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Logic and Computation I� �
• Part 1. Introduction to Theory of Computation

• Part 2. Propositional Logic and Computational Complexity

• Part 3. First Order Logic and Decision Problems� �
Part 1. Schedule� �
• Oct.27, (1) Automata and monoids

• Nov. 1, (2) Turing machines

• Nov. 3, (3) Computable functions and primitive recursive functions

• Nov. 8, (4) Decidability and undecidability

• Nov.10, (5) Partial recursive functions and computable enumerable sets

• Nov.12, (6) Rice’s theorem and many-one reducibility� �
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Recap

Definition

The primitive recursive functions are defined as below.

1. Constant 0, successor function S(x) = x+ 1,
projection Pn

i (x1, x2, . . . , xn) = xi (1 ≤ i ≤ n) are prim. rec. functions.

2. Composition.
If gi(1 ≤ i ≤ m), h are prim. rec. functions, so is f = h(g1, . . . , gm) defined by:

f(x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)).

3. Primitive recursion.
If g, h are prim. rec. functions, so is f defined by:

f(x1, . . . , xn, 0) = g(x1, . . . , xn),

f(x1, . . . , xn, y + 1) = h(x1, . . . , xn, y, f(x1, . . . , xn, y)).

A primitive recursive function is a computable total function.
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Example� �
x+ y, x−̇y, x · y, x/y, xy, x!, max{x, y}, min{x, y} are primitive recursive functions.� �
Example� �
Let p(x) = “(x+ 1)-th prime number ”, that is ,

p(0) = 2, p(1) = 3, p(2) = 5, . . .

Then, p(x) is a primitive recursive function since it is defined as follows.

p(0) = 2, p(x+ 1) = µy < p(x)! + 2 (p(x) < y ∧ prime(y)).� �

4 / 27



Logic and
Computation

K. Tanaka

Recap

Programming
language TPL

Enumeration
theorem

Computably
enumerable set

Computable set

Definition

An n-ary relation R ⊂ Nn is called primitive recursive, if its characteristic function
χR : Nn → {0, 1} is primitive recursive

χR(x1, . . . , xn) =

{
1 if R(x1, . . . , xn)
0 otherwise

Primitive recursive relations are closed under Boolean operations and bounded quantifiers.

Example: x < y is primitive recursive� �
χ<(x, y) = (y−̇x)−̇M(y−̇x).� �

Example: x = y, prime(x) are primitive recursive� �
x = y ⇔ ¬(x < y) ∧ ¬(y < x).

prime(x) ⇔ x > 1 ∧ ¬∃y < x∃z < x(y · z = x).� �
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Recursive functions

Minimalization (minimization).
Let g : Nn+1 → N be a recursive function satisfying that
∀x1 · · · ∀xn∃y g(x1, · · · , xn, y) = 0. Then, the function f : Nn → N defined by

f(x1, · · · , xn) = µy(g(x1, · · · , xn, y) = 0)

is recursive, where µy(g(x1, · · · , xn, y) = 0) denotes the smallest y such that
g(x1, · · · ,xn, y) = 0.

Definition

The set of all recursive functions is the smallest class that contains the constant 0,
successor function, projection, and closed under composition, primitive recursion and
minimalization.

A recursive function is a computable total function, and vice versa.
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Computability and Incomputability
(Uncomputability)

1 Recap

2 Programming language TPL

3 Enumeration theorem

4 Computably enumerable set

5 Computable set
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Today

• We will only consider a deterministic single-tape Turing machine on Ω = {0, 1,B}.

• We will introduce a Programming Language, called TPL, that has an instruction for
each operation of Turing machine.

• Any Turing machine can be emulated by a TPL program on a unique Turing machine
(called universal Turing machine).

• Finally, we will prove the existence of an incomputable (non-computable) set K.
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Definition (The instructions of Programming language TPL)

instructions (code ♯, the corresponding TM operations)
bababababababababababababababababab

halt (code 0, enter a final state)
moveright (code 1, the head move to right by one cell)
moveleft (code 2, the head move to left by one cell)
write 0 (code 3, write “0” on the tape)
write 1 (code 4, write “1” on the tape)
write B (code 5, write “B” On the tape)
goto l (code 6 + 3l, jump to the lth instruction)
if 0 then goto l (code 7 + 3l, if TM reads 0, jump to the lth

instruction)
if 1 then goto l (code 8 + 3l, if TM reads 1, jump to the lth

instruction)
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Definition

A program of TPL is a list of instructions separated by “;”.

For readability, a line number is added at each instruction.
In the instruction “goto l”, l corresponds to such a line number.

An example of TPL program P0
� �

0: if 1 then goto 2;
1: goto 1;
2: moveright;
3: if 1 then goto 1;
4: if 0 then goto 6;
5: halt;
6: moveright;
7: goto 0

The left program intends to accept the
language 1(01)∗

� �
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Definition (TM MP realizes TPL program P)

Let P be be a TPL program. We define a (deterministic) Turing machine
MP = (Q,Ω, δ, q0, F ) realizes P. Q = {0, 1, . . . , n− 1} is the set of line numbers of P.
Ω = {0, 1,B}. q0 = 0, F = {a line number of halt}. The transition function
δ : Q× Ω → Ω× {L,R,N} ×Q is defined as follows.

l: halt, δ(l, x) = (x,N, l),
l: moveright, δ(l, x) = (x,R, l + 1),
l: moveleft, δ(l, x) = (x, L, l + 1),
l: write ?, δ(l, x) = (?, N, l + 1), for ? = 0, 1,B,
l: goto k, δ(l, x) = (x,N, k),
l: if ? then goto k, δ(l, ?) = (?, N, k) and

δ(l, y) = (y,N, l + 1) for y ̸=?.

The language accepted by TPL P is the language accepted by the associated Turing
machine MP . The partial function f : Ω∗ → Ω∗ defined by P is a function defined by MP .
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Example: Program P0 ⇒ TM MP0
� �

We define a (deterministic) Turing machine MP0
= (Q,Ω, δ, q0, F ), where Q =

{0, 1, . . . , 7}, Ω = {0, 1,B}, q0 = 0, F = {5}, and
δ is defined as follows: for any x ∈ Ω,

0: if 1 then goto 2;
1: goto 1;
2: moveright;
3: if 1 then goto 1;
4: if 0 then goto 6;
5: halt;
6: moveright;
7: goto 0

δ(0, 1) = (1, N, 2), δ(l, y) = (y,N, 1) for y ̸= 1
δ(1, x) = (x,N, 1)
δ(2, x) = (x,R, 3)
δ(3, 1) = (1, N, 1), δ(3, y) = (y,N, 4) for y ̸= B
δ(4, 0) = (0, N, 6), δ(4, y) = (y,N, 5) for y ̸= 1
δ(5, x) = (x,N, 5)
δ(6, x) = (x,R, 7)
δ(7, x) = (x,N, 0)� �
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A TPL programP1
� �

0: if 0 then goto 3;
1: if 1 then goto 16;
2: halt;

3: write B;
4: moveright;
5: if 0 then goto 4;
6: if 1 then goto 4;
7: moveleft;
8: if 0 goto 10;
9: goto 29;
10: write B;
11: moveleft;
12: if 0 then goto 11;
13: if 1 then goto 11;
14: moveright;
15: goto 0;

16: write B;
17: moveright;
18: if 0 then goto 17;
19: if 1 then goto 17;
20: moveleft;
21: if 1 goto 23;
22: goto 29;
23: write B;
24: moveleft;
25: if 0 then goto 24;
26: if 1 then goto 24;
27: moveright;
28: goto 0;

29: goto 29� �
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TM M1 for P1 and L(M1) = {wwR : w ∈ {0, 1}∗}� �
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Theorem

For any Turing machine M, there exists a TPL program P such that L(M) = L(MP).

Proof. (Exercise.)
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A program P is a sequence of instructions with codes c0, c1, . . . , cl.

Example� �
0: if 1 then goto 2;
1: goto 1;
2: moveright;
...

Code c0 = 8 + 3 · 2 = 14
Code c1 = 6 + 3 · 1 = 9
Code c2 = 1
...

P can be represented by a sequence 1c00 · · · 01clon {0, 1}∗.� �
The Gödel number of a program ⌜P⌝ is

p(0)c0+1 · p(1)c1+1 · · · · · p(l)cl+1.

According to the previous theorem, for any TM M, there is a TPL program PM.
The Gödel number ⌜PM⌝ is called the index (or code) of TM M.
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Partial computable functions

• The definition of computable functions in Lecture 3 can be applied to partial
functions. Namely, the partial function f : Nk −→ N is computable if
{1m10 · · · 01mk01f(m1,...,mk) : m1, . . . ,mk ∈ N} is a 0-type language.

• Then, the partial function f realized by M with index e is represented by {e}k (or
simply {e}) (called Kleene’s bracket notation).

• When e is not an index of TM, {e} is regarded as a partial function with empty
domain.
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Any TM can be formulated as a TPL Program. So, we can construct a “Universal Turing
Machine” as a TPL interpreter. More generally, we have the following theorem.

Theorem (Enumeration theorem)

For any n ≥ 0, there exists a natural number en such that for any d, x1, . . . , xn,

{en}n+1(d, x1, . . . , xn) ∼ {d}n(x1, . . . , xn).

f(x1, . . . , xn) ∼ g(x1, . . . , xn) means either both sides are not defined or they are defined
with the same value.

This theorem affirms the existence of a universal TM with index en that is able to mimic
any TM with index d.
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Proof. We will construct a universal Turing machine M with index en.

• M has one input tape and two working tapes.

• Let 1d01x10 · · · 01xn be an input on the first tape.

• Let the index part 1d represent the program
{the instruction of code c0;
the instruction of code c1;
· · · ;
the instruction of code cl}.

• Write 1c00 · · · 01cl on the 2nd tape and remove 1d0 on the 1st tape.

• Execute the instructions on the 2nd tape sequentially, rewriting the string on the 1st
tape with the help of the 3rd tape.
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Proof.(Continued)
• The 3rd tape will be used to find the next executable operation when the goto
instruction or if ? then goto instruction is executed on the 2nd tape.
• 16+3l sandwiched between two 0’s means goto l, so the next executable

instruction is given by the sequence of 1’s between the l-th 0 and the l + 1-th 0.
To find it on the 2nd tape, we need to store the number of 0’s counted from the
left to the end of the string.

• Instructions other than goto and if ? then goto can be easily executed, and finding
the next executable instruction is also obvious.

• When halt instruction is executed, M enters a final state.

• At that time, 1{d}
n(x1,...,xn) is written on the 1st tape.
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Definition

A set X ⊂ Nn is called computably enumerable, CE for short, if

{1x10 · · · 01xn : (x1, . . . , xn) ∈ X}

is a 0-type language.

In other words, X ⊂ Nn is CE iff it is the domain of some partial computable function.
Other equivalent defintions will be given in the next lecture.
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Now, we denote K as a set of natural numbers defined as

K := {e : e ∈ dom({e}1)} = {e : (e, e) ∈ dom({e1}2)}.

where e1 is the code of the universal TM in the previous theorem. We call K the halting
problem. Strictly speaking, this is a special kind of halting problem, and the general case
K0 will be given later.

Theorem (Turing)

K is a CE set and its complement N−K is not CE.

22 / 27



Logic and
Computation

K. Tanaka

Recap

Programming
language TPL

Enumeration
theorem

Computably
enumerable set

Computable set

Proof.

• To show K is CE.
We construct a TM accepting {1e : e ∈ K} as follows.

• For input 1e, it rewrites as 1e01e on the tape.

• Then, the TM mimics the universal TM that realizes {e1}2.

• This TM enters the final state, when (e, e) ∈ dom({e1}2), that is, if and only if e ∈ K.

• By contradiction, assume that N−K is a CE set.
Assume a TM that accepts {1e : e ̸∈ K}, with code d. At this time,

d ∈ K ⇔ d ∈ dom({d}1) ⇔ d ∈ {e : e ̸∈ K} ⇔ d ̸∈ K

Therefore, either d ∈ K or d ̸∈ K leads to a contradiction.
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Definition

A set X ⊂ Nn is computable (or recursive , decidable) if both X and its complement
are CE.

• K is an incomputable CE set.

• “A set X ⊂ Nn is computable” is equivalent to its characteristic function is
computable,

χR(x1, . . . , xn) =

{
1 if R(x1, . . . , xn)
0 otherwise

• Because if we have partial computable functions f and g with dom(f) = X and
dom(g) = Nn −X, then for any input 1x10 · · · 01xn , the computations for f , g
can be done in parallel and decide the output to 1 or 0 depending on which one
stops first. Such computations are totally defined since it always terminates.

• In general, if a function f(x) has a finite value at x = n, we write f(n) ↓. That is
f(n) ↓⇔ n ∈ dom(f).

Then we also write K as
K = {e : {e}(e) ↓}
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Problem� �
Show that the following two sets are noncomputable CE set.

K0 = {(x, e) : {e}(x) ↓},

K1 = {e : dom({e}) ̸= ∅}.

� �
• K0 is the original halting problem: given a program and input, decide when the
machine will halt.

• However, since we use the special halting problem K more frequently, we refer K0 as
the “membership decision problem (MEM)”.
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Summary

• Any Turing machine can be emulated by a TPL program on the so-called universal
Turing machine.

• Enumeration theorem

• A set X ⊂ Nn is CE if {1x10 · · · 01xn : (x1, . . . , xn) ∈ X} is a 0-type language.

• X is computable if both X and Xc are CE.

• All computable sets are CE. But the reverse is not true.

Further readings� �
N. Cutland. Computability: An Introduction to Recursive Function Theory, Cambridge
University Press, 1st edition, 1980.� �
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