Logic and Computation II, Spring 2023

Homework No.11

Name:

Problem 1

In a Σ_1 complete theory T, show that 1-consistency (Σ_1 -soundness) of T is equivalent to the following: for any Σ_0 formula $\varphi(x)$, if $\varphi(\overline{n})$ is provable in T for all n, then $\exists x \neg \varphi(x)$ is not provable in T.

Solution:

Problem 2

Let A,B be two disjoint CE sets. Assume a theory T is $\Sigma_1\text{-complete.}$ Show that there exists a Σ_1 formula $\psi(x)$ such that

$$n \in A \Rightarrow T \vdash \psi(\overline{n}), \quad n \in B \Rightarrow T \vdash \neg \psi(\overline{n}).$$

From this, deduce that $\{ \ulcorner \sigma \urcorner : T \vdash \sigma \}$ and $\{ \ulcorner \sigma \urcorner : T \vdash \neg \sigma \}$ are computably inseparable. (See Part 1-6, Slide p.25.) In particular, $\{ \ulcorner \sigma \urcorner : T \vdash \sigma \}$ is not computable.

Solution:

Problem 3

Complete the proof of Gödel-Rosser's theorem.

- Let $A = \{ \ulcorner \sigma \urcorner : T \vdash \sigma \}$, $B = \{ \ulcorner \sigma \urcorner : T \vdash \neg \sigma \}$. If T is consident CE theory, then A, B are disjoint CE sets.
- Similarly to the proof of the strong representation theorem for computable sets, costruct a formula $\psi(x)$ such that $A \subset \{n : T \vdash \psi(\overline{n})\}$ and $B \subset \{n : T \vdash \neg \psi(\overline{n})\}$.
- Considering the sentence σ such that $T \vdash (\sigma \leftrightarrow \neg \psi(\ulcorner \sigma \urcorner))$, prove that $\ulcorner \sigma \urcorner \notin A \cup B$.

Also, notice that if A, B were computably separable, we could construct a formula $\psi(x)$ such that $\{n: T \vdash \psi(\overline{n})\} \cup \{n: T \vdash \neg \psi(\overline{n})\} = \mathbb{N}$

Solution:

Problem 4

Show that there is a consistent theory T that proves its own contradiction $\neg Con(T)$.

Solution:

Problem 5 Let $\operatorname{Bew}_T^{\#}(x) \equiv (\operatorname{Bew}_T(x) \land x \neq \overline{\lceil 0 = 1 \rceil})$. For any true proposition σ ,

$$\operatorname{Bew}_T^{\#}(\overline{\lceil \sigma \rceil}) \leftrightarrow \operatorname{Bew}_T(\overline{\lceil \sigma \rceil})$$

and

$$T \vdash \neg \operatorname{Bew}_T^{\#}(\overline{\ulcorner 0 = 1 \urcorner}).$$

Does it contradict with the second incompleteness theorem?

Solution: