Logic and Computation II, Spring 2023

Bonus Homework No.1

Name:

Problem 1

By S ω S, we denote the monadic second-order theory of $\mathcal{T}_{\omega} = (\mathbb{N}^*, \{S_i(x)\}_{i \in \mathbb{N}}, \subset, \preccurlyeq)$, where $S_i(w) = w i \ (i \in \mathbb{N}), \subset$ is the prefix and \preccurlyeq is the lexicographic order. Now let $f : \mathbb{N}^* \to \{0, 1\}^*$ be

 $f(n_0 n_1 \dots n_{k-1}) = 0^{n_0} 10^{n_1} 1 \dots 10^{n_{k-1}} 1$, and $f(\epsilon) = \epsilon$.

Letting D be the range of f, we have $\mathcal{D} = (D, \{S_i^D(x)\}_{i \in \mathbb{N}}, \subset^D, \preccurlyeq^D) \cong \mathcal{T}_{\omega}.$

Then show that \mathcal{D} is S2S-definable (Note: \subset and \preccurlyeq cannot be defined in $(\mathbb{N}^*, \{S_i(x)\}_{i\in\mathbb{N}}))$). From this, derive that S ω S is decidable.

Solution: