Logic and Computation I, Autumn 2022

Homework No.2 Due Date: November 7, 11:59 pm (Beijing) Name:

Problem 1

Prove $x \cdot y, x^y, x!, \max\{x, y\}, \min\{x, y\}$ are primitive recursive functions.

Solution:

Problem 2

Let $f(x_1, \ldots, x_n, y)$ be a primitive recursive function. Prove the following functions are also primitive recursive.

$$F(x_1, \dots, x_n, z) = \sum_{y < z} f(x_1, \dots, x_n, y),$$

$$G(x_1, \dots, x_n, z) = \prod_{y < z} f(x_1, \dots, x_n, y).$$

Solution:

Problem 3 Prove that if $A(x_1, \ldots, x_n, y)$ is primitive recursive, $\forall y < z \ A(x_1, \ldots, x_n, y)$ and $\exists y < z \ A(x_1, \ldots, x_n, y)$ are also primitive recursive.

Solution:

Problem 4 The symbol set $\Omega = \{0, 1, +, (,)\}$. "Terms" are defined as below

- (1) 0, 1 are terms.
- (2) if s and t are terms, so is (s + t). e.g., ((1 + 0) + 1) is a term, but (1 + 0) + 1 is not a term.

Show that the predicate $\mathrm{Term}(x)$ expressing "x is the Gödel number of a term" is primitive recursive.

Solution: