Logic and Computation I, Autumn 2022

Homework No.10 Happy holidays Name:

Problem 1

Prove $Q \vdash 0 + 1 = 1$. (See Slide p.11 of Lecture03-06)

Solution:

Problem 2

In a Σ_1 complete theory T, show that 1-consistency of T is equivalent to the following: for any Σ_0 formula $\varphi(x)$, if $\varphi(\overline{n})$ is provable in T for all n, then $\exists x \neg \varphi(x)$ is not provable in T.

Solution:

Problem 3

Let A, B be two disjoint CE sets. Assume a theory T is Σ_1 -complete. Show that there exists a Σ_1 formula $\psi(x)$ such that

$$n \in A \Rightarrow T \vdash \psi(\overline{n}), \quad n \in B \Rightarrow T \vdash \neg \psi(\overline{n}).$$

From this, deduce that $\{ \ulcorner \sigma \urcorner : T \vdash \sigma \}$ and $\{ \ulcorner \sigma \urcorner : T \vdash \neg \sigma \}$ are computably inseparable. (See Lecture 01-06, Slide p.25.) In particular, $\{ \ulcorner \sigma \urcorner : T \vdash \sigma \}$ is not computable.

Solution: