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The aim of this course is to gain a broader view on logic and computation,
and explore the dynamic interaction between them.

Logic and Computation I (Syllabus)� �
• Part 1. Introduction to Theory of Computation

Fundamentals on theory of computation and computability theory (recursion
theory) of mathematical logic, as well as the connection between them.

• Part 2. Propositional Logic and Computational Complexity
The basics of propostional logic (Boolean algebra) and complexity theory
including some classical results, such as the Cook-Levin theorem.

• Part 3. First Order Logic and Decision Problems
The basics of first-order logic, Gödel’s completeness theorem, and the decidability
of Presburger arithmetic. Ehrenfeucht-Fräıssé game and Lindström’s theorem.� �

Logic and Computation II� �
Gödel’s incompleteness theorem, second-order logic, infinite automata, infinite games,
descriptive set theory, admissible ordinals, etc.� �
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Part 1. Schedule

• Oct.27, (1) Automata and monoids

• Nov. 1, (2) Turing machines

• Nov. 3, (3) Computable functions and primitive recursive functions

• Nov. 8, (4) Decidability and undecidability

• Nov.10, (5) Partial recursive functions and computable enumerable sets

• Nov.12, (6) Rice’s theorem and many-one reducibility
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Recapitulation: DFA and NFA

NFA N = (Q′,Ω′, δ′, Q0, F
′)� �

• Q′ is a finite set of states.

• Ω′ is a finite set of symbols.

• δ′ : Q′ × Ω′ → P(Q′) or equiv.
δ′ ⊂ Q′ × Ω′ ×Q′ is a transition
relation.

• Q0 ⊂ Q′ is a set of initial states.

• F ′ ⊂ Q′ is a set of final states.� �

DFA M = (Q,Ω, δ, q0, F )� �
• Q is a finite set of states.

• Ω is a finite set of symbols.

• δ : Q× Ω → Q is a transition
function.

• q0 ∈ Q is an initial state.

• F ⊂ Q is a set of final states.� �
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The equivalence of DFA and NFA

NFA N = (Q,Ω, δ, q0, F )� �

q0start

q1

q2

0

1

1

1� �
Both recognize regular language

L = (01 + 011)∗

.

DFA M = (Q′,Ω′, δ′, Q0, F
′)� �

{q0}start

{q0, q2}

{q1}

∅

0

1
1

1

0

0

0,1

Redundant states are omitted.� �
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Monoids, regular languages and regular
expressions

Theorem

L is regular language iff L is recognized by a finite monoid.

Lemma

The following holds for regular languages over Ω.

(r1) ∅ is regular.

(r2) For any a ∈ Ω, {a} is regular.

(r3) If A, B ⊂ Ω∗ are regular, so is A ∪B.

(r4) If A, B ⊂ Ω∗ are regular, so is A ·B = {v · w : v ∈ A,w ∈ B}.
(r5) If A is regular, so is A∗ = {w1w2 · · ·wn : wi ∈ A}.

The regular languages are closed under ∩, ∪, ·, c and ∗.
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Theorem (Kleene)

The class of regular languages is the smallest class that satisfies the conditions (r1), (r2),
(r3), (r4) and (r5).

Proof.
• Goal: for any M = (Q,Ω, δ, q0, F ), L(M) can be described by a regular expression.

• Let Q = {q0, q1, . . . , qn}. The language accepted by Mi,j = (Q,Ω, δ, qi, {qj}) is
denoted as Li,j .

• If only the states of {q0, q1, . . . , qk} (except for the initial and final states) are visited
while Mi,j is processing, we denote the language as Lk

i,j . Moreover, for the sake of

convenience, we set (for k = −1) L−1
i,j = {a : δ(qi, a) = qj}.

• We next show that for any i, j, Lk
i,j can be described by a regular expression by

induction on k ≥ −1.
• L−1

i,j ⊆ Ω is finite set of symbols, so it can be described by a regular expression.
• For k ≥ 0,

Lk
i,j = Lk−1

i,j + Lk−1
i,k (Lk−1

k,k )∗Lk−1
k,j

which can be described by regular expression.

• Finally L =
⋃

qj∈F Ln
0,j . Thus L can also be described by regular expression. 7 / 29
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Turing machine

1 Recap: Automata and Monoid

2 Turing machine

3 Variants of Turing machine
Mutitape tape TM
Nondeterministic TM

4 Turing definable functions
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The birth of Turing machine

Alan Turing (1912 – 1954)

In the paper “On Computable numbers, with an
application to the Entscheidungsproblem”, Turing
reformulated K. Gödel’s arithmetic-based arguments as
symbol processing arguments, which produces a simple
model of computation, now known as Turing machine.

• The importance of Entscheidungsproblem (decision problem) was emphasized by D.
Hilbert in 1928. Turing claimed that his “universal computing machine” can perform
any conceivable mathematical computation algorithmically. He further proved that the
halting problem for Turing machines is undecidable.

• Compared with finite automata with a limited amount of memory, the Turing machine
has infinite and unrestricted memory and is the model of general purpose computers.
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Definition

(Deterministic) Turing machine (TM) is a 5-tuple M = (Q,Ω, δ, q0, F ),

(1) Q is a non-empty finite set, whose elements are called states.

(2) Ω is a non-empty finite set, whose elements are called symbols. The black symbol
B ∈ Ω.

(3) δ : Q× Ω → Ω× {R,L,N} ×Q is called transition function.

(4) q0 ∈ Q is a initial state.

(5) F ⊂ Q is a set of final states.

I I I I B B a1 a·> 
-

• • • • 

ai 

A 

• I • I 

p 

an B B • • • • 

finite control

infinite tape Read and write head
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• The difference with DFA lies in the transition function

δ : Q× Ω → Ω× {R,L,N} ×Q.

• δ(p, ai) = (b, x, q) means that at state p, if M reads symbol ai on the tape, then
• the head write b to replace ai,
• according to x = R, L, N ,
the head moves to the right or move left or keep still,
the control state changes to q

I I I I B B a1 a·> 
-

• • • • 

ai 

A 

• I • I 

p 

an B B • • • • 

finite control

infinite tape Read and write head

• A configuration of TM, denoted a1 · · · ai−1pai · · · an, describes:
• A string a1 · · · an ∈ Ω∗ is written on the tape. There are no (non-blanck)
symbols outside of a1 · · · an on the tape while the blanck B may be included in
the sequence,

• the head is pointed at ai on the tape,
• the current control state is p.
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We say configuration α yields configuration α′, denoted as α ▷ α′, if there is a legal
transition from configuration α to configuration α′ as follows:

1) if δ(p, ai) = (a′i, L, q),
a1 · · · ai−1pai · · · an ▷ a1 · · · ai−2qai−1a

′
iai+1 · · · an (i > 1),

pa1a2 · · · an ▷ qBa′1a2 · · · an.

2) if δ(p, ai) = (a′i, N, q),
a1 · · · ai−1pai · · · an ▷ a1 · · · ai−1qa

′
iai+1 · · · an.

3) if δ(p, ai) = (a′i, R, q),
a1 · · · ai−1pai · · · an ▷ a1 · · · ai−1a

′
iqai+1 · · · an (i ≤ n),

a1 · · · an−1anp ▷ a1 · · · an−1a
′
nBq.

We write the sequence of computation α0 ▷ α1 ▷ · · · ▷ αn as α0 ▷
∗ αn (n ≥ 0).
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• We say M accepts a1 · · · an ∈ (Ω− {B})∗ if there exists b1 · · · bm and q ∈ F such
that q0a1 · · · an ▷∗ b1 · · · biqbi+1 · · · bm. That is, some final state q ∈ F is visited in the
computation.

• The languages (of the strings) accepted by M is denoted as L(M).

• The languages accepted by a TM is also called type-0 languages.

• Regular languages are also type-0 languages (since a Turing machine is an extension of
finite automata). But there are also non-regular type-0 languages.

Example

L = {anbn : n ≥ 0}.
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Example

L = {anbn : n ≥ 0} is a type-0 language.

B/BN 

a/aN 

b/bN 

BIBN 

a/BR 
' 

a/aR 

blbN 

b/bN 

B/BN 

a/aR 

b/bR 

B/BN 

B/BR 

b/bR 

B/BL 

a/aN 

a/aN 

b/bN 

B/BN 

a/aN 

B/BN 

---------�q« 
b!bL 

a/al 

initial state final state

as
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k-tape TM

Definition

A k-tape TM is a 5-tuple M = (Q,Ω, δ, q0, F ), where the transition function is

δ : Q× Ωk → Ωk × {R,L,N}k ×Q.

A k-tape TM is also called multitape TM.

15 / 29
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Theorem

The languages accepted by a multitape TM is 0-type.

Proof.
• Assume L is accepted by a k-tape TM M = (Q,Ω, δ, q0, F ).
Goal: construct a single tape TM M′ that can simulate M.

• Divide the single tape of M′ into k track and each track is used to simulate one tape
of M.

• In addition, M′ needs another k tapes to record each head position of M.

• The alphabet for M′ is Ω′ = (Ω× {0, B})k.

M M′ 16 / 29
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Theorem

The class of 0-type languages is closed under ∩ and ∪.

Proof.
∪ case.

• Assume 0-type languages A, B are accepted by Turing machines M, M′.

• To accept A ∪B, we construct a 2-tape TM N as follows.

• N copy the input of its 1st tape to the 2nd tape, then M works on the 1st tape and
M′ on the 2nd tape simultaneously.

• If either M or M′ enters the final configuration, so is N .

∩ case can be proved in a similar way.
□
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Definition

(Nondeterministic) Turing machine (TM) is a 5-tuple M = (Q,Ω, δ, q0, F ),

(1) Q, Ω, F are same as deterministic case,

(2) Q0 ⊂ Q is a set of initial state.

(3) δ : Q× Ω → P(Ω× {R,L,N} ×Q) is called a transition relation.

I I I I B B a1 a·> 
-

• • • • 

ai 

A 

• I • I 

p 

an B B • • • • 

finite control

infinite tape Read and write head
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Theorem

The language accepted by a nondeterministic TM is 0-type.

Proof.

• Let M be a nondeterministic TM.

• Goal: build a deterministic 3-tape TM M′ to simulate M, since already know that
the language accepted by M′ is type-0.

• Let l be the maximum number of branches that occur at each point of the
computation, that is, l = max{| δ(q, a) |: q ∈ Q and a ∈ A}.

• Then, each computation process can be uniquely represented by a finite sequence of l
symbols x1, . . . , xl, because it is determined by which branch is chosen at each point
(Not all strings over x1, . . . , xl have corresponding computational processes).
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Proof.(Continued)

The construction of M′: the roles of the three tapes� �
• 1st tape: only for input, which will be read many times but never rewritten.

• 2nd tape: for recording which branch is chosen at each point. A finite sequence
of symbols x1, . . . , xl can be regarded as a natural number in the l + 1-base and
thus such sequences are linearly ordered.

• 3rd tape: for performing the computation process of M according to the
branching information written on the 2nd tape.� �
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Proof.(Continued)

M′ mimics M� �
(1) M′ writes the first string on the 2nd tape.

(2) M′ copies the input from the 1st tape to the 3rd tape.

(3) M′ mimics M on the 3rd tape according to the branching information on the
2nd tape.

(4) If M accepts the input along this computation, M′ also accepts the input.

(5) If it fails to proceed the computation or ends with a non-final state, then change
the contents of the 2nd tape to the next string and go back to (2).

• Note that M′ is always deterministic.

• It is clear from the construction that M′ accepts the same languages as M. □� �
21 / 29
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Then by similar arguments for regular languages, we can also prove the following theorem
by using the nondeterminism of TM.

Theorem

The class of 0-type languages is closed under · and ∗
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• Up to now, the TM and variants of TM we considered are devices that can decide
whether an input is accepted or not.

• Notice that when the machine enter a final state, it leaves a string on the tape. If we
regard such a string as an output of this TM for a given input, we can naturally define
a function from strings to strings.

• This is the so-called Turing definable function.

Remark

• Such a function is partially defined, since the TM does not always terminate.

• To make the output unique, we define the output of (deterministic) TM as the string
on the tape when the TM enters a final state for the first time, because it might enter
a final state more than once.

• For a multitape TM and a nondeterministic TM, the output should be considered to
be the output of an equivalent single tape deterministic ones.
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Theorem

Let ♯ be a new symbols not included in Ω. The following are equivalent:
(1) A function f : A → Ω∗ (A ⊂ Ω∗) can be defined by a TM with output.
(2) {u♯f(u) : u ∈ A} is a 0-type langauge.

Proof.
(1) ⇒ (2).
Assume a partial function f : Ω∗ → Ω∗ is definable by a TM M. We define a 2-tape M′

working as follows:

• It can check the string on the 1st tape is in the form of u♯v

• Then M′ copies u to the 2nd tape and works on the 2nd tape to simulate M.

• If M enters a final state, it checks whether the string on the 2nd tape is the same as
v on the 1st tape. If yes, then M′ also enters a final state.
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(2) ⇒ (1).
Assume a TM M′ that accepts {u♯f(u) : u ∈ A}. Next, we consider a nondeterministic
M (with output).

• M has 2 tapes.

• M non-deterministically produces a string v ∈ Ω∗ on the 2nd tape.

• After the input string u on the 1st tape, write ♯ and copy v after ♯. Then mimic M′

on the 1st tape.

• When it reaches a final state, it empties the 1st tape, copies the contents of the 2nd
tape again, and then M enters a final state.

• The nondeterminism lies in writing an arbitrary string on the 2nd tape, which is
equivalent to enumerating all the possible f(u).

□
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Summary

• TM is more expressive than FA.
the class of type-3 languages ⊂ the class of type-0 languages

• Type-0 languages are closed under ∩, ∪,∗ (Kleene star operation), ·(concatenation).
Question: Are type-0 languages closed under c(complementation)?
Answer: No.

• Turing definable functions

Further readings� �
J.E. Hopcroft, R. Motwani and J.D. Ullman, Introduction to Automata Theory, Lan-
guages and Computation, 2nd edition, Addison-Wesley 2001.� �
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Appendix – Chomsky hierarchy

Grammar Type Grammar Machine

Type 0 Unrestricted Turing machines

Type 1 Context-sensitive linear bounded automata

Type 2 Context-free pushdown automata

Type 3 Regular finite state automata
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Quiz 1

• For any string w, the reverse of w is
written as wR, e.g., w = w1w2 · · ·wn

and wR = wn · · ·w2w1.

• LR = {wR : w ∈ L}.

Quiz� �
(1) Assume L is regular. Which of FA

and/or TM can accept LLR?

(2) Which of FA and/or TM can accept
L′ = {wwR : w ∈ {0, 1}∗}?

(2) Which of FA and/or TM can accept
L′′ = {0n1n : n ≥ 0}?� �

Quiz� �
Please scan the following QR code to sub-
mit your answer now.

� �
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Thank you for your attention!
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