
Logic and
Computation

K. Tanaka

Recap

Programming
language TPL

Enumeration
theorem

Computably
enumerable set

Computable set

Logic and Computation: I
Chapter 1 Introduction to theory of computation

Kazuyuki Tanaka

BIMSA

November 8, 2022

1 / 27



Logic and
Computation

K. Tanaka

Recap

Programming
language TPL

Enumeration
theorem

Computably
enumerable set

Computable set

Logic and Computation I� �
• Part 1. Introduction to Theory of Computation

• Part 2. Propositional Logic and Computational Complexity

• Part 3. First Order Logic and Decision Problems� �
Part 1. Schedule� �
• Oct.27, (1) Automata and monoids

• Nov. 1, (2) Turing machines

• Nov. 3, (3) Computable functions and primitive recursive functions

• Nov. 8, (4) Decidability and undecidability

• Nov.10, (5) Partial recursive functions and computable enumerable sets

• Nov.12, (6) Rice’s theorem and many-one reducibility� �
2 / 27



Logic and
Computation

K. Tanaka

Recap

Programming
language TPL

Enumeration
theorem

Computably
enumerable set

Computable set

Recap

Definition

The primitive recursive functions are defined as below.

1. Constant 0, successor function S(x) = x+ 1,
projection Pn

i (x1, x2, . . . , xn) = xi (1 ≤ i ≤ n) are prim. rec. functions.

2. Composition.
If gi(1 ≤ i ≤ m), h are prim. rec. functions, so is f = h(g1, . . . , gm) defined by:

f(x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)).

3. Primitive recursion.
If g, h are prim. rec. functions, so is f defined by:

f(x1, . . . , xn, 0) = g(x1, . . . , xn),

f(x1, . . . , xn, y + 1) = h(x1, . . . , xn, y, f(x1, . . . , xn, y)).

A primitive recursive function is a computable total function.
3 / 27



Logic and
Computation

K. Tanaka

Recap

Programming
language TPL

Enumeration
theorem

Computably
enumerable set

Computable set

Example� �
x+ y, x−̇y, x · y, x/y, xy, x!, max{x, y}, min{x, y} are primitive recursive functions.� �
Example� �
Let p(x) = “(x+ 1)-th prime number ”, that is ,

p(0) = 2, p(1) = 3, p(2) = 5, . . .

Then, p(x) is a primitive recursive function since it is defined as follows.

p(0) = 2, p(x+ 1) = µy < p(x)! + 2 (p(x) < y ∧ prime(y)).� �

4 / 27



Logic and
Computation

K. Tanaka

Recap

Programming
language TPL

Enumeration
theorem

Computably
enumerable set

Computable set

Definition

An n-ary relation R ⊂ Nn is called primitive recursive, if its characteristic function
χR : Nn → {0, 1} is primitive recursive

χR(x1, . . . , xn) =

{
1 if R(x1, . . . , xn)
0 otherwise

Primitive recursive relations are closed under Boolean operations and bounded quantifiers.

Example: x < y is primitive recursive� �
χ<(x, y) = (y−̇x)−̇M(y−̇x).� �

Example: x = y, prime(x) are primitive recursive� �
x = y ⇔ ¬(x < y) ∧ ¬(y < x).

prime(x) ⇔ x > 1 ∧ ¬∃y < x∃z < x(y · z = x).� �
5 / 27



Logic and
Computation

K. Tanaka

Recap

Programming
language TPL

Enumeration
theorem

Computably
enumerable set

Computable set

Recursive functions

Minimalization (minimization).
Let g : Nn+1 → N be a recursive function satisfying that
∀x1 · · · ∀xn∃y g(x1, · · · , xn, y) = 0. Then, the function f : Nn → N defined by

f(x1, · · · , xn) = µy(g(x1, · · · , xn, y) = 0)

is recursive, where µy(g(x1, · · · , xn, y) = 0) denotes the smallest y such that
g(x1, · · · ,xn, y) = 0.

Definition

The set of all recursive functions is the smallest class that contains the constant 0,
successor function, projection, and closed under composition, primitive recursion and
minimalization.

A recursive function is a computable total function, and vice versa.

6 / 27



Logic and
Computation

K. Tanaka

Recap

Programming
language TPL

Enumeration
theorem

Computably
enumerable set

Computable set

Computability and Incomputability
(Uncomputability)

1 Recap

2 Programming language TPL

3 Enumeration theorem

4 Computably enumerable set

5 Computable set

7 / 27



Logic and
Computation

K. Tanaka

Recap

Programming
language TPL

Enumeration
theorem

Computably
enumerable set

Computable set

Today

• We will only consider a deterministic single-tape Turing machine on Ω = {0, 1,B}.

• We will introduce a Programming Language, called TPL, that has an instruction for
each operation of Turing machine.

• Any Turing machine can be emulated by a TPL program on a unique Turing machine
(called universal Turing machine).

• Finally, we will prove the existence of an incomputable (non-computable) set K.

8 / 27



Logic and
Computation

K. Tanaka

Recap

Programming
language TPL

Enumeration
theorem

Computably
enumerable set

Computable set

Definition (The instructions of Programming language TPL)

instructions (code ♯, the corresponding TM operations)
bababababababababababababababababab

halt (code 0, enter a final state)
moveright (code 1, the head move to right by one cell)
moveleft (code 2, the head move to left by one cell)
write 0 (code 3, write “0” on the tape)
write 1 (code 4, write “1” on the tape)
write B (code 5, write “B” On the tape)
goto l (code 6 + 3l, jump to the lth instruction)
if 0 then goto l (code 7 + 3l, if TM reads 0, jump to the lth

instruction)
if 1 then goto l (code 8 + 3l, if TM reads 1, jump to the lth

instruction)

9 / 27



Logic and
Computation

K. Tanaka

Recap

Programming
language TPL

Enumeration
theorem

Computably
enumerable set

Computable set

Definition

A program of TPL is a list of instructions separated by “;”.

For readability, a line number is added at each instruction.
In the instruction “goto l”, l corresponds to such a line number.

An example of TPL program P0
� �

0: if 1 then goto 2;
1: goto 1;
2: moveright;
3: if 1 then goto 1;
4: if 0 then goto 6;
5: halt;
6: moveright;
7: goto 0

The left program intends to accept the
language 1(01)∗

� �
10 / 27



Logic and
Computation

K. Tanaka

Recap

Programming
language TPL

Enumeration
theorem

Computably
enumerable set

Computable set

Definition (TM MP realizes TPL program P)

Let P be be a TPL program. We define a (deterministic) Turing machine
MP = (Q,Ω, δ, q0, F ) realizes P. Q = {0, 1, . . . , n− 1} is the set of line numbers of P.
Ω = {0, 1,B}. q0 = 0, F = {a line number of halt}. The transition function
δ : Q× Ω → Ω× {L,R,N} ×Q is defined as follows.

l: halt, δ(l, x) = (x,N, l),
l: moveright, δ(l, x) = (x,R, l + 1),
l: moveleft, δ(l, x) = (x, L, l + 1),
l: write ?, δ(l, x) = (?, N, l + 1), for ? = 0, 1,B,
l: goto k, δ(l, x) = (x,N, k),
l: if ? then goto k, δ(l, ?) = (?, N, k) and

δ(l, y) = (y,N, l + 1) for y ̸=?.

The language accepted by TPL P is the language accepted by the associated Turing
machine MP . The partial function f : Ω∗ → Ω∗ defined by P is a function defined by MP .

11 / 27



Logic and
Computation

K. Tanaka

Recap

Programming
language TPL

Enumeration
theorem

Computably
enumerable set

Computable set

Example: Program P0 ⇒ TM MP0
� �

We define a (deterministic) Turing machine MP0
= (Q,Ω, δ, q0, F ), where Q =

{0, 1, . . . , 7}, Ω = {0, 1,B}, q0 = 0, F = {5}, and
δ is defined as follows: for any x ∈ Ω,

0: if 1 then goto 2;
1: goto 1;
2: moveright;
3: if 1 then goto 1;
4: if 0 then goto 6;
5: halt;
6: moveright;
7: goto 0

δ(0, 1) = (1, N, 2), δ(l, y) = (y,N, 1) for y ̸= 1
δ(1, x) = (x,N, 1)
δ(2, x) = (x,R, 3)
δ(3, 1) = (1, N, 1), δ(3, y) = (y,N, 4) for y ̸= B
δ(4, 0) = (0, N, 6), δ(4, y) = (y,N, 5) for y ̸= 1
δ(5, x) = (x,N, 5)
δ(6, x) = (x,R, 7)
δ(7, x) = (x,N, 0)� �

12 / 27



Logic and
Computation

K. Tanaka

Recap

Programming
language TPL

Enumeration
theorem

Computably
enumerable set

Computable set

A TPL programP1
� �

0: if 0 then goto 3;
1: if 1 then goto 16;
2: halt;

3: write B;
4: moveright;
5: if 0 then goto 4;
6: if 1 then goto 4;
7: moveleft;
8: if 0 goto 10;
9: goto 29;
10: write B;
11: moveleft;
12: if 0 then goto 11;
13: if 1 then goto 11;
14: moveright;
15: goto 0;

16: write B;
17: moveright;
18: if 0 then goto 17;
19: if 1 then goto 17;
20: moveleft;
21: if 1 goto 23;
22: goto 29;
23: write B;
24: moveleft;
25: if 0 then goto 24;
26: if 1 then goto 24;
27: moveright;
28: goto 0;

29: goto 29� �
13 / 27



Logic and
Computation

K. Tanaka

Recap

Programming
language TPL

Enumeration
theorem

Computably
enumerable set

Computable set

TM M1 for P1 and L(M1) = {wwR : w ∈ {0, 1}∗}� �

B.I BL 

8 

4, 

5,6 

0/BN 

1/lN 

B/BN 

0/BR 

11, 

12,13 

0,1 

B;'BR B!BR 

0110N 

1/lN 

B/BN 

29 

I/BR 

Q,IOL' 

1/IL 

24, 

25,26 

17, 

18,19 

1/ BL 

0/0N 

B!BN 

B11 BL 

21 

� �
14 / 27



Logic and
Computation

K. Tanaka

Recap

Programming
language TPL

Enumeration
theorem

Computably
enumerable set

Computable set

Theorem

For any Turing machine M, there exists a TPL program P such that L(M) = L(MP).

Proof. (Exercise.)

15 / 27



Logic and
Computation

K. Tanaka

Recap

Programming
language TPL

Enumeration
theorem

Computably
enumerable set

Computable set

A program P is a sequence of instructions with codes c0, c1, . . . , cl.

Example� �
0: if 1 then goto 2;
1: goto 1;
2: moveright;
...

Code c0 = 8 + 3 · 2 = 14
Code c1 = 6 + 3 · 1 = 9
Code c2 = 1
...

P can be represented by a sequence 1c00 · · · 01clon {0, 1}∗.� �
The Gödel number of a program ⌜P⌝ is

p(0)c0+1 · p(1)c1+1 · · · · · p(l)cl+1.

According to the previous theorem, for any TM M, there is a TPL program PM.
The Gödel number ⌜PM⌝ is called the index (or code) of TM M.

16 / 27



Logic and
Computation

K. Tanaka

Recap

Programming
language TPL

Enumeration
theorem

Computably
enumerable set

Computable set

Partial computable functions

• The definition of computable functions in Lecture 3 can be applied to partial
functions. Namely, the partial function f : Nk −→ N is computable if
{1m10 · · · 01mk01f(m1,...,mk) : m1, . . . ,mk ∈ N} is a 0-type language.

• Then, the partial function f realized by M with index e is represented by {e}k (or
simply {e}) (called Kleene’s bracket notation).

• When e is not an index of TM, {e} is regarded as a partial function with empty
domain.

17 / 27



Logic and
Computation

K. Tanaka

Recap

Programming
language TPL

Enumeration
theorem

Computably
enumerable set

Computable set

Any TM can be formulated as a TPL Program. So, we can construct a “Universal Turing
Machine” as a TPL interpreter. More generally, we have the following theorem.

Theorem (Enumeration theorem)

For any n ≥ 0, there exists a natural number en such that for any d, x1, . . . , xn,

{en}n+1(d, x1, . . . , xn) ∼ {d}n(x1, . . . , xn).

f(x1, . . . , xn) ∼ g(x1, . . . , xn) means either both sides are not defined or they are defined
with the same value.

This theorem affirms the existence of a universal TM with index en that is able to mimic
any TM with index d.

18 / 27



Logic and
Computation

K. Tanaka

Recap

Programming
language TPL

Enumeration
theorem

Computably
enumerable set

Computable set

Proof. We will construct a universal Turing machine M with index en.

• M has one input tape and two working tapes.

• Let 1d01x10 · · · 01xn be an input on the first tape.

• Let the index part 1d represent the program
{the instruction of code c0;
the instruction of code c1;
· · · ;
the instruction of code cl}.

• Write 1c00 · · · 01cl on the 2nd tape and remove 1d0 on the 1st tape.

• Execute the instructions on the 2nd tape sequentially, rewriting the string on the 1st
tape with the help of the 3rd tape.

19 / 27



Logic and
Computation

K. Tanaka

Recap

Programming
language TPL

Enumeration
theorem

Computably
enumerable set

Computable set

Proof.(Continued)
• The 3rd tape will be used to find the next executable operation when the goto
instruction or if ? then goto instruction is executed on the 2nd tape.
• 16+3l sandwiched between two 0’s means goto l, so the next executable

instruction is given by the sequence of 1’s between the l-th 0 and the l + 1-th 0.
To find it on the 2nd tape, we need to store the number of 0’s counted from the
left to the end of the string.

• Instructions other than goto and if ? then goto can be easily executed, and finding
the next executable instruction is also obvious.

• When halt instruction is executed, M enters a final state.

• At that time, 1{d}
n(x1,...,xn) is written on the 1st tape.

20 / 27



Logic and
Computation

K. Tanaka

Recap

Programming
language TPL

Enumeration
theorem

Computably
enumerable set

Computable set

Definition

A set X ⊂ Nn is called computably enumerable, CE for short, if

{1x10 · · · 01xn : (x1, . . . , xn) ∈ X}

is a 0-type language.

In other words, X ⊂ Nn is CE iff it is the domain of some partial computable function.
Other equivalent defintions will be given in the next lecture.

21 / 27



Logic and
Computation

K. Tanaka

Recap

Programming
language TPL

Enumeration
theorem

Computably
enumerable set

Computable set

Now, we denote K as a set of natural numbers defined as

K := {e : e ∈ dom({e}1)} = {e : (e, e) ∈ dom({e1}2)}.

where e1 is the code of the universal TM in the previous theorem. We call K the halting
problem. Strictly speaking, this is a special kind of halting problem, and the general case
K0 will be given later.

Theorem (Turing)

K is a CE set and its complement N−K is not CE.

22 / 27



Logic and
Computation

K. Tanaka

Recap

Programming
language TPL

Enumeration
theorem

Computably
enumerable set

Computable set

Proof.

• To show K is CE.
We construct a TM accepting {1e : e ∈ K} as follows.

• For input 1e, it rewrites as 1e01e on the tape.

• Then, the TM mimics the universal TM that realizes {e1}2.

• This TM enters the final state, when (e, e) ∈ dom({e1}2), that is, if and only if e ∈ K.

• By contradiction, assume that N−K is a CE set.
Assume a TM that accepts {1e : e ̸∈ K}, with code d. At this time,

d ∈ K ⇔ d ∈ dom({d}1) ⇔ d ∈ {e : e ̸∈ K} ⇔ d ̸∈ K

Therefore, either d ∈ K or d ̸∈ K leads to a contradiction.

23 / 27



Logic and
Computation

K. Tanaka

Recap

Programming
language TPL

Enumeration
theorem

Computably
enumerable set

Computable set

Definition

A set X ⊂ Nn is computable (or recursive , decidable) if both X and its complement
are CE.

• K is an incomputable CE set.

• “A set X ⊂ Nn is computable” is equivalent to its characteristic function is
computable,

χR(x1, . . . , xn) =

{
1 if R(x1, . . . , xn)
0 otherwise

• Because if we have partial computable functions f and g with dom(f) = X and
dom(g) = Nn −X, then for any input 1x10 · · · 01xn , the computations for f , g
can be done in parallel and decide the output to 1 or 0 depending on which one
stops first. Such computations are totally defined since it always terminates.

• In general, if a function f(x) has a finite value at x = n, we write f(n) ↓. That is
f(n) ↓⇔ n ∈ dom(f).

Then we also write K as
K = {e : {e}(e) ↓}

24 / 27



Logic and
Computation

K. Tanaka

Recap

Programming
language TPL

Enumeration
theorem

Computably
enumerable set

Computable set

Problem� �
Show that the following two sets are noncomputable CE set.

K0 = {(x, e) : {e}(x) ↓},

K1 = {e : dom({e}) ̸= ∅}.

� �
• K0 is the original halting problem: given a program and input, decide when the
machine will halt.

• However, since we use the special halting problem K more frequently, we refer K0 as
the “membership decision problem (MEM)”.

25 / 27



Logic and
Computation

K. Tanaka

Recap

Programming
language TPL

Enumeration
theorem

Computably
enumerable set

Computable set

Summary

• Any Turing machine can be emulated by a TPL program on the so-called universal
Turing machine.

• Enumeration theorem

• A set X ⊂ Nn is CE if {1x10 · · · 01xn : (x1, . . . , xn) ∈ X} is a 0-type language.

• X is computable if both X and Xc are CE.

• All computable sets are CE. But the reverse is not true.

Further readings� �
N. Cutland. Computability: An Introduction to Recursive Function Theory, Cambridge
University Press, 1st edition, 1980.� �

26 / 27



Logic and
Computation

K. Tanaka

Recap

Programming
language TPL

Enumeration
theorem

Computably
enumerable set

Computable set Thank you for your attention!

27 / 27


	Recap
	Programming language TPL 
	Enumeration theorem
	Computably enumerable set
	Computable set

