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Logic and Computation I� �
• Part 1. Introduction to Theory of Computation

• Part 2. Propositional Logic and Computational Complexity

• Part 3. First Order Logic and Decision Problems� �
Part 2. Schedule� �
• Nov.17, (1) Tautologies and proofs

• Nov.22, (2) The completeness theorem of propositional logic

• Nov.24, (3) SAT and NP-complete problems

• Nov.29, (4) NP-complete problems about graph

• Dec. 1, (5) Time-bound and space-bound complexity classes

• Dec. 6, (6) PSPACE-completeness and TQBF� �
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Recap
• Propositional logic is the study of logical connections between propositions.

¬ (not · · · ), ∧ (and), ∨ (or), → (implies).

• If a proposition φ is always true, i.e., V (φ) = T for any truth-value function V , then
φ is said to be valid or a tautology, written as |= φ.

• The followings are tautologies.
P1. φ→ (ψ → φ)

P2.
(
φ→ (ψ → θ)

)
→

(
(φ→ ψ) → (φ→ θ)

)
P3. (¬ψ → ¬φ) → (φ→ ψ)

• P1 was shown on p.11 of the last note. P2 is shown as below.
∵ By way of contradiction, there exists a truth-value function V such that
V ((φ→ (ψ → θ)) → ((φ→ ψ) → (φ→ θ))) = F. By condition (2d) of Def. of V ,
V (φ→ (ψ → θ)) = T and V ((φ→ ψ) → (φ→ θ)) = F. From the latter,
V (φ→ ψ) = T and V (φ→ θ) = F, and then from the latter, V (φ) = T, V (θ) = F.
Then by the former V (φ→ ψ) = T, V (ψ) = T. Hence, V (φ) = V (ψ) = T and
V (θ) = F, therefore V (φ→ (ψ → θ)) = F, a contradiction.
P3 can be proved similarly.
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• We consider an axiomatic system that derives all valid propositions only using ¬,→.
We can omit ∨ and ∧ by setting φ ∨ ψ := ¬φ→ ψ, φ ∧ ψ := ¬(φ→ ¬ψ).

• A proof is a sequence of propositions φ0, φ1, · · · , φn satisfying the following
conditions: For k ≤ n,

(1) φk is one of axioms P1, P2, P3, or
(2) There exist i, j < k such that φj = φi → φk (MP).

The last component of proof φn is called a theorem, and we denote ⊢ φn.

• P1, P2, P3 are theorems by themselves. φ→ φ was proved on p.18 of the last note.

• ¬φ→ (φ→ ψ) (homework) can be proved as follows.
First, we show that if A is a theorem, then for any B, B → A is a theorem.
By P1, A→ (B → A). By applying MP to this and A, we have B → A.
Now, from this and P3, we have ¬φ→ ((¬ψ → ¬φ)) → (φ→ ψ)). By P2,
(¬φ→ ((¬ψ → ¬φ) → (φ→ ψ))) → ((¬φ→ (¬ψ → ¬φ)) → (¬φ→ (φ→ ψ))).
By MP, we have (¬φ→ (¬ψ → ¬φ)) → (¬φ→ (φ→ ψ)). By applying MP to this
and P1, we have ¬φ→ (φ→ ψ).

• In this lecture, we will prove the completeness theorem: ⊢ φ⇔|= φ.
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Completeness theorem for propositional logic
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We first extend the concept “Proof” as follows.

Definition (Proof)

Given a set of propositions Γ, a sequence of propositions ψ0, ψ1, · · · , ψn is said to be a
proof of ψn in Γ if for each k ≤ n,

(1) ψk belongs to {P1, P2, P3} ∪ Γ, or

(2) There exist i, j < k such that ψj = ψi → ψk.

If there exists a proof of ψ in Γ, then ψ is said to be provable in Γ, or a theorem of Γ,
written as Γ ⊢ ψ.

The definitions of a proof and a theorem in the last lecture are obtained as a special case
by setting Γ = ∅.
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Theorem (Deduction Theorem)

If Γ ∪ {φ} ⊢ ψ, Γ ⊢ φ→ ψ.

Proof. Let ψ0, ψ1, · · · , ψk(= ψ) be a proof of ψ in Γ∪ {φ}. We prove by induction on the
proof length k + 1.

Case k = 0� �
(1) If ψ belongs to {P1, P2, P3} ∪ Γ, the following is a proof of φ→ ψ in Γ.

φ0 =ψ : in {P1, P2, P3} ∪ Γ
φ1 =ψ → (φ→ ψ) : P1
φ2 =φ→ ψ : φ1 = φ0 → φ2

(2) If ψ = φ, φ→ ψ is the same as φ→ φ, which was proved in the last lecture.� �
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Case k ≥ 1� �
(1) If ψk = ψ belongs to {P1, P2, P3} ∪ Γ ∪ {φ}, the same as case k = 0.

(2) Consider the case where there exist i, j < k and ψj = ψi → ψk.
• By the induction hypothesis, we have Γ ⊢ φ→ ψi and Γ ⊢ φ→ ψj .
• Let φ0, φ1, · · · , φm be a proof of φ→ ψi in Γ, and let φm+1, · · · , φn be a
proof of φ→ ψj in Γ.

• Then φ0, · · · , φm, φm+1, · · · , φn is also a proof of φ→ ψj in Γ.
• If we add the following φn+1, φn+2, φn+3 after φ0, · · · , φn, we obtain a

proof of φ→ ψ in Γ.

φn+1 =(φ→ (ψi → ψk)) → ((φ→ ψi) → (φ→ ψk)) : P2
φn+2 =(φ→ ψi) → (φ→ ψk) : φn+1 = φn → φn+2

φn+3 =φ→ ψk : φn+2 = φm → φn+3� �
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The converse of Deduction Theorem “If Γ ⊢ φ→ ψ, Γ∪ {φ} ⊢ ψ” can be obtained directly
by Modus Ponens.

The following example demonstrate the application of Deduction Theorem.

Example: Using the deduction theorem to show ⊢ ¬φ→ (φ→ ψ)� �
• By the deduction theorem, it suffices to show {¬φ,φ} ⊢ ψ.
• Since {¬φ,φ} ⊢ ¬φ, then using MP to P1 and this, we have

{¬φ,φ} ⊢ ¬ψ → ¬φ.
• By applying MP to P3, {¬φ,φ} ⊢ φ→ ψ.

• Again by MP, {¬φ,φ} ⊢ ψ.� �
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• This last example asserts that the contradiction (¬φ and φ) implies any proposition ψ.

• We investigate this in more detail. Let ⊥ be a proposition representing
“contradiction”, say ¬(p0 → p0).

Definition (Inconsistent)

The set Γ of propositions is said to be inconsistent if ⊥ is provable from Γ.
Otherwise, Γ is said to be consistent.

Lemma (1)

Γ ⊢ ψ for any ψ if Γ is inconsistent.

∵ If Γ is inconsistent, p0 → p0 and ¬(p0 → p0) are provable in Γ.

Lemma (2)

If there exists φ such that Γ ⊢ φ and Γ ⊢ ¬φ, then Γ is inconsistent.
That is, if Γ is consistent, then for any φ, φ or ¬φ cannot be proved from Γ.
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The following lemma establishes the basic principle connecting the notions of provability
and contradiction.

Lemma (3)

Γ ∪ {¬φ} is inconsistent ⇔ Γ ⊢ φ.

Proof.
To show ⇒.
Assume Γ ∪ {¬φ} ⊢ ¬(p0 → p0). By Deduction Theorem, Γ ⊢ ¬φ→ ¬(p0 → p0). So by
P3, Γ ⊢ (p0 → p0) → φ. By ⊢ (p0 → p0), thus Γ ⊢ φ.
To show ⇐.
If Γ ⊢ φ, Γ ∪ {¬φ} can prove both φ and ¬φ. So Γ ∪ {¬φ} is inconsistent. □

Therefore,

Lemma (4)

If Γ is consistent, then for any φ, Γ ∪ {φ} or Γ ∪ {¬φ} is consistent.

This lemma lays the basis of the proof for completeness theorem.
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Completeness theorem for propositional logic

Theorem (Completeness theorem for propositional logic)

⊢ φ ⇐⇒ |= φ

Proof

⊢ φ=⇒ |= φ� �
• Let V be any truth value function.

• If φ is the axiom P1, P2, P3, V (φ) = T.

• Also, if V (φ) = T and V (φ→ ψ) = T, then V (ψ) = T.

• Thus, for all theorems φ, V (φ) = T.� �
12 / 22



Logic and
Computation

K. Tanaka

Recap

Proof

Deduction
theorem

Inconsistency

Completeness
theorem for
propositional
logic

Compactness
theorem of
propositional
logic

Summary

⊢ φ⇐= |= φ� �
• Suppose that proposition φ is not a theorem.
Goal: prove there exists a truth value function V s.t. V (φ) = F.

• List all the propositions in an appropriate order as φ0, φ1, φ2, · · · .
• Given Γ0 = {¬φ}1, we define an infinitely increasing sequence of consistent sets

Γ0 ⊆ Γ1 ⊆ Γ2 ⊆ · · · as follows. For any n ≥ 0,
• if Γn ∪ {φn} is consistent, Γn+1 = Γn ∪ {φn};
• otherwise Γn+1 = Γn.

• Then Γ =
⋃

n Γn is consistent.
• Suppose Γ were inconsistent. Since the number of elements of Γ used in the
proof of ⊥ is finite, there is a sufficiently large N s.t. ΓN includes all such
elements. Therefore, ΓN ⊢⊥, which violates the consistency of ΓN .

1: Γ0 is consistent by Lemma (3)� �
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⊢ φ⇐= |= φ (continued)� �
• Furthermore, Γ is a maximal consistent set. That is, either φn ∈ Γ or ¬φn ∈ Γ
holds for any φn.

• Suppose Γ ̸⊢ φn. Then, Γ ∪ {¬φn} is consistent. So letting φm = ¬φn,
Γm ∪ {φm} is consistent, and so φm ∈ Γm+1 ⊆ Γ, that is, ¬φn ∈ Γ.

• Similarly, if Γ ̸⊢ ¬φn, then φn ∈ Γ.

• Since Γ is consistent, by Lemma (2) φn or ¬φn cannot be proved from Γ, and so
φn or ¬φn belongs to Γ.

• Thus we note that for any formula φn, φn ̸∈ Γ ⇔ ¬φn ∈ Γ.� �
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⊢ φ⇐= |= φ (continued)� �
• Now, define a function V as follows:

V (φn) = T ⇔ φn ∈ Γn+1.

• We then show that V is a truth value function.
• It follows from the maximal consistency that

V (¬φn) = T ⇔ V (φn) = F.

• By the maximal consistency, we also show φm → φn ∈ Γ ⇔ ¬φm ∈ Γ or φn ∈ Γ.
Then we have

V (φm → φn) = T ⇔ V (φm) = F or V (φn) = T.

• It is clear that V (φ) = F since Γ0 = {¬φ}. Thus V is a truth-value function that
assigns the value F to φ, and so φ is not a tautology.� �
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• As we generalized provability ⊢, we can also generalize validity |=.

• By Γ |= φ, we mean that if a truth-value function V assigns the value T to all
propositions in Γ then it assigns the value T to φ. In such a case, φ is called the
tautological consequence of Γ.

• The completeness theorem can also be generalized as follows.

Theorem (The generalized completeness theorem of propositional logic)

Γ ⊢ φ ⇐⇒ Γ |= φ.

Proof.
(To show ⇒) Let V be a truth-value function that assigns the value T to all propositions
in Γ. For the three axioms φ, we have already seen V (φ) = T. Also, when V (φ) = T and
V (φ→ ψ) = T, V (ψ) = T. Thus, for all theorems φ derived from Γ, V (φ) = T.
(To show ⇐) Suppose that the proposition φ is not a theorem of Γ. It suffices to show
that there exists a truth-value function V that assigns value T to all propositions of Γ and
value F to φ. To construct such a V , just replace Γ0 = Γ ∪ {¬φ} in the proof of the last
theorem. □
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• We say that Γ is satisfiable if there is a truth value function that assigns the value T
to all propositions belonging to Γ.

We can state the completeness theorem as follows.

Completeness theorem (another version)� �
Γ is consistent ⇐⇒ Γ is satisfiable.� �

• Γ is consistent
⇔ Γ ̸⊢⊥
⇔ Γ ̸|=⊥
⇔ there is a V that assigns T to all in Γ but F to ⊥
⇔ there is a V that assigns T to all in Γ
⇔ Γ is satisfiable.
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Theorem (Compactness theorem of propositional logic)

If any finite subset of Γ is satisfiable, then Γ is also satisfiable.

Proof.
• By contrapositive method, suppose no truth-value function assigns the value T to all
propositions in Γ. Goal: there is some finite subset Γ′ ⊂ Γ s.t. there is no truth-value
function that assigns the value T to all propositions of Γ′.

• Now, by assumption, any proposition is a tautological consequence of Γ, especially
Γ |=⊥.

• Thus, by the generalized completeness theorem, we get Γ ⊢⊥.

• Since the proof consists of a finite number of propositions, there exists a finite subset
Γ′ of Γ such that Γ′ ⊢⊥.

• Again, by the generalized completeness theorem, Γ′ |=⊥.

• Since there is no truth-value function that assigns the value T to ⊥, a truth-value
function that assigns the value T to all propositions in Γ′ does not exist.

□
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The name of compactness theorem comes from the Heine-Borel compactness of topological
spaces.

Alternative proof for compactness theorem� �
• Consider X = {T,F}N as a topological space with product topology.

{T,F} has a discrete topology. Since every finite space is compact, the product
space X is also compact by Tikhonov’s theorem (also equivalent to the finite
intersections property).

• Elements of X can be interpreted as functions v that assign truth values T, F to
atomic propositions p0, p1, p2, · · · .

• Also, the function v can be uniquely extended to the truth value function V = v̄,
so they are interchangeable.

• Now, for a proposition φ, let Cφ be the set of functions v that assign T to φ.
That is, Cφ = {v ∈ X : v̄(φ) = T}.

• Since there are only finite atomic propositions in φ, Cφ is a clopen (i.e., closed
and open) set of X.

• In fact, Cφ is obtained by finite Boolean operations from an open and closed set
of the form Bi = {v ∈ X : v(i) = T}.� �19 / 22
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Homework:Use the compactness theorem to prove the following� �
An infinite graph (vertices) can be colored with k colors (each edge has a different color
at each end) iff any finite subgraph of it can be colored with k colors.� �
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Summary

We have shown

• Deduction theorem: If Γ ∪ {φ} ⊢ ψ, Γ ⊢ φ→ ψ.

• Completeness theorem: Γ ⊢ φ ⇔ Γ |= φ.

• Completeness theorem (another version): Γ is consistent ⇔ Γ is satisfiable.

• Compactness theorem: If any finite subset of Γ is satisfiable, then Γ is also satisfiable.

Further readings� �
E. Mendelson. Introduction to Mathematical Logic, CRC Press, 6th edition, 2015.� �
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Thank you for your attention!
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