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~ Logic and Computation Il ~
® Part 4. Modal logic (7 lectures)
® Part 5. Modal p-calculus (5 lectures)
® Part 6. Automata on infinite objects (8 lectures)
® Part 7. Recursion-theoretic hierarchies (4 lectures)
- J
s Part 7. Schedule ~
® May 20, (1) Oracle computation and relativization
® May 22, (2) m-reducibility and simple sets
® May 27, (3) T-reducibility and Post’s problem
® May 29, (4) Miscellaneous
o J
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Recap

e A <,, B, if there exists a computable function fsit. z € A < f(z) € B for any z.
e A<t B, if Ais computable in oracle B (i.e., recursive in x ).
e A CE set A is (T-)complete / m-complete if B <t A / B <,, A for any CE set B.

Theorem 7.12 (Post’s theorem, 1944)

There exists a CE set that is neither computable nor m-complete.

® Post’s problem: Is there a CE set that is neither computable nor (T-)complete.

® To challenge this problem, various notions of CE set were introduced.
A simple set is a CE set that has a nonempty intersection with any infinite CE set and
whose complement is an infinite set. A simple set satisfies Post's theorem.

® Aset Aisalowsetif A/ :=KA<r K. A simple low set is a solution to Post's

problem.
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Lemma 7.21
A<t Kif Ais a low set.

Proof. If Aisalowset, A <t A’ <7 K, and so A <1 K. O
Lemma 7.22 (main lemma for Post's problem)
There exists a simple low set.

Proof
® |n the finite injury priority argument, a desired CE set A is constructed as the infinite
sum |J, A of finite sets A,, where Ay = @ and A, is “the (finite) set of numbers
that are verified to be members of A within s step”. Once an element is determined
to be a member of A, it is never removed. Thus A, C A,4; for each s.

® To ensure that A is low and simple, we construct A, to satisfy several requirements.
A positive requirement is satisfied by adding some elements to a desired set A and a
negative requirement is by excluding some elements from A.

® Satisfying one requirement may injure another requirement that is already satisfied.
So, priorities are set to all requirements, so that a requirement will be injured by only
a finite number of requirements (with higher-priority). 4/20
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(i) Ais CE,

(i) Ac is infinite,
(iii) A has a common element with each infinite CE set, and
(iV) KA ST K.

® In the above, condition (i) naturally holds from the inductive construction of A.
Condition (ii) is also easily satisfied.

® The essential ones are the positive condition (iii) and the negative condition (iv).
Rewriting these into requirements for each e, we have

P, . |We=00=>ANW,#>
N, : 3% Lpég(e) 1= o) | .
Here, 3°° means “exists infinitely many”. By w?s(x) =1y", we denote the

computation of ¢! (z) = y will be completed within s steps, and if it exceeds s steps,
we denote it as o2 () 1.
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® Next, we show that (iv) holds if N, holds for each e. First, assume that s — A is

computable.
If N, holds, then

3%s pls(e) L = ¢l(e) L= s>t pls(e) |
= Vitds>t wé;(e) 1= 3% gpé;(e) 1.
® Thus, KA = {e: p?(e) |} isa Ay set.

Corollary 7.11 (Revisited)
A'is As if and only if A <r K.

® By the above fact, we have KA <r K.
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® Now we explain why N, is a negative requirement.

ete problems

® We define the following computable function r as a tool to control N,:

r(e,s) = u(As, e e, 8).

Here, the right-hand side is called the use function, which is 1 + the maximum
number used in the computation of @é;(e), and 0O if the computation never halts.

® Assuming s — Ay is computable, r is also computable, called a restraint function.

That is, given Ay such that gpé-;(e) 1, unless an element x < r(e, s) is added to A, we
have A[r = A [r, so p2(e) |, and thus N, is fullfilled as a negative requirement.
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Among all P, and N,, set the priority as
Py>Ng>P; >Ny >PFP, >Ny > ...

Note that for any requirement there are only a finitely many requirements with higher
priorities. So, numbers below r(e, s) may be added to A only for P; with i < e.

Now, we show the construction of A.

Step s = 0: Set Ay = @.
Step s + 1: Assume that A, is obtained.
If there is an i < s which satisfies (i) W; ;N As = &, and
(i) Jz € Wi s(x > 2i AVe <ir(e,s) <x),
then take the smallest such i and choose the smallest = that satisfies (ii) and set
A5+1 = AS U {l‘}

Then the requirement P; is satisfied, and after s + 1 it will never be injured.

If there is no such i <'s, put A, = As.
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® When Agy 1 = Ag U {a}, for e such that = < r(e, s), N, is injured by x at s + 1.
However, we have

Claim 1
[For every e, N, is injured at most finitely many times. ]

(") Ne can be injured only by P; for i < e.

Claim 2
[For all e, r(e) = lim, (e, s) exists and hence N, holds. ]

() Fix any e. From Claim 1, there exists a step s. such that N, is not injured after s..
But if p7ts(e) | for s > s, then for t > s, (e, t) = r(e,s) and so r(e) = lim, 7 (e, s)
exists. Hence A, [r = A[r and p2(e) |, which implies N, holds.
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Claim 3
[PZ— holds for all <. ]

(.) Suppose that W; is an infinite set. From Claim 2, we take such an s that

Yt > s Ve <ir(et)=r(e).

We may assume that no P; with j < i receives attention after s'(> s), In addition, take
t > s’ such that
dxr € Wii(x >2i AVe <ir(e) <x).

Then we already have W, ; N A; # @ or P; receives attention at £+ 1. In either case,
Wit N A1 # @, and so P; holds.

From the above, A = |,y As is a simple low set. Also, A° is infinite, since from condition
(i) that = > 2i, we have | {z € A: 2 < 2i} |< . O
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;““‘“V“’(“‘,"”‘V“‘M There exist CEsets A, B such that A Zr B and B £1 A.

It is clear that A, B in this theorem are neither computable nor complete. By the finite
injury priority argument, these sets are constructed as A = |J, As and B = J, B; with the
following requirements:

Roe : A# WP
R25+1 . B 75 WeA

Among many generalizations of the above theorem, the following theorem is particularly
important.

Theorem 7.24 (G. E. Sacks)

Let C' be an incomputable CE set.

(1) There is a simple set A such that C £ A.

(2) There exists low CEsets A, B s.t. A £t B and B £1 A with C = AU B and
ANB=2.
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Relativized

vvvvvv

Relativized arithmetical hierarchy

® A =WSE is called ¢-CE if it is the domain of a partial recurisive function {e}¢ with

oracle £. In particular when £ = x, we say A is CEin B.
® A set A is computable in B if A is recursive in x g, written as A <7 B.
Then a relativized arithmetical hierarchy for subsets of N* is defined as follows.

o

2
Ay

i

I

n+1

(
(
S
AnJrl(

i

,(§) =

{¢-CE sets},

{&-computable sets},

{A| Ais CEin some B € ¥,(£)},

{A | A'is computable in some B € £,(§)},
{A| A <y B for some B € ¥,,(§)},

{the complement of sets in X,,(£)}

When ¢ is a computable function, we omit to mention (£) or &, and classes %,,, I1,,, A, are

usual arithmetical hierarchy .
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o ® We write A <;,, B if there exists a computable function f : N — N such that
in the metic

foranyz eN, z € A f(x) € B.

® A set B is called m-hard if A <,,, B for every CEset A.
A set B is called m-complete if B is CE and m-hard.

In the following, such CE sets will be generalized to C = %,,, etc.

® et C be a class of sets.
A set B is said to be C-hard if for every A € C, A <, B.
A set B is said to be C-complete if B is C-hard and B € C.

® Clearly, if A <,, Band B € X, (II,, A,), then so is A.

® A },,-complete set is not II,, since arithmetical hierarchy is strict.
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Complete problems
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Now, the following are typical m-complete sets.

(i
(i

) K={e:e € W,.} is ;-complete.
)

(ili) EMPTY = {e: W, = @} is II;-complete.
)
)

MEM = {(e,z) : x € W,} is £1-complete.
(iv) FIN = {e : W, is finite} is Xg-complete.

(v) TOTAL = {e: {e} is a total function } is

IIs-complete.

(vi) COF = {e : the complement of W, is finite} is
Y.3-complete.

(vii) REC = {e : W, is recursive} is X3-complete.

.
31

.
EMPTY
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Polynomial-time reducibility
Finally, we discuss the polynomial-time versions of m-reduction and T-reduction.

A is polynomial (time) reducible to B (A <p B) if there exists a polynomial time
computable function f and z € A < f(x) € B. This is a kind of m-reduciblity, which
also written as A <P B.

On the other hand, A is said to be polynomial-time Turing reducible to B
(A <L Bor A € PP) if there exists a polynomial ¢ and a deterministic Turing
machine M Z with oracle B that can decide whether 2 € A within O(q(|z])) time.

We will not consider how to measure the time required for querying the oracle
(n € B). We only treat it very naively as shown in the proof of the next theorem.

Furthermore, making MPB nondeterministic, we also defines A € NPZ.

If A <P Bthen A <E B. The reverse does not hold over a large class such as

—1m

EXP(TIME) (Ladner, Lynch, and Selman [1975]).
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Theorem 7.25 (Baker, Gill, Solovay (1975))

(1) There exists a computable oracle A such that P4 = NP*.
(2) There exists a computable oracle A such that P4 £ NP#.

Proof To show (1)

® Let A be a PSPACE complete problem such as TQBF (Lecture02-06). First, obviously
P4 NP4 c PSPACE.

® Since A is PSPACE, one can compute PSPACE” in PSPACE without using A as an
oracle. That is, PSPACE* C PSPACE.

® Finally, due to the PSPACE completeness of A, PSPACE C pA.
e Therefore, P4 = NP* = PSPACE*.
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%, Tewele  Forany A C {071}*v B = {0|$| = A} is in NP,
® So, we only need to construct a computable A = |J, A, such that B ¢ P4.

® Let M, enumerate deterministic machines (or sets accepted by such machines)
running in polynomial p. time.

® We want to prove R, : M # B for all e. That is, for each e, we guarantee the

existence of n such that
MZ(0") # B(0").
® Assume that A, is constructed at step s = e. Then, take n greater than any number
used in the previous constructions and 2™ > p.(n).
® When MA<(0") =1, set A;,; = As. Then, no words with length n are added to A
and also will never be added, and hence we have B(0™) = 0.

® Next assume M+(0") = 0. This computation queries the oracle A, at most p.(n)
times, and so by the assumption 2" > p.(n), there is a word x of length n that is
irrelevant to the oracle query. Then, by setting As11 = As U {x}, we have
M2+ (0m) = 0 but B(0") = 1. O
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Polynomial time hierarchy

Finally, we introduce the polynomial-time version of arithmetical hierarchy.
We defined P2 and NP for the set A C Q*. For a class C of sets,

P(C) = U PA, NP(C) = U NP4,

AeC AeC

Definition 7.26 (Polynomial time hierarchy)

The polynomial-time hierarchy (PH) is defined inductively defined as follows
o »F=1If =P,

* X0, =NP(ZL),

P _ P
° HnJrl - CO'EnJrl'

A5+1 = P(Eg)

PH=J, ="
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Then it is easy to see that:

Lemma 7.27
PH c PSPACE

Proof. NP(PSPACE) c PSPACE(PSPACE) C PSPACE.

Lemma 7.28
If PH = PSPACE, then XF = XF, for some n.

Proof. If TQBF € XF then PSPACE C AP, |

~ Homework

Given A as an NP-complete set, show the following.
(1) ¥ ={B:B <P 4}.

(2) AY ={B:B <} A}
(3) 25+1 = ES(A)~
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Further Reading

e Kozen, D. C. (2006). Theory of computation (Vol. 170). Heidelberg: Springer.

® Soare, R. I. (2016). Turing computability. Theory and Applications of
Computability. Springer.

Thank you for your attention!
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