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Logic and Computation I� �
• Part 1. Introduction to Theory of Computation

• Part 2. Propositional Logic and Computational Complexity

• Part 3. First Order Logic and Decision Problems� �
Part 1. Schedule� �
• Oct.27, (1) Automata and monoids

• Nov. 1, (2) Turing machines

• Nov. 3, (3) Computable functions and primitive recursive functions

• Nov. 8, (4) Decidability and undecidability

• Nov.10, (5) Partial recursive functions and computable enumerable sets

• Nov.12, (6) Rice’s theorem and many-one reducibility� �
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Recap: TM and 0-type languages

• A deterministic Turing machine is almost like a DFA with a read-write head moving on
two-way infinite tape.

• The language accepted by a Turing machine is called a 0-type language.

• A multi-tape Turing machine is introduced and its accepting language is shown to
be 0-type.

• A nondeterministic Turing machine is introduced and its accepting language is
shown to be 0-type.

• The class of 0-type languages is closed under ∩,∪, · and ∗ (but not complementation).

• A Turing machine defines a (partial) function if for a given input, the remaining string
on the tape in a final state should be regarded as the output.

• A function f : A→ Ω∗ (A ⊂ Ω∗) is Turing definable iff {u♯f(u) : u ∈ A} is a 0-type
langauge.

3 / 32



Computation and
Logic

K. Tanaka

Recap: Turing
machines, 0-type
languages, and
Turing definable
functions

Computable
functions

Primitive
recursive
functions

Recursive
functions

Appendix

Computable functions and primitive recursive
functions

1 Recap: Turing machines, 0-type languages, and Turing definable functions

2 Computable functions

3 Primitive recursive functions

4 Recursive functions
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• Let N be the set of all natural numbers. f : Nk −→ N is called a number-theoretic
function.

• Turing definable function gives a mapping from strings to strings. It can be translated
into a number-theoretic function.

Definition

A number-theoretic function f : Nk −→ N is computable if there is a Turing machine M
accepts

1m101m20 · · · 01mk := 1 · · · 1︸ ︷︷ ︸
m1

0 1 · · · 1︸ ︷︷ ︸
m2

0 · · · 0 1 · · · 1︸ ︷︷ ︸
mk

and outputs
1f(m1,...,mk).

We also say M realizes the function f .

By the last theorem of the last lecture, we have

f is computable ⇔ {1m10 · · · 01mk01f(m1,...,mk) : m1, . . . ,mk ∈ N}
is a 0-type language on {0, 1}.
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Example: Addition� �
Addition + : N2 −→ N is computable.

It can be easily realized by a single tape
Turing machine:

• the input is 1m01n,

• replace 0 with 1 and remove the
rightmost 1 on the tape.� �

1  1  1 ⋯ 1  1  1  𝟎 1  1  1 ⋯ 1  1  1 

𝑚 𝑛

1  1  1 ⋯ 1  1  1  𝟏 1  1  1 ⋯ 1  1  𝟏 

𝑚 𝑛

1  1  1 ⋯ 1  1  1  1 1  1  1 ⋯ 1  1  𝐵

𝑚 𝑛 െ 1

𝑚 ൅ 𝑛
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Example: Multiplication� �
Multiplication · : N2 −→ N is computable.

It can be realized by a 3-tape Turing machine:

• the input on the 1st tape is 1m01n, other two tapes are empty,

• then copy 1m to the 2nd tape, copy 1n to the 3rd tape, and make the 1st tape
empty,

• repeat the following steps until the 3rd tape is empty:
• remove the rightmost 1 on the 3rd tape and copy the content on the 2nd
tape 1m to the 1st tape right after the string already on the tape (if the 1st
tape is empty, copy to any position)

• the output is 1mn.

The 3rd tape works as a counter, computing how many times the TM copies the content
on the 2nd tape to the 1st tape.� �
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• Multiplication of natural numbers can be seen as a repetition of addition operation.

• Multiplication can be defined recursively:{
x · 0 = 0,
x · (y + 1) = x · y + x.

• More generally, the computable functions are closed under (primitive) recursive
definition:

Lemma

If g : N −→ N, h : N2 −→ N are computable, a function f : N2 −→ N defined recursively as{
f(x, 0) = g(x),
f(x, y + 1) = h(x, f(x, y))

is also computable.
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Proof. To realize f , we construct a 3-tape Turing machine M as follows.

• The input on the 1st tape is 1x01y.

• Copy 1x to the 2nd tape, 1y to the 3rd and remain 1x on the 1st.

• Carry out the computation of g(x) on the 1st tape.

• Repeat as below:

(1) If the 3rd tape is empty, M enters a final state;

(2) Otherwise, M will remove the rightmost 1 on the 3rd tape,
copy the content 1x on the 2nd tape together with the separator 0 to the left of
the current content 1y on the 1st tape,
carry out the computation of h on the fist tape. Go to (1).

• On the 1st tape, M computes
f(x, 0) = g(x), f(x, 1) = h(x, g(x)), . . . , f(x, y) = h(x, f(x, y − 1)) in this order.

• Finally, M outputs 1f(x,y).

□
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Primitive recursive functions

• The computable functions defined from simple basic functions by primitive recursion
(as in the above lemma) are called primitive recursive functions.

• Most of the number-theoretic functions used in ordinary mathematics are primitive
recursion. But there exists a computable function which is not primitive recursive (ex.
the Ackermann function).

• The primitive recursion functions are congenial to Hilbert’s finitistism (supporting his
formalist philosophy). But the exact definition of those functions were conceived in
Gödel’s proof of the incompleteness theorems.
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Definition

The primitive recursive function is defined as below.

1. Constant 0, successor function S(x) = x+ 1, projection
Pn
i (x1, x2, . . . , xn) = xi (1 ≤ i ≤ n) are primitive recursive functions.

2. Composition.
If gi : Nn → N, h : Nm → N (1 ≤ i ≤ m) are primitive recursive functions, so is
f = h(g1, . . . , gm) : Nn → N defined as below:

f(x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)).

3. Primitive recursion.
If g : Nn → N, h : Nn+2 → N are primitive recursive functions, so is f : Nn+1 → N
defined as below:

f(x1, . . . , xn, 0) = g(x1, . . . , xn),

f(x1, . . . , xn, y + 1) = h(x1, . . . , xn, y, f(x1, . . . , xn, y)).

A primitive recursive function is a computable total function.
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Lemma

Let f(x1, . . . , xn) be a primitive recursive n-ary function. Select n variable yi1 , . . . , yin
(repetition is allowed) in a proper order from a list of m variables y1, . . . , ym and define a
m-ary function

f ′(y1, . . . , ym) = f(yi1 , . . . , yin).

f ′ is a primitive recursive function.
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Proof.
• First, we treat the case when f is a constant function, using induction on m to show that
m-ary f ′ is primitive recursive.

• The basic case m = 0, f ′ is primitive recursive since f ′() = f().

• Assume m-ary function fm(y1, · · · , ym) = f() is primitive recursive.
An (m+ 1)-ary function fm+1(y1, · · · , ym, ym+1) = f() is defined as below:

fm+1(y1, · · · , ym, 0) = fm(y1, · · · , ym)

fm+1(y1, · · · , ym, z + 1) = Pm+2
m+2(y1, · · · , ym, z, fm+1(y1, · · · , ym, z)).

Therefore fm+1(y1, · · · , ym, ym+1) is also primitive recursive.

• Let n denote the arity of f and n > 0. f ′ is defined as:

f ′(y1, · · · , ym) = f(Pm
i1 (y1, · · · , ym), · · · ,Pm

in(y1, · · · , ym)).

Thus f ′ is primitive recursive. □
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Example� �
Let f(x) = n be a primitive recursive function, e.g., if n = 3, then f(x) = S(S(S(Z()))).� �
Example� �
Predecessor function M(x) = x− 1 (x > 0), M(x) = 0 (x = 0).{

M(0) = 0,
M(x+ 1) = x = P2

1(x,M(x)).� �
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Example� �
Addition plus(x, y) = x+ y.{

plus(x, 0) = x,
plus(x, y + 1) = S(plus(x, y)).

rewritten as, {
x+ 0 = x,
x+ (y + 1) = S(x+ y).� �

Example� �
Subtraction x−̇y. {

x−̇0 = x,
x−̇(y + 1) = M(x−̇y).� �
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Homework 2.1� �
Prove x · y, xy, x!, max{x, y}, min{x, y} are primitive recursive functions.� �
Homework 2.2� �
Let f(x1, . . . , xn, y) be a primitive recursive function. Prove the following functions are
also primitive recursive.

F (x1, . . . , xn, z) = Σy<zf(x1, . . . , xn, y),

G(x1, . . . , xn, z) = Πy<zf(x1, . . . , xn, y).� �
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Definition

An n-ary relation R ⊂ Nn is called primitive recursive, if its characteristic function
χR : Nn → {0, 1} is primitive recursive

χR(x1, . . . , xn) =

{
1 if R(x1, . . . , xn)
0 otherwise

Example� �
x < y is primitive recursive. In fact,

χ<(x, y) = (y−̇x)−̇M(y−̇x).� �
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Lemma

Given primitive recursive n-ary relation A, B,

¬A, A ∧B, A ∨B

are also primitive recursive.

Proof.

χ¬A = 1−̇χA

χA∧B = χA · χB

χA∨B = 1−̇{(1−̇χA) · (1−̇χB)} □
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Definition by cases

Lemma

Given two primitive recursive n-ary functions g and h, and a primitive recursive n-ary
relation R, f defined as follows is also primitive recursive,

f(x1, . . . , xn) =

{
g(x1, . . . , xn) if R(x1, . . . , xn)
h(x1, . . . , xn) otherwise
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Example� �
x = y is primitive recursive. Because x = y ⇔ ¬(x < y) ∧ ¬(y < x).� �

Then, the following is obvious.

Lemma

The graph of a primitive recursive function is primitive recursive.
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Homework 2.3� �
Prove that if A(x1, . . . , xn, y) is primitive recursive, ∀y<z A(x1, . . . , xn, y) and ∃y<
z A(x1, . . . , xn, y) are also primitive recursive.� �
Example� �
prime(x) = “x is a prime number” is a primitive recursive relation. Actually,

prime(x) ⇔ x > 1 ∧ ¬∃y < x∃z < x(y · z = x).� �
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Lemma

If A(x1, . . . , xn, y) is primitive recursive, the function µy < zA satisfying the following
condition is primitive recursive,

µy < zA(x1, . . . , xn, y) = min({y < z : A(x1, . . . , xn, y)} ∪ {z}).

Proof.
µy < zA = Σw<zΠy≤wχ¬A. □

We can also prove that for a primitive recursive function h(x⃗), µy < h(x⃗)A(x⃗, y) is
primitive recursive.
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Example� �
Division x/y = µz < x(x < y · (z + 1)) is primitive recursive.� �
Example� �
Let p(x) = “(x+ 1)th prime number ”, that is ,

p(0) = 2, p(1) = 3, p(2) = 5, . . .

Then, p(x) is a primitive recursive function since it is defined as follows.

p(0) = 2, p(x+ 1) = µy < p(x)! + 2 (p(x) < y ∧ prime(y)).� �
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Example� �
• A finite sequence of natural numbers (x0, . . . , xn−1) can be represented by a

single natural number x as follows,

x = p(0)x0+1 · p(1)x1+1 · · · · · p(n− 1)xn−1+1

• Fixing n, such a mapping from Nn to N is a primitive recursive function.

• Conversely, for a natural number x, the function c(x, i) takes the ith element xi
from x,

xi = c(x, i) = µy < x (¬∃z < x (p(i)y+2 · z = x)).

• The length of the sequence represented by x is

leng(x) = µi < x (¬∃z < x (p(i) · z = x)).

• Furthermore, we define a primitive recursive relation Seq(x) to denote that a
natural number x is the code of such a sequence as follows:

Seq(x) ⇔ ∀i < x∀z < x (p(i) · z = x→ i ≤ leng(x)).� �
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Gödel number

Definition

Let Ω be a finite (or countably infinite) set of symbols, and an injection ϕ : Ω → N. For a
string s = a0 · · · an−1, the following natural number ψ(s) is called the Gödel number of s,
denoted by ⌜s⌝.

ψ(s) = p(0)ϕ(a0)+1 · p(1)ϕ(a1)+1 · · · · · p(n− 1)ϕ(an−1)+1.

The mapping ⌜ ⌝ is an injection from the set of all symbols Ω∗ to N.
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Example� �
Let Ω = {0, 1,+, (, )}, ϕ(0) = 0, ϕ(1) = 1, ϕ(+) = 3, ϕ( ( ) = 5 and ϕ( ) ) = 6.
Then,

⌜(1 + 0) + 1⌝ = 26 · 32 · 54 · 71 · 117 · 134 · 172� �
Homework 2.4� �
The symbol set Ω is the same as the example above. “Terms” are defined as below

(1) 0, 1 are terms.

(2) if s and t are terms, so is (s+ t).
e.g., ((1 + 0) + 1) is a term, but (1 + 0) + 1 is not a term.

Show that the predicate Term(x) expressing “x is the Gödel number of a term” is
primitive recursive.� �
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Recursive functions

Definition

A recursive function is defined as below.

1. Constant 0,
Successor function S(x) = x+ 1,
Projection Pn

i (x1, x2, · · · , xn) = xi (1 ≤ i ≤ n) are recursive functions.

2. Composition. The same as a primitive recursive function.

3. Primitive recursion. The same as a primitive recursive function.

4. minimalization (minimization).
Let g : Nn+1 → N be a recursive function satisfying that
∀x1 · · · ∀xn∃y g(x1, · · · , xn, y) = 0. Then, the function f : Nn → N defined by

f(x1, · · · , xn) = µy(g(x1, · · · , xn, y) = 0)

is recursive, where µy(g(x1, · · · , xn, y) = 0) denotes the smallest y such that
g(x1, · · · ,xn, y) = 0,
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• Recursive functions are (total) computable functions, like primitive recursive functions.

• Condition 4 in the above definition (not in the definition of primitive recursive
functions) is problematic sometimes, since it is often difficult to guarantee its totality
condition ∀x1 · · · ∀xn∃y g(x1, · · · , xn, y) = 0 in a formal system.

• E.g., the class of recursive functions allowed in Peano arithmetic does not match the
class of recursive functions allowed in ZF set theory.

• A function defined by removing this totality condition is called a partial recursive
function, and we will discuss it again later (Lecture 5 on Nov.10).
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Summary

• f is computable iff {1m10 · · · 01mk01f(m1,...,mk) : m1, . . . ,mk ∈ N} is a 0-type
language on {0, 1}.

• Primitive recursive function (0, sucessor function, projection, closed under composition
and primitive recursion)

• Recursive function (0, sucessor function, projection, closed under composition and
primitive recursion, minimalization)

Further readings� �
N. Cutland. Computability: An Introduction to Recursive Function Theory, Cambridge
University Press, 1st edition, 1980� �
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Gödel and Herbrand (1933): partial recursive functions

Turing (1936): Turing machines Church (1936): λ-calculus

Church, Kleene, and Turing proved that these three models of computation define the
same classes of computable functions.
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• Gödel and Herbrand (1933): partial recursive functions

↪→ a branch of mathematics called recursion theory

• Turing (1936): Turing machines

↪→ theory of computation

• Church (1936): λ-calculus

↪→ a branch of CS called functional programming

• many others...
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Thank you for your attention!

32 / 32


	Recap: Turing machines, 0-type languages, and Turing definable functions
	Computable functions
	Primitive recursive functions
	Recursive functions
	Appendix

