Logic and Computation I, Autumn 2022

Homework No.3 Due Date: November 14, 11:59 pm (Beijing) Name:

Problem 1

Let $\sigma(x, y)$ be a computable function. Prove that there exists a computable function k such that

 $\{k(y)\}^n(x_1,\cdots,x_n) \sim \{\sigma(k(y),y)\}^n(x_1,\cdots,x_n).$

Hint: Consider a computable function h(x) such that $\{\{x\}(x)\} \sim \{h(x)\}\)$ and then $\sigma(h(x), y)$ is expressed as $\{S(y)\}(x)$ by the parameter theorem.

Solution:

Problem 2 Show that if a CE set is infinite, it contains computable infinite subsets.

Solution:

Problem 3 Show the following two sets are noncomputable CE set.

$$K_0 = \{(x, e) : \{e\}(x) \downarrow\},\$$
$$K_1 = \{e : \operatorname{dom}(\{e\}) \neq \emptyset\}.$$

Solution: