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The aim of this course is to gain a broader view on logic and computation,
and explore the dynamic interaction between them.
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Historical Introduction

• At the beginning of the 20th century, D. Hilbert took a strong
interest in the mechanical processing of strings of symbols in the
name of formalism. He then advocates “the decision problem (for
validity or satisfiability of logical expressions) must be considered
the main problem of mathematical logic”.

• Hilbert’s decision problem was upset by K. Gödel, A. Church and A.
Turing in the way of formalizing the symbolic processing
mathematically.

• In particular, Turing’s mathematical model of symbolic
computation, now known as “Turing machine”, had a great
influence on the birth of computers, and is still used as a theoretical
platform for algorithm analysis.

• There is no boundary between logic and computation. Let us
explore their dynamic interaction.

D. Hilbert

K. Gödel

A. Church

A. Turing
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Outline of the Course

1 This is an introductory graduate-level course in mathematical logic and theory of
computation. Its first part delivered in this semester covers the basic topics of the
two fields and their interactions. So, advanced undergraduates are welcome to
participate in this course from this semester.

2 Each week, there are two lectures, in Tuesday and Thursday. Every Thursday, we will
assign simple homework problems or questionnaires to registered students, who are
motivated to attend the class continuously. Normally, homeworks are due next
Monday.

3 TA (Dr. Li) is in charge of the last ten minutes of each lecture to explain homework
assignments and makes comments on submitted homeworks. She will also handle
questions and comments from students via WeChat. We won’t be able to accept
questions during lectures, until the class members are fixed. Instead, we may have
online office hours or extra lessons by appointment.

4 Lecture slides will be uploaded on the lecture page at BIMSA.
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Education

⋆ Tokyo Institute of Technology
Information Science, Bachelor, Master

⋆ University of California, Berkeley
Mathematics,
Ph.D. (Advisor: Leo Harrington)

Teaching Jobs

⋆ 1986 ∼ 1991, Tokyo Institute of Technology
Assistant Professor, Dept. of Info. Sci.;
Visiting PennState.

⋆ 1991 ∼ 1997, Tohoku University
Associate Professor, Dept. of Math.;
Visiting Oxford.

⋆ 1997 ∼ 2022, Tohoku University
Professor (2021 , Emeritus), Mathematical
Institute and Research Alliance Center for
Mathematical Sciences.

⋆ 2022 ∼ now, BIMSA, Research Fellow.

Introducing myself

Speciality� �
Mathematical logic, especially de-
finabilty and computability theory.
Among others, I have contributed to
second-order arithmetic and reverse
mathematics, and supervised fifteen
doctoral students in this area.
See https://sendailogic.com/tanaka/.� �
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Logic and Computation I (Syllabus)� �
• Part 1. Introduction to Theory of Computation
Fundamentals on theory of computation and computability theory (recursion
theory) of mathematical logic, as well as the connection between them. This part
is the basis for the following lectures.

• Part 2. Propositional Logic and Computational Complexity
The basics of propostional logic (Boolean algebra) and complexity theory
including some classical results, such as the Cook-Levin theorem.

• Part 3. First Order Logic and Decision Problems
The basics of first-order logic, Gödel’s completeness theorem, and the decidability
of Presburger arithmetic. We will use Ehrenfeucht-Fräıssé game as a basic tool of
first-order logic, and apply it to prove Lindström’s theorem.� �

Logic and Computation II� �
We will move on to Gödel’s incompleteness theorem, second-order logic, infinite au-
tomata, determinacy of infinite games, etc.� �

6 / 29



Logic and
Computation

K. Tanaka

Introduction

Deterministic
finite automata

Formal definition of
DFA

Regular language

Nondeterministic
finite automata

Formal definition of
NFA

Regular language and
NFA

From NFA to DFA

Regular language
and regular
expression

Summary

Appendix

Part 1. Schedule

• Oct.27, (1) Automata and monoids

• Nov. 1, (2) Turing machines

• Nov. 3, (3) Computable functions and primitive recursive functions

• Nov. 8, (4) Decidability and undecidability

• Nov.10, (5) Partial recursive functions and computable enumerable sets

• Nov.12, (6) Rice’s theorem and many-one reducibility
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Part 1 (1). Automata and Monoids
Introduction

• A (finite) automaton is a simplest computing machine with finitely many states. Other
computing machines such as a Turing machine can be regarded as automata expanded
functionally.

• Let Ω be a finite set of symbols. By a word over Ω, we mean a finite sequence of
symbols from Ω. Then by Ωn, we denote the set of words with length n. And put

Ω∗ =
⋃
i≥0

Ωi.

For instance, {0, 1}2 = {00, 01, 10, 11}, {0, 1}0 = {ε} with ε an empty word. The set
of words a machine M accepts is called the language accepted by M, denoted
L(M), and L(M) ⊂ Ω∗.

• In automata theory, we study the class of languages L(M) with automata M. In
theory of computation, larger classes of languages are also defined and studied for
many kinds of functionally expanded machines M.
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Deterministic finite automaton

We first introduce deterministic finite automata. Later, we also define non-deterministic
one, and then show that the two types of automata have the same power of computation.

Definition

A deterministic finite automaton (DFA) is a 5-tuple M = (Q,Ω, δ, q0, F ),

(1) Q is a non-empty finite set, whose elements are called states.

(2) Ω is a non-empty finite set, whose elements are called symbols.

(3) δ : Q× Ω → Q is a transition function.

(4) q0 ∈ Q is an initial state.

(5) F ⊂ Q is a set of final states.
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Language accepted by DFA
• M reads a symbol on the input tape under the head, and it changes its state
according to δ and moves the head to the right next symbol.

• For convenience, we extend δ to δ̄ : Q× Ω∗ → Q inductively as follows:{
δ̄(q, ε) = q,
δ̄(q, aw) = δ̄(δ(q, a), w) (a ∈ Ω, w ∈ Ω∗).

𝑤𝑤

𝑎 𝑎  ⋯ 𝑎 𝑎 𝑎  ⋯ 𝑎

𝑞 𝛿̅ 𝑞 , 𝑤

n steps

• If δ̄(q0, w) ∈ F , we say that w is accepted by M.

• The language accepted by M: L(M) = {w ∈ Ω∗ : δ̄(q0, w) ∈ F}.

• L(M) with an automaton M is called regular or Chomosky type-3.
10 / 29
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Example 1

Considering the following DFA M = (Q,Ω, δ, q0, F ), where Q = {q0, q1, q2}, Ω = {0, 1},
F = {q0},

q0start q1 q2

0

1

1

0

0

1

the languages accepted by M is

L(M) = {ε, 0, 00, . . . , 11, 1001, 10101, . . . }
= {x ∈ Ω∗ : x is the binary representation of multiplier of 3 or ε}
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Example 2

Counterexample

L = {anbn : n ≥ 1} is not regular.

• Assume L is regular and accepted by a DFA M = (Q,Ω, . . .).

• Assume n >| Q |. When M reads an = aaa · · · a︸ ︷︷ ︸
n copies of a

, there exists at least one state

being visited more than once (Pigeonhole principle). In the following diagram, q1
appears twice, where 0 ≤ i < n and 0 < j < n:

q0start q1 q1 q2
ai aj an−i−jbn

• Thus if M accepts anbn, M also accepts an−jbn, which contradicts with the
assumption that M accepts L.
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Regular languages

Lemma

The regular languages on Ω is accepted by DFA on Ω.

Proof.

• Let M = (Q,Ω′, δ, q0, F ) be a DFA that accepts the regular language L ⊂ Ω∗.

• Construct M′ = (Q′,Ω, δ′, q0, F ) :
• Q′ = Q ∪ {q′}, where Q ∩ {q′} = ∅.

• δ′ : Q′ × Ω → Q′ such that
if q ∈ Q and a ∈ Ω ∩ Ω′, δ′(q, a) = δ(q, a);
if q = q′ or a ∈ Ω− Ω′, δ′(q, a) = q′

• The DFA M′ is obtained from M by removing symbols in Ω′ − Ω.

• M does not accept a sting including a symbol in Ω′ − Ω, thus L(M′) = L(M).

□
13 / 29
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Regular languages

Theorem

The class of regular languages is closed under the set operations ∩, ∪ and c.

Proof.
• closeness under c.
For a DFA M = (Q,Ω, δ, q0, F ), we can define

M = (Q,Ω, δ, q0, Q− F )

such that L(M) = Ω∗ − L(M) = (L(M))
c.

• closeness under ∪.
Given Mi = (Qi,Ω, δi, q

i
0, Fi) (i = 1, 2), we can construct

M = (Q1 ×Q2,Ω, δ, (q
1
0 , q

2
0), F )

such that δ((q1, q2), a) = (δ1(q
1, a), δ2(q

2, a)) and F = (F1 ×Q2) ∪ (Q1 × F2).
Then L(M) = L(M1) ∪ L(M2).

• ∩ can be proved similarly. □
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Recall: Monoids and Homomorphisms

Let M be a set and ◦ be a binary operation M ×M → M .

• The structure (M, ◦) is called a semigroup if ◦ is associative: u ◦ (v ◦w) = (u ◦ v) ◦w,
for all u, v, w ∈ M .

• The structure (M, ◦, e) is called a monoid if (M, ◦) is a semigroup and e ∈ M satisfies
e ◦ w = w ◦ e = w for all w ∈ M .

• Example. Let Q be a set, M = {f : Q → Q} and ◦ the composition of functions, id
be the identity function. Then, (M, ◦, id) is a monoid.

• Example. (Ω∗, ·, ε) is a monoid, where · is the concatenation of two words.

• Let (Mi, ◦i, ei) (i = 1, 2) be two monoids. A function f : M1 → M2 is called a
(monoid) homomorphism if f(u ◦1 v) = f(u) ◦2 f(v) for all u, v ∈ M1 and f(e1) = e2.
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Monoids and regular languages

Theorem

The following statements are equivalent.

(1) L ⊂ Ω∗ is regular.

(2) There is a finite monoid M and monoid homomorphism ϕ : Ω∗ → M such that
L = ϕ−1ϕ(L).

We say a monoid M recognizes L if the above theorem holds.
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Proof.
(1) ⇒ (2)

• Let L be a regular language and M = (Q,Ω, δ, q0, F ) be a DFA that accepts L.

• For each w ∈ Ω∗, a mapping fw : Q → Q is defined by fw(q) = δ(q, w).

• We obtain a finite monoid M = {fw : w ∈ Ω∗} with fu ◦ fv(q) = fv(fu(q)) and
id = fε.

• Noticing fu ◦ fv = fuv, we can show that ϕ(w) = fw is a monoid homomorphism
from Ω∗ to M .

• If fw = fw′ and w ∈ L, then w′ ∈ L. So L = ϕ−1ϕ(L).
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Proof. (Continued)
(2) ⇒ (1)

• Let M be a finite monoid and a monoid homomorphism ϕ : Ω∗ → M . Assume
L = ϕ−1ϕ(L).

• A DFA M = (Q,Ω, δ, q0, F ) is constructed as follows:
• Q = M ,

• δ(q, a) = q ◦ ϕ(a),

• q0 is the identity element of M

• F = ϕ(L).

Thus δ̄(q0, w) = ϕ(w). We have

δ̄(q0, w) ∈ F = ϕ(L) ⇔ w ∈ ϕ−1ϕ(L) = L.

• M recognizes L.
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Nondeterministic finite automata

Definition

A nondeterministic finite automaton (NFA) is a 5-tuple M = (Q,Ω, δ, q0, F ),

(1) Q is a non-empty finite set, whose elements are called states.

(2) Ω is a non-empty finite set, whose elements are called symbols.

(3) δ : Q× Ω → P(Q) is a transition relation.

(4) Q0 ⊂ Q is a set of initial states.

(5) F ⊂ Q is a set of final states.

P(Q): the power set of Q.

19 / 29



Logic and
Computation

K. Tanaka

Introduction

Deterministic
finite automata

Formal definition of
DFA

Regular language

Nondeterministic
finite automata

Formal definition of
NFA

Regular language and
NFA

From NFA to DFA

Regular language
and regular
expression

Summary

Appendix

Language accepted by NFA

• Similar to DFA, the transition relation δ of NFA for each input symbol can also be
extended as δ̄ : Q× Ω∗ → P(Q),{

δ̄(q, ε) = {q},
δ̄(q, aw) =

⋃
p∈δ(q,a)

δ̄(p, w),

and δ̄(A,w) =
⋃

q∈A δ̄(q, w).

• If δ̄(q0, w) ∩ F ̸= ∅, we say that w is accepted by M.

• The language accepted by M:

L(M) = {w ∈ Ω∗ : δ̄(Q0, w) ∩ F ̸= ∅}.
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NFA vs. DFA

Theorem

The language accepted by NFA is regular. That is, for any NFA M, there is a DFA M′

such that L(M) = L(M′).

Proof. For a NFA M = (Q,Ω, δ, Q0, F ), construct a DFA M′ = (Q′,Ω, δ′, q0
′, F ′) as

follows:

Q′ = P(Q),

δ′(A, a) =
⋃
q∈A

δ(q, a) with A ∈ Q′,

q0
′ = Q0,

F ′ = {A ∈ Q′ : A ∩ F ̸= ∅}.

Then δ′(q′0, w) = δ(Q0, w), and thus L(M′) = L(M). □
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Lemma

The following holds for regular languages over Ω.

(r1) ∅ is regular.

(r2) For any a ∈ Ω, {a} is regular.

(r3) If A, B ⊂ Ω∗ are regular, so is A ∪B.

(r4) If A, B ⊂ Ω∗ are regular, so is A ·B = {v · w : v ∈ A,w ∈ B}.

(r5) If A is regular, so is A∗ = {w1w2 · · ·wn : wi ∈ A}.
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Proof idea for (r4) and (r5)
To show (r4):
• An input is accepted by an NFA if the input can be split into two parts such that the
former can be accepted by M while the latter accepted by N .

• Nondeterminism is necessary: an automata should nondeterministically guess where to
divide the input.

..... 
..... 

' 

..... 

----

3 

4 

(r4)

(r5)
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Regular expression

• By the previous theorem, for all a ∈ Ω, starting from {a} we can inductively define a
class over Ω that is closed under the operations, ∪, ·, ∗, which is the so-called regular
expression.

• For simplicity, we write {a} as a, ∪ as + and omit ·. e.g., {a} · ({a} ∪ {b})∗ is written
as a(a+ b)∗.

• Regular expression has a wide application in computer science, such as text processing.
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S.C. Kleene showed that the the class of regular languages coincides with the class of
regular expressions.

Theorem (Kleene)

The class of regular languages is the smallest class that satisfies the conditions (r1), (r2),
(r3), (r4) and (r5).
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Proof.

• Goal: for any M = (Q,Ω, δ, q0, F ), L(M) can be described by a regular expression.

• Let Q = {q0, q1, . . . , qn}. The language accepted by Mi,j = (Q,Ω, δ, qi, {qj}) is
denoted as Li,j .

• If only the states of {q0, q1, . . . , qk} (except for the initial and final states) are visited
while Mi,j is processing, we denote the language as Lk

i,j . Moreover, for the sake of

convenience, we set (for k = −1) L−1
i,j = {a : δ(qi, a) = qj}.

• We next show that for any i, j, Lk
i,j can be described by a regular expression by

induction on k ≥ −1.
• L−1

i,j ⊆ Ω is finite set of symbols, so it can be described by a regular expression.
• For k ≥ 0,

Lk
i,j = Lk−1

i,j + Lk−1
i,k (Lk−1

k,k )∗Lk−1
k,j

which can be described by regular expression.

• Finally L =
⋃

pj∈F Ln
0,j . Thus L can also be described by regular expression.
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Summary

• Any nondeterminstic FA can be rebuilt into a determinictic FA.
Question: How about functionally expanded automata. [Yes for Turing machines. No
for push-down automata.]

• L is a regular language iff there is a regular expression R such that L(R) = L.
Question: A regular expression can be viewed as a generative grammar. Can you
rewrite a(a+ b)∗ as transformational rules?

Further readings� �
J.E. Hopcroft, R. Motwani and J.D. Ullman, Introduction to Automata Theory, Lan-
guages and Computation, 2nd edition, Addison-Wesley 2001.� �
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Appendix – Chomsky hierarchy

Grammar Type Grammar Machine

Type 0 Unrestricted Turing machines

Type 1 Context-sensitive linear bounded automata

Type 2 Context-free pushdown automata

Type 3 Regular finite state automata
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Thank you for your attention!
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