then, $\Gamma \cup \{\neg \varphi_n\}$ is consistent. So letting $\varphi_m = \neg \varphi_n$, $\Gamma_m \cup \{\varphi_m\}$ is consistent, and so $\varphi_m \in \Gamma_{m+1} \subseteq \Gamma$, that is, $\neg \varphi_n \in \Gamma$.
- Similarly, if $\Gamma \not\vdash \neg \varphi_n$, then $\varphi_n \in \Gamma$.
- Since Γ is consistent, by Lemma (2) φ_n or $\neg \varphi_n$ cannot be proved from Γ , and so φ_n or $\neg \varphi_n$ belongs to Γ .
- Thus we note that for any formula φ_n , $\varphi_n \notin \Gamma \Leftrightarrow \neg \varphi_n \in \Gamma$.

Recal

D .

Deduction

Inconsistenc

Completeness theorem for propositional logic

theorem of propositional logic

Summary

$$\vdash \varphi \Longleftarrow \models \varphi \text{ (continued)}$$

• Now, define a function V as follows:

$$V(\varphi_n) = T \Leftrightarrow \varphi_n \in \Gamma_{n+1}.$$

- We then show that *V* is a truth value function.
 - It follows from the maximal consistency that

$$V(\neg \varphi_n) = T \Leftrightarrow V(\varphi_n) = F.$$

• By the maximal consistency, we also show $\varphi_m \to \varphi_n \in \Gamma \Leftrightarrow \neg \varphi_m \in \Gamma$ or $\varphi_n \in \Gamma$. Then we have

$$V(\varphi_m \to \varphi_n) = T \Leftrightarrow V(\varphi_m) = F \text{ or } V(\varphi_n) = T.$$

• It is clear that $V(\varphi) = F$ since $\Gamma_0 = \{ \neg \varphi \}$. Thus V is a truth-value function that assigns the value F to φ , and so φ is not a tautology.

Logic and Computation

K. Tanaka

Completeness theorem for propositional logic

• As we generalized provability \vdash , we can also generalize validity \models .

- By $\Gamma \models \varphi$, we mean that if a truth-value function V assigns the value T to all propositions in Γ then it assigns the value T to φ . In such a case, φ is called the tautological consequence of Γ .
- The completeness theorem can also be generalized as follows.

Theorem (The generalized completeness theorem of propositional logic)

$$\Gamma \vdash \varphi \iff \Gamma \models \varphi.$$

Proof.

(To show \Rightarrow) Let V be a truth-value function that assigns the value T to all propositions in Γ . For the three axioms φ , we have already seen $V(\varphi) = T$. Also, when $V(\varphi) = T$ and $V(\varphi \to \psi) = T$, $V(\psi) = T$. Thus, for all theorems φ derived from Γ , $V(\varphi) = T$. (To show \Leftarrow) Suppose that the proposition φ is not a theorem of Γ . It suffices to show that there exists a truth-value function V that assigns value T to all propositions of Γ and value F to φ . To construct such a V, just replace $\Gamma_0 = \Gamma \cup \{\neg \varphi\}$ in the proof of the last theorem. 4 D > 4 A > 4 B > 4 B > B

theorem for propositional logic

• We say that Γ is satisfiable if there is a truth value function that assigns the value T to all propositions belonging to Γ .

We can state the completeness theorem as follows.

Completeness theorem (another version)

- Γ is consistent
 - $\Gamma \nvdash \bot$
 - $\Gamma \not\models \perp$
 - there is a V that assigns T to all in Γ but F to \bot
 - there is a V that assigns T to all in Γ
 - Γ is satisfiable.

Compactness theorem of propositional logic

Summary

Theorem (Compactness theorem of propositional logic)

If any finite subset of Γ is satisfiable, then Γ is also satisfiable.

Proof.

- By contrapositive method, suppose no truth-value function assigns the value T to all propositions in Γ . Goal: there is some finite subset $\Gamma' \subset \Gamma$ s.t. there is no truth-value function that assigns the value T to all propositions of Γ' .
- Now, by assumption, any proposition is a tautological consequence of Γ , especially $\Gamma \models \perp$.
- Thus, by the generalized completeness theorem, we get $\Gamma \vdash \perp$.
- Since the proof consists of a finite number of propositions, there exists a finite subset Γ' of Γ such that $\Gamma' \vdash \bot$.
- Again, by the generalized completeness theorem, $\Gamma' \models \perp$.
- Since there is no truth-value function that assigns the value T to \bot , a truth-value function that assigns the value T to all propositions in Γ' does not exist.

Logic and Computation

K. Tanaka

Reca

Deductio

Inconsiste

Completene theorem for

Compactness theorem of propositional logic

Summary

The name of compactness theorem comes from the Heine-Borel compactness of topological spaces.

Alternative proof for compactness theorem

- Consider $X = \{T, F\}^{\mathbb{N}}$ as a topological space with product topology. $\{T, F\}$ has a discrete topology. Since every finite space is compact, the product space X is also compact by Tikhonov's theorem (also equivalent to the finite intersections property).
- Elements of X can be interpreted as functions v that assign truth values T, F to atomic propositions p_0, p_1, p_2, \cdots .
- Also, the function v can be uniquely extended to the truth value function $V=\bar{v}$, so they are interchangeable.
- Now, for a proposition φ , let C_{φ} be the set of functions v that assign T to φ . That is, $C_{\varphi} = \{v \in X : \bar{v}(\varphi) = T\}$.
- Since there are only finite atomic propositions in φ , C_{φ} is a clopen (i.e., closed and open) set of X.
- In fact, C_{φ} is obtained by finite Boolean operations from an open and closed set of the form $B_i = \{v \in X : v(i) = T\}$.

Recal

Deduction

Inconsistenc

Completenes theorem for propositional logic

Compactness theorem of propositional logic

0

Homework: Use the compactness theorem to prove the following

An infinite graph (vertices) can be colored with k colors (each edge has a different color at each end) iff any finite subgraph of it can be colored with k colors.

Reca

Deducti

Inconsister

Completenes theorem for propositional logic

theorem of propositional logic

Summary

We have shown

- Deduction theorem: If $\Gamma \cup \{\varphi\} \vdash \psi$, $\Gamma \vdash \varphi \rightarrow \psi$.
- Completeness theorem: $\Gamma \vdash \varphi \iff \Gamma \models \varphi$.
- Completeness theorem (another version): Γ is consistent \Leftrightarrow Γ is satisfiable.
- ullet Compactness theorem: If any finite subset of Γ is satisfiable, then Γ is also satisfiable.

Further readings

E. Mendelson. Introduction to Mathematical Logic, CRC Press, 6th edition, 2015.

Recal

Deduction

Inconsistency

Completeness theorem for propositional logic

theorem of propositional

Summary

Thank you for your attention!