K. Tanaka

[Recap](#page-2-0)

[Proof](#page-5-0)

[Deduction](#page-6-0) theorem

theorem for propositional logic

[Compactness](#page-17-0) theorem of propositional logic

[Summary](#page-20-0)

Logic and Computation: I

Chapter 2 Propositional logic and computational complexity

Kazuyuki Tanaka

BIMSA

November 22, 2022

 $1/22$

 2990 D-1

K. Tanaka

- [Recap](#page-2-0)
- [Proof](#page-5-0)
-
-
- theorem for propositional logic
- [Compactness](#page-17-0) logic
- [Summary](#page-20-0)
- Logic and Computation I
	- Part 1. Introduction to Theory of Computation
	- Part 2. Propositional Logic and Computational Complexity

✒ ✑

✒ ✑

2 / 22

 Ω

メロメ メ御 メメ ヨメ メヨメ

• Part 3. First Order Logic and Decision Problems

Part 2. Schedule

- Nov.17, (1) Tautologies and proofs
- Nov.22, (2) The completeness theorem of propositional logic
- Nov.24, (3) SAT and NP-complete problems
- Nov.29, (4) NP-complete problems about graph
- Dec. 1, (5) Time-bound and space-bound complexity classes
- Dec. 6, (6) PSPACE-completeness and TQBF

K. Tanaka

[Recap](#page-2-0)

-
-
-
- theorem for logic
- [Compactness](#page-17-0) logic
- **[Summary](#page-20-0)**
- • Propositional logic is the study of logical connections between propositions. \neg (not \dots), \wedge (and), \vee (or), \rightarrow (implies).
- If a proposition φ is always true, i.e., $V(\varphi) = T$ for any truth-value function V, then φ is said to be **valid** or a **tautology**, written as $\models \varphi$.

Recap

- The followings are tautologies. P1. $\varphi \rightarrow (\psi \rightarrow \varphi)$ P2. $(\varphi \to (\psi \to \theta)) \to ((\varphi \to \psi) \to (\varphi \to \theta))$ P3. $(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$
- P1 was shown on p.11 of the last note. P2 is shown as below.
	- ∵ By way of contradiction, there exists a truth-value function V such that $V((\varphi \to (\psi \to \theta)) \to ((\varphi \to \psi) \to (\varphi \to \theta))) = F$. By condition (2d) of Def. of V, $V(\varphi \to (\psi \to \theta)) = T$ and $V((\varphi \to \psi) \to (\varphi \to \theta)) = F$. From the latter, $V(\varphi \to \psi) = T$ and $V(\varphi \to \theta) = F$, and then from the latter, $V(\varphi) = T$, $V(\theta) = F$. Then by the former $V(\varphi \to \psi) = T$, $V(\psi) = T$. Hence, $V(\varphi) = V(\psi) = T$ and $V(\theta) = F$, therefore $V(\varphi \rightarrow (\psi \rightarrow \theta)) = F$, a contradiction. P3 can be proved similarly. **KOD KARD KED KED BI YOUN** 3 / 22

K. Tanaka

- [Recap](#page-2-0)
-
- theorem
-
- theorem for logic
- [Compactness](#page-17-0) logic
- [Summary](#page-20-0)
- We consider an axiomatic system that derives all valid propositions only using \neg, \rightarrow . We can omit \vee and \wedge by setting $\varphi \vee \psi := \neg \varphi \rightarrow \psi$, $\varphi \wedge \psi := \neg (\varphi \rightarrow \neg \psi)$.
- A proof is a sequence of propositions $\varphi_0, \varphi_1, \cdots, \varphi_n$ satisfying the following conditions: For $k \leq n$.
	- (1) φ_k is one of axioms P1, P2, P3, or
	- (2) There exist $i, j < k$ such that $\varphi_i = \varphi_i \rightarrow \varphi_k$ (MP).
	- The last component of proof φ_n is called a **theorem**, and we denote $\vdash \varphi_n$.
- P1, P2, P3 are theorems by themselves. $\varphi \rightarrow \varphi$ was proved on p.18 of the last note.
- $\neg \varphi \rightarrow (\varphi \rightarrow \psi)$ (homework) can be proved as follows. First, we show that if A is a theorem, then for any $B, B \to A$ is a theorem. By P1, $A \rightarrow (B \rightarrow A)$. By applying MP to this and A, we have $B \rightarrow A$. Now, from this and P3, we have $\neg \varphi \rightarrow ((\neg \psi \rightarrow \neg \varphi)) \rightarrow (\varphi \rightarrow \psi)$. By P2, $(\neg \varphi \rightarrow ((\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi))) \rightarrow ((\neg \varphi \rightarrow (\neg \psi \rightarrow \neg \varphi)) \rightarrow (\neg \varphi \rightarrow (\varphi \rightarrow \psi))).$ By MP, we have $(\neg \varphi \rightarrow (\neg \psi \rightarrow \neg \varphi)) \rightarrow (\neg \varphi \rightarrow (\varphi \rightarrow \psi))$. By applying MP to this and P1, we have $\neg \varphi \rightarrow (\varphi \rightarrow \psi)$.
- In this lecture, we will prove the completeness theorem: $\vdash \varphi \Leftrightarrow \models \varphi$.

 $4/22$

K. Tanaka

[Recap](#page-2-0)

[Deduction](#page-6-0) theorem

[Completeness](#page-11-0) theorem for propositional logic

[Compactness](#page-17-0) theorem of propositional logic

[Summary](#page-20-0)

1 [Recap](#page-2-0)

2 [Proof](#page-5-0)

3 [Deduction theorem](#page-6-0)

4 [Inconsistency](#page-9-0)

6 [Completeness theorem for propositional logic](#page-11-0)

6 [Compactness theorem of propositional logic](#page-17-0)

2 [Summary](#page-20-0)

Completeness theorem for propositional logic

5 / 22

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ │ ヨ │ めぬ◎

K. Tanaka

[Recap](#page-2-0)

[Proof](#page-5-0)

theorem

theorem for propositional logic

[Compactness](#page-17-0) theorem of logic

[Summary](#page-20-0)

We first extend the concept "Proof" as follows.

Definition (Proof)

Given a set of propositions Γ, a sequence of propositions $\psi_0, \psi_1, \cdots, \psi_n$ is said to be a **proof** of ψ_n in Γ if for each $k \leq n$.

- (1) ψ_k belongs to $\{P_1, P_2, P_3\} \cup \Gamma$, or
- (2) There exist $i, j < k$ such that $\psi_i = \psi_i \rightarrow \psi_k$.

If there exists a proof of ψ in Γ, then ψ is said to be **provable** in Γ, or a **theorem** of Γ, written as $\Gamma \vdash \psi$.

The definitions of a proof and a theorem in the last lecture are obtained as a special case by setting $\Gamma = \emptyset$.

 $6/22$

KO KA KO KE KE KE KA KA KA KA KA KA KA A

K. Tanaka

[Recap](#page-2-0)

[Proof](#page-5-0)

[Deduction](#page-6-0) theorem

theorem for propositional logic

[Compactness](#page-17-0) propositional logic

[Summary](#page-20-0)

Theorem (Deduction Theorem)

If $\Gamma \cup {\varphi} \vdash \psi$, $\Gamma \vdash \varphi \rightarrow \psi$.

Proof. Let $\psi_0, \psi_1, \cdots, \psi_k (= \psi)$ be a proof of ψ in $\Gamma \cup {\varphi}$. We prove by induction on the proof length $k + 1$.

 \angle Case $k = 0$ \longrightarrow (1) If ψ belongs to $\{P_1, P_2, P_3\} \cup \Gamma$, the following is a proof of $\varphi \to \psi$ in Γ . $\varphi_0 = \psi$
 $\varphi_1 = \psi \to (\varphi \to \psi)$: $\text{in } \{P_1, P_2, P_3\} \cup \Gamma$

: P_1 $\varphi_1 = \psi \rightarrow (\varphi \rightarrow \psi)$ $\varphi_2 = \varphi \rightarrow \psi$: $\varphi_1 = \varphi_0 \rightarrow \varphi_2$ (2) If $\psi = \varphi$, $\varphi \to \psi$ is the same as $\varphi \to \varphi$, which was proved in the last lecture.

✒ ✑

7 / 22

KO KA KO KE KE KE KA KA KA KA KA KA KA A

K. Tanaka

[Recap](#page-2-0)

- [Deduction](#page-6-0) theorem
-

theorem for logic

[Compactness](#page-17-0) logic

[Summary](#page-20-0)

(1) If $\psi_k = \psi$ belongs to $\{P_1, P_2, P_3\} \cup \Gamma \cup \{\varphi\}$, the same as case $k = 0$.

(2) Consider the case where there exist $i, j < k$ and $\psi_i = \psi_i \rightarrow \psi_k$.

- By the induction hypothesis, we have $\Gamma \vdash \varphi \rightarrow \psi_i$ and $\Gamma \vdash \varphi \rightarrow \psi_i$.
- Let $\varphi_0, \varphi_1, \cdots, \varphi_m$ be a proof of $\varphi \to \psi_i$ in Γ , and let $\varphi_{m+1}, \cdots, \varphi_n$ be a proof of $\varphi \to \psi_i$ in Γ .

 \sim Case $k \geq 1$ \longrightarrow

- Then $\varphi_0, \dots, \varphi_m, \varphi_{m+1}, \dots, \varphi_n$ is also a proof of $\varphi \to \psi_i$ in Γ .
- If we add the following $\varphi_{n+1}, \varphi_{n+2}, \varphi_{n+3}$ after $\varphi_0, \cdots, \varphi_n$, we obtain a proof of $\varphi \to \psi$ in Γ .

✒ ✑

8 / 22

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ │ ヨ │ めぬ◎

 $\varphi_{n+1} \equiv (\varphi \to (\psi_i \to \psi_k)) \to ((\varphi \to \psi_i) \to (\varphi \to \psi_k))$: P2 $\varphi_{n+2} = (\varphi \to \psi_i) \to (\varphi \to \psi_k)$: $\varphi_{n+1} = \varphi_n \to \varphi_{n+2}$ $\varphi_{n+3} \equiv \varphi \rightarrow \psi_k$: $\varphi_{n+2} \equiv \varphi_m \rightarrow \varphi_{n+3}$

K. Tanaka

- [Recap](#page-2-0)
- [Proof](#page-5-0)
- [Deduction](#page-6-0) theorem
-
- theorem for logic
- [Compactness](#page-17-0) logic
- **[Summary](#page-20-0)**

The converse of Deduction Theorem "If $\Gamma \vdash \varphi \rightarrow \psi$, $\Gamma \cup {\varphi} \vdash \psi$ " can be obtained directly by Modus Ponens.

✒ ✑

9 / 22

KO KA KO KE KE KE KA KA KA KA KA KA KA A

The following example demonstrate the application of Deduction Theorem.

Example: Using the deduction theorem to show $\vdash \neg \varphi \rightarrow (\varphi \rightarrow \psi)$

- By the deduction theorem, it suffices to show $\{\neg \varphi, \varphi\} \vdash \psi$.
- Since $\{\neg \varphi, \varphi\} \vdash \neg \varphi$, then using MP to P1 and this, we have $\{\neg \varphi, \varphi\} \vdash \neg \psi \rightarrow \neg \varphi.$
- By applying MP to P3, $\{\neg \varphi, \varphi\} \vdash \varphi \rightarrow \psi$.
- Again by MP, $\{\neg \varphi, \varphi\} \vdash \psi$.

- K. Tanaka
- [Recap](#page-2-0)
- [Proof](#page-5-0)
- theorem

[Inconsistency](#page-9-0)

propositional logic

[Compactness](#page-17-0) logic

[Summary](#page-20-0)

- • This last example asserts that the contradiction ($\neg \varphi$ and φ) implies any proposition ψ .
- We investigate this in more detail. Let \perp be a proposition representing "contradiction", say $\neg(p_0 \rightarrow p_0)$.

Definition (Inconsistent)

The set Γ of propositions is said to be **inconsistent** if \bot is provable from Γ . Otherwise, Γ is said to be consistent.

Lemma (1)

 $\Gamma \vdash \psi$ for any ψ if Γ is inconsistent.

∵ If Γ is inconsistent, $p_0 \rightarrow p_0$ and $\neg(p_0 \rightarrow p_0)$ are provable in Γ.

Lemma (2)

If there exists φ such that $\Gamma \vdash \varphi$ and $\Gamma \vdash \neg \varphi$, then Γ is inconsistent. That is, if Γ is consistent, then for any φ , φ or $\neg \varphi$ cannot be proved from Γ.

10 / 22

KO KA KO KE KE KE KA KA KA KA KA KA KA A

```
Logic and
Computation
```

```
K. Tanaka
```
[Recap](#page-2-0)

[Proof](#page-5-0)

[Inconsistency](#page-9-0)

theorem for logic

[Compactness](#page-17-0) logic

[Summary](#page-20-0)

The following lemma establishes the basic principle connecting the notions of provability and contradiction.

Lemma (3)

 $\Gamma \cup {\neg \varphi}$ is inconsistent $\Leftrightarrow \Gamma \vdash \varphi$.

Proof.

```
To show \RightarrowAssume \Gamma \cup {\neg \varphi} \vdash \neg (p_0 \to p_0). By Deduction Theorem, \Gamma \vdash \neg \varphi \to \neg (p_0 \to p_0). So by
P3, \Gamma \vdash (p_0 \rightarrow p_0) \rightarrow \varphi. By \vdash (p_0 \rightarrow p_0), thus \Gamma \vdash \varphi.
To show \leftarrowIf \Gamma \vdash \varphi, \Gamma \cup \{\neg \varphi\} can prove both \varphi and \neg \varphi. So \Gamma \cup \{\neg \varphi\} is inconsistent.
```
11 / 22

Therefore,

Lemma (4)

If Γ is consistent, then for any φ , $\Gamma \cup {\varphi}$ or $\Gamma \cup {\neg \varphi}$ is consistent.

This lemma lays the basis of the proof for completeness theore[m.](#page-9-0)
This lemma lays the basis of the proof for completeness theorem.

K. Tanaka

- [Recap](#page-2-0)
-
- theorem
-
- [Completeness](#page-11-0) theorem for propositional logic
- [Compactness](#page-17-0) logic
- **[Summary](#page-20-0)**

Completeness theorem for propositional logic

 \diagup ⊢ $\varphi \Longrightarrow \models \varphi$ \Longrightarrow \Longrightarrow \Longleftrightarrow \Longleftrightarrow

 $\qquad \qquad$

12 / 22

KO KA KO KE KE KE KA KA KA KA KA KA KA A

Theorem (Completeness theorem for propositional logic)

 $\vdash \varphi \iff \models \varphi$

Proof

- \bullet Let V be any truth value function.
- If φ is the axiom P1, P2, P3, $V(\varphi) = T$.
- Also, if $V(\varphi) = T$ and $V(\varphi \rightarrow \psi) = T$, then $V(\psi) = T$.
- Thus, for all theorems φ , $V(\varphi) = T$.

K. Tanaka

- [Recap](#page-2-0)
- [Proof](#page-5-0)
-
-

[Completeness](#page-11-0) theorem for propositional logic

[Compactness](#page-17-0) logic

[Summary](#page-20-0)

- Suppose that proposition φ is not a theorem. Goal: prove there exists a truth value function V s.t. $V(\varphi) = F$.
- List all the propositions in an appropriate order as $\varphi_0, \varphi_1, \varphi_2, \cdots$.
- $\bullet\,$ Given $\Gamma_0=\{\neg\varphi\}^1$, we define an infinitely increasing sequence of consistent sets $\Gamma_0 \subset \Gamma_1 \subset \Gamma_2 \subset \cdots$ as follows. For any $n \geq 0$.

 $\diagup\vdash\varphi \Longleftarrow \models \varphi \Longrightarrow$

- if $\Gamma_n \cup {\varphi_n}$ is consistent, $\Gamma_{n+1} = \Gamma_n \cup {\varphi_n}$;
- otherwise $\Gamma_{n+1} = \Gamma_n$.
- Then $\Gamma = \bigcup_n \Gamma_n$ is consistent.
	- Suppose Γ were inconsistent. Since the number of elements of Γ used in the proof of \perp is finite, there is a sufficiently large N s.t. Γ_N includes all such elements. Therefore, $\Gamma_N \vdash \perp$, which violates the consistency of Γ_N .

✒ ✑

13 / 22

 Ω

 $A \cap B \rightarrow A \cap B$

 $1: \Gamma_0$ is consistent by Lemma (3)

K. Tanaka

[Recap](#page-2-0)

-
-
-

[Completeness](#page-11-0) theorem for propositional logic

[Compactness](#page-17-0) logic

[Summary](#page-20-0)

- $\vdash \varphi \Longleftarrow \models \varphi$ (continued)
	- Furthermore, Γ is a maximal consistent set. That is, either $\varphi_n \in \Gamma$ or $\neg \varphi_n \in \Gamma$ holds for any φ_n .
	- Suppose $\Gamma \nvDash \varphi_n$. Then, $\Gamma \cup {\neg \varphi_n}$ is consistent. So letting $\varphi_m = \neg \varphi_n$, $\Gamma_m \cup {\varphi_m}$ is consistent, and so $\varphi_m \in \Gamma_{m+1} \subseteq \Gamma$, that is, $\neg \varphi_n \in \Gamma$.
	- Similarly, if $\Gamma \not\vdash \neg \varphi_n$, then $\varphi_n \in \Gamma$.
	- Since Γ is consistent, by Lemma (2) φ_n or $\neg \varphi_n$ cannot be proved from Γ, and so φ_n or $\neg \varphi_n$ belongs to Γ .

✒ ✑

14 / 22

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$ $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

• Thus we note that for any formula φ_n , $\varphi_n \notin \Gamma \Leftrightarrow \neg \varphi_n \in \Gamma$.

K. Tanaka

- [Recap](#page-2-0)
-
-
-

[Completeness](#page-11-0) theorem for propositional logic

[Compactness](#page-17-0) logic

[Summary](#page-20-0)

 $\varphi \Longleftarrow \models \varphi \text{ (continued)}$

• Now, define a function V as follows:

 $V(\varphi_n) = \mathcal{T} \Leftrightarrow \varphi_n \in \Gamma_{n+1}.$

- We then show that V is a truth value function.
	- It follows from the maximal consistency that

$$
V(\neg \varphi_n) = \mathcal{T} \Leftrightarrow V(\varphi_n) = \mathcal{F}.
$$

• By the maximal consistency, we also show $\varphi_m \to \varphi_n \in \Gamma \Leftrightarrow \neg \varphi_m \in \Gamma$ or $\varphi_n \in \Gamma$. Then we have

$$
V(\varphi_m \to \varphi_n) = T \Leftrightarrow V(\varphi_m) = F \text{ or } V(\varphi_n) = T.
$$

15 / 22

 $\mathbf{A} \sqsubseteq \mathbf{B} \rightarrow \mathbf{A} \bigoplus \mathbf{B} \rightarrow \mathbf{A} \sqsubseteq \mathbf{B} \rightarrow \mathbf{A} \sqsubseteq \mathbf{B} \rightarrow$

• It is clear that $V(\varphi) = F$ since $\Gamma_0 = {\neg \varphi}$. Thus V is a truth-value function that assigns the value F to φ , and so φ is not a tautology.

✒ ✑

K. Tanaka

- [Recap](#page-2-0)
- [Proof](#page-5-0)
-
-

[Completeness](#page-11-0) theorem for propositional logic

[Compactness](#page-17-0) logic

[Summary](#page-20-0)

- As we generalized provability \vdash , we can also generalize validity \models .
- By $\Gamma \models \varphi$, we mean that if a truth-value function V assigns the value T to all propositions in Γ then it assigns the value T to φ . In such a case, φ is called the tautological consequence of Γ.
- The completeness theorem can also be generalized as follows.

Theorem (The generalized completeness theorem of propositional logic) $\Gamma \vdash \varphi \iff \Gamma \models \varphi.$

Proof.

(To show \Rightarrow) Let V be a truth-value function that assigns the value T to all propositions in Γ. For the three axioms φ , we have already seen $V(\varphi) = T$. Also, when $V(\varphi) = T$ and $V(\varphi \to \psi) = T$, $V(\psi) = T$. Thus, for all theorems φ derived from Γ , $V(\varphi) = T$. (To show \Leftarrow) Suppose that the proposition φ is not a theorem of Γ. It suffices to show that there exists a truth-value function V that assigns value T to all propositions of Γ and value F to φ . To construct such a V, just replace $\Gamma_0 = \Gamma \cup \{\neg \varphi\}$ in the proof of the last theorem. $□$

16 / 22

K. Tanaka

- [Recap](#page-2-0)
-

[Completeness](#page-11-0) theorem for propositional logic

[Compactness](#page-17-0) logic

[Summary](#page-20-0)

• We say that Γ is satisfiable if there is a truth value function that assigns the value T to all propositions belonging to Γ .

 $\qquad \qquad$

17 / 22

 QQ

K ロ > K @ > K 경 > K 경 > 시 경

We can state the completeness theorem as follows.

Completeness theorem (another version)

 Γ is consistent \iff Γ is satisfiable.

- Γ is consistent
	- ⇔ Γ ̸⊢⊥
	- ⇔ Γ ̸|=⊥
	- \Leftrightarrow there is a V that assigns T to all in Γ but F to \bot
	- \Leftrightarrow there is a V that assigns T to all in Γ
	- ⇔ Γ is satisfiable.

K. Tanaka

- [Recap](#page-2-0)
- [Proof](#page-5-0)
- theorem
-
- logic
- **[Compactness](#page-17-0)** theorem of propositional logic

[Summary](#page-20-0)

Theorem (Compactness theorem of propositional logic)

If any finite subset of Γ is satisfiable, then Γ is also satisfiable.

Proof.

- By contrapositive method, suppose no truth-value function assigns the value T to all propositions in Γ . Goal: there is some finite subset $\Gamma'\subset \Gamma$ s.t. there is no truth-value function that assigns the value $\footnotesize{\text{T}}$ to all propositions of $\footnotesize{\Gamma}'.$
- Now, by assumption, any proposition is a tautological consequence of Γ , especially $\Gamma \models \perp$.
- Thus, by the generalized completeness theorem, we get $\Gamma \vdash \bot$.
- Since the proof consists of a finite number of propositions, there exists a finite subset Γ' of Γ such that $\Gamma' \vdash \perp$.
- Again, by the generalized completeness theorem, $\Gamma' \models \bot$.
- Since there is no truth-value function that assigns the value T to \perp , a truth-value function that assigns the value \bar{T} to all propositions in Γ' does not exist.

□

18 / 22

K. Tanaka

- [Recap](#page-2-0)
- [Proof](#page-5-0)
-
-

theorem for logic

[Compactness](#page-17-0) theorem of propositional logic

[Summary](#page-20-0)

The name of compactness theorem comes from the Heine-Borel compactness of topological spaces.

Alternative proof for compactness theorem

- Consider $X = \{\text{T},\text{F}\}^{\mathbb{N}}$ as a topological space with product topology. ${T, F}$ has a discrete topology. Since every finite space is compact, the product space X is also compact by Tikhonov's theorem (also equivalent to the finite intersections property).
- Elements of X can be interpreted as functions v that assign truth values T, F to atomic propositions p_0, p_1, p_2, \cdots .
- Also, the function v can be uniquely extended to the truth value function $V = \bar{v}$, so they are interchangeable.
- Now, for a proposition φ , let C_{φ} be the set of functions v that assign T to φ . That is, $C_{\varphi} = \{v \in X : \overline{v}(\varphi) = \mathrm{T}\}.$
- Since there are only finite atomic propositions in φ , C_{φ} is a clopen (i.e., closed and open) set of X .
- In fact, C_{φ} is obtained by finite Boolean operations from an open and closed set of the form $B_i = \{v \in X : v(i) = T\}.$ メロトメ 御 トメ 君 トメ 君 トリ (者)

 \sim 19/22

K. Tanaka

[Recap](#page-2-0)

- [Proof](#page-5-0)
- theorem
-
- theorem for propositional logic
- **[Compactness](#page-17-0)** theorem of propositional logic

[Summary](#page-20-0)

Homework: Use the compactness theorem to prove the following

An infinite graph (vertices) can be colored with k colors (each edge has a different color at each end) iff any finite subgraph of it can be colored with k colors.

✒ ✑

20 / 22

 2990

メロトメ 御 トメ ミトメ ミト

Summary

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A \Rightarrow A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A$

21 / 22

We have shown

- Deduction theorem: If $\Gamma \cup {\varphi} \vdash \psi$, $\Gamma \vdash \varphi \rightarrow \psi$.
- Completeness theorem: $\Gamma \vdash \varphi \Leftrightarrow \Gamma \models \varphi$.
- Completeness theorem (another version): Γ is consistent $\iff \Gamma$ is satisfiable.
- Compactness theorem: If any finite subset of Γ is satisfiable, then Γ is also satisfiable.

✒ ✑

Further readings

E. Mendelson. Introduction to Mathematical Logic, CRC Press, 6th edition, 2015.

Logic and [Computation](#page-0-0)

K. Tanaka

[Recap](#page-2-0)

- theorem
-

theorem for logic

[Compactness](#page-17-0) logic

[Summary](#page-20-0)

K. Tanaka

[Recap](#page-2-0)

[Proof](#page-5-0)

theorem

theorem for propositional logic

[Compactness](#page-17-0) theorem of propositional logic

[Summary](#page-20-0)

Thank you for your attention!

22 / 22

KID KARA KE KIEK E KORO