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Logic and Computation II� �
• Part 4. Modal logic (7 lectures)

• Part 5. Modal µ-calculus (5 lectures)

• Part 6. Automata on infinite objects (8 lectures)

• Part 7. Recursion-theoretic hierarchies (4 lectures)� �
Part 7. Schedule� �
• May 20, (1) Oracle computation and relativization

• May 22, (2) m-reducibility and simple sets

• May 27, (3) T-reducibility and Post’s problem

• May 29, (4) Miscellaneous� �
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Recap

• A ≤m B, if there exists a computable function f s.t. x ∈ A ⇔ f(x) ∈ B for any x.

• A ≤T B, if A is computable in oracle B (i.e., recursive in χB).

• A CE set A is (T-)complete / m-complete if B ≤T A / B ≤m A for any CE set B.

Theorem 7.12 (Post’s theorem, 1944)

There exists a CE set that is neither computable nor m-complete.

• Post’s problem: Is there a CE set that is neither computable nor (T-)complete.

• To challenge this problem, various notions of CE set were introduced.
A simple set is a CE set that has a nonempty intersection with any infinite CE set and
whose complement is an infinite set. A simple set satisfies Post’s theorem.

• A set A is a low set if A′ := KA ≤T K. A simple low set is a solution to Post’s
problem.
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Lemma 7.21

A <T K if A is a low set.

Proof. If A is a low set, A <T A′ ≤T K, and so A <T K. □

Lemma 7.22 (main lemma for Post’s problem)

There exists a simple low set.

Proof
• In the finite injury priority argument, a desired CE set A is constructed as the infinite
sum

⋃
s As of finite sets As, where A0 = ∅ and As is “the (finite) set of numbers

that are verified to be members of A within s step”. Once an element is determined
to be a member of A, it is never removed. Thus As ⊂ As+1 for each s.

• To ensure that A is low and simple, we construct As to satisfy several requirements.
A positive requirement is satisfied by adding some elements to a desired set A and a
negative requirement is by excluding some elements from A.

• Satisfying one requirement may injure another requirement that is already satisfied.
So, priorities are set to all requirements, so that a requirement will be injured by only
a finite number of requirements (with higher-priority).
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• A is low and simple if all of the following are satisfied.

(i) A is CE,
(ii) Ac is infinite,
(iii) A has a common element with each infinite CE set, and
(iv) KA ≤T K.

• In the above, condition (i) naturally holds from the inductive construction of A.
Condition (ii) is also easily satisfied.

• The essential ones are the positive condition (iii) and the negative condition (iv).
Rewriting these into requirements for each e, we have

Pe : |We| = ∞ ⇒ A ∩We ̸= ∅
Ne : ∃∞s φAs

e,s(e) ↓⇒ φA
e (e) ↓ .

Here, ∃∞ means “exists infinitely many”. By “φAs
e,s(x) = y”, we denote the

computation of φA
e (x) = y will be completed within s steps, and if it exceeds s steps,

we denote it as φA
e,s(x) ↑.
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• It is clear that (iii) holds if Pe holds for each e.

• Next, we show that (iv) holds if Ne holds for each e. First, assume that s 7→ As is
computable.
If Ne holds, then

∃∞s φAs
e,s(e) ↓ ⇒ φA

e (e) ↓ ⇒ ∃t∀s>t φAs
e,s(e) ↓

⇒ ∀t∃s>t φAs
e,s(e) ↓ ≡ ∃∞s φAs

e,s(e) ↓ .

• Thus, KA = {e : φA
e (e) ↓} is a ∆2 set.

Corollary 7.11 (Revisited)

A is ∆2 if and only if A ≤T K.

• By the above fact, we have KA ≤T K.
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• Now we explain why Ne is a negative requirement.

• We define the following computable function r as a tool to control Ne:

r(e, s) = u(As, e, e, s).

Here, the right-hand side is called the use function, which is 1 + the maximum
number used in the computation of φAs

e,s(e), and 0 if the computation never halts.

• Assuming s 7→ As is computable, r is also computable, called a restraint function.

• That is, given As such that φAs
e,s(e) ↓, unless an element x < r(e, s) is added to A, we

have A↾r = As ↾r, so φA
e (e) ↓, and thus Ne is fullfilled as a negative requirement.
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• Among all Pe and Ne, set the priority as

P0 > N0 > P1 > N1 > P2 > N2 > . . .

• Note that for any requirement there are only a finitely many requirements with higher
priorities. So, numbers below r(e, s) may be added to A only for Pi with i < e.

• Now, we show the construction of A.

• Step s = 0: Set A0 = ∅.
Step s+ 1: Assume that As is obtained.
If there is an i ≤ s which satisfies (i) Wi,s ∩As = ∅, and

(ii) ∃x ∈ Wi,s(x > 2i ∧ ∀e ≤ i r(e, s) < x),
then take the smallest such i and choose the smallest x that satisfies (ii) and set
As+1 = As ∪ {x}.

Then the requirement Pi is satisfied, and after s+ 1 it will never be injured.

If there is no such i ≤ s, put As+1 = As.
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• When As+1 = As ∪ {x}, for e such that x ≤ r(e, s), Ne is injured by x at s+ 1.
However, we have

Claim 1� �
For every e, Ne is injured at most finitely many times.� �

(∵) Ne can be injured only by Pi for i < e.

Claim 2� �
For all e, r(e) = lims r(e, s) exists and hence Ne holds.� �

(∵) Fix any e. From Claim 1, there exists a step se such that Ne is not injured after se.
But if φAs

e,s(e) ↓ for s > se, then for t ≥ s, r(e, t) = r(e, s) and so r(e) = lims r(e, s)

exists. Hence As ↾r = A↾r and φA
e (e) ↓, which implies Ne holds.
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Claim 3� �
Pi holds for all i.� �

(∵) Suppose that Wi is an infinite set. From Claim 2, we take such an s that

∀t ≥ s ∀e ≤ i r(e, t) = r(e).

We may assume that no Pj with j < i receives attention after s′(≥ s), In addition, take
t > s′ such that

∃x ∈ Wi,t(x > 2i ∧ ∀e ≤ i r(e) < x).

Then we already have Wi,t ∩At ̸= ∅ or Pi receives attention at t+ 1. In either case,
Wi,t ∩At+1 ̸= ∅, and so Pi holds.

From the above, A =
⋃

s∈NAs is a simple low set. Also, Ac is infinite, since from condition
(ii) that x > 2i, we have | {x ∈ A : x ≤ 2i} |≤ i. □
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Friedberg and Mucinik actually proved the following assertion.

Theorem 7.23 (Friedberg, Muchnik)

There exist CE sets A,B such that A ̸≤T B and B ̸≤T A.

It is clear that A,B in this theorem are neither computable nor complete. By the finite
injury priority argument, these sets are constructed as A =

⋃
s As and B =

⋃
s Bs with the

following requirements:

R2e : A ̸= WB
e

R2e+1 : B ̸= WA
e

Among many generalizations of the above theorem, the following theorem is particularly
important.

Theorem 7.24 (G. E. Sacks)

Let C be an incomputable CE set.
(1) There is a simple set A such that C ̸≤T A.
(2) There exists low CE sets A,B s.t. A ̸≤T B and B ̸≤T A with C = A ∪B and
A ∩B = ∅.
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Relativized arithmetical hierarchy

• A = W ξ
e is called ξ-CE if it is the domain of a partial recurisive function {e}ξ with

oracle ξ. In particular when ξ = χB , we say A is CE in B.

• A set A is computable in B if A is recursive in χB , written as A ≤T B.

Then a relativized arithmetical hierarchy for subsets of Nk is defined as follows.

Σ1(ξ) := {ξ-CE sets},
∆1(ξ) := {ξ-computable sets},

Σn+1(ξ) := {A | A is CE in some B ∈ Σn(ξ)},
∆n+1(ξ) := {A | A is computable in some B ∈ Σn(ξ)},

:= {A | A ≤T B for some B ∈ Σn(ξ)},
Πn(ξ) := {the complement of sets in Σn(ξ)}

When ξ is a computable function, we omit to mention (ξ) or ξ, and classes Σn,Πn,∆n are
usual arithmetical hierarchy .
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• We write A ≤m B if there exists a computable function f : N → N such that
for any x ∈ N, x ∈ A ⇔ f(x) ∈ B.

• A set B is called m-hard if A ≤m B for every CE set A.
A set B is called m-complete if B is CE and m-hard.

In the following, such CE sets will be generalized to C = Σn, etc.

• Let C be a class of sets.
A set B is said to be C-hard if for every A ∈ C, A ≤m B.
A set B is said to be C-complete if B is C-hard and B ∈ C.

• Clearly, if A ≤m B and B ∈ Σn (Πn, ∆n), then so is A.

• A Σn-complete set is not Πn, since arithmetical hierarchy is strict.

13 / 20



Logic and
Computation

K. Tanaka

Relativized
arithmetical hierarchy

Complete problems
in the arithmetic
hierarchy

Polynomial-time
reducibility

Polynomial time
hierarchy

Now, the following are typical m-complete sets.

(i) K = {e : e ∈ We} is Σ1-complete.

(ii) MEM = {(e, x) : x ∈ We} is Σ1-complete.

(iii) EMPTY = {e : We = ∅} is Π1-complete.

(iv) FIN = {e : We is finite} is Σ2-complete.

(v) TOTAL = {e : {e} is a total function } is
Π2-complete.

(vi) COF = {e : the complement of We is finite} is
Σ3-complete.

(vii) REC = {e : We is recursive} is Σ3-complete.

計算理論と数理論理学
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214 第 5章 階層理論と許容集合

つ B ∈ Δn ならば A ∈ Δn である．算術的階層が真に階層を成すことがわか
っているので，Σn 完全集合は Πn ではない（特にΔn や Σn−1 でない）．
さて，以下のような集合が代表的な ≤m 完全集合である．
(i) K = {e : e ∈We}は Σ1 完全である．
(ii) MEM = {(e, x) : x ∈We}は Σ1 完全である．
(iii) EMPTY = {e : We = ∅}は Π1 完全である．
(iv) FIN = {e : We は有限 }は Σ2 完全である．
(v) TOTAL = {e : {e}は全域関数 }は Π2 完全である．
(vi) COF = {e : Weは補有限 }は Σ3 完全である．
これらについて，簡単に説明する（図 5.1参照）．(i)はすでに 1.6節で証明
した．(ii)は，K ≤m MEM，およびMEMが Σ1 であることからいえる．(iii)

は，EMPTYの補集合 NONEMPが Σ1 完全であることをいえばよい．
NONEMPが Σ1 であるのは明らか．任意の CE集合 Aは，ある原始再帰的関
係 T (x, y)に対して x ∈ A ↔ ∃yT (x, y)と書けて，さらにパラメタ定理か
ら，ある計算可能関数 f が存在して T (x, y) ↔ y ∈ Wf(x) と書けるから，
x ∈ A↔ f(x) ∈ NONEMPである．

(iv) We が有限であることは，∃y∀x > y x /∈We と表せるから，Σ2 である．
任意の Σ2 集合 Aは，原始再帰的関係 Rを用いて，∃y∀zR(x, y, z)と表せる．
いま，その補集合 Ac をもとに，次のような計算可能部分関数 ψを定義する．

ψ(x,w) =

⎧
⎨
⎩

0 （∀y ≤ w∃z¬R(x, y, z) のとき），
↑ （それ以外のとき）．

パラメタ定理から，計算可能関数 f が存在して {f(x)}(w) ∼ ψ(x,w)．する
と，

x ∈ A⇒Wf(x) は有限⇒ f(x) ∈ FIN (⊂ TOTALc),

x ∈ Ac ⇒ ∀w{f(x)}(w)↓ ⇒ f(x) ∈ TOTAL ⊂ FINc.

すなわち，A ≤m FINである．よって，FINは Σ2 完全である．(v)について
も，上の議論から，任意の Π2 集合 B に対して B ≤m TOTALである．また，
{e}が全域関数であることは，∀x∃y{e}(x) = yより Π2 で表される．

計算理論と数理論理学
xft0267-05.ps : 0021 : 2022/5/13(12:24:07)

5.4 算術的階層と多項式時間階層 215

図 5.1 算術的階層

Σ3 や Π3 以上の階層の議論には，相対化が有用である．例えばオラクル集
合 Aで相対化した有限性問題は
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Polynomial-time reducibility

• Finally, we discuss the polynomial-time versions of m-reduction and T-reduction.

• A is polynomial (time) reducible to B (A ≤P B) if there exists a polynomial time
computable function f and x ∈ A ⇔ f(x) ∈ B. This is a kind of m-reduciblity, which
also written as A ≤P

m B.

• On the other hand, A is said to be polynomial-time Turing reducible to B
(A ≤P

T B or A ∈ PB) if there exists a polynomial q and a deterministic Turing
machine MB with oracle B that can decide whether x ∈ A within O(q(|x|)) time.

• We will not consider how to measure the time required for querying the oracle
(n ∈ B). We only treat it very naively as shown in the proof of the next theorem.

• Furthermore, making MB nondeterministic, we also defines A ∈ NPB .

• If A ≤P
m B then A ≤P

T B. The reverse does not hold over a large class such as
EXP(TIME) (Ladner, Lynch, and Selman [1975]).
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Theorem 7.25 (Baker, Gill, Solovay (1975))

(1) There exists a computable oracle A such that PA = NPA.
(2) There exists a computable oracle A such that PA ̸= NPA.

Proof To show (1)

• Let A be a PSPACE complete problem such as TQBF (Lecture02-06). First, obviously
PA ⊂ NPA ⊂ PSPACEA.

• Since A is PSPACE, one can compute PSPACEA in PSPACE without using A as an
oracle. That is, PSPACEA ⊂ PSPACE.

• Finally, due to the PSPACE completeness of A, PSPACE ⊂ PA.

• Therefore, PA = NPA = PSPACEA.

16 / 20



Logic and
Computation

K. Tanaka

Relativized
arithmetical hierarchy

Complete problems
in the arithmetic
hierarchy

Polynomial-time
reducibility

Polynomial time
hierarchy

To show (2)

• For any A ⊂ {0, 1}∗, B = {0|x| : x ∈ A} is in NPA.

• So, we only need to construct a computable A =
⋃

s As such that B /∈ PA.

• Let Me enumerate deterministic machines (or sets accepted by such machines)
running in polynomial pe time.

• We want to prove Re : M
A
e ̸= B for all e. That is, for each e, we guarantee the

existence of n such that
MA

e (0n) ̸= B(0n).

• Assume that As is constructed at step s = e. Then, take n greater than any number
used in the previous constructions and 2n > pe(n).

• When MAs
e (0n) = 1, set As+1 = As. Then, no words with length n are added to A

and also will never be added, and hence we have B(0n) = 0.

• Next assume MAs
e (0n) = 0. This computation queries the oracle As at most pe(n)

times, and so by the assumption 2n > pe(n), there is a word x of length n that is
irrelevant to the oracle query. Then, by setting As+1 = As ∪ {x}, we have

M
As+1
e (0n) = 0 but B(0n) = 1. □

17 / 20



Logic and
Computation

K. Tanaka

Relativized
arithmetical hierarchy

Complete problems
in the arithmetic
hierarchy

Polynomial-time
reducibility

Polynomial time
hierarchy

Polynomial time hierarchy
Finally, we introduce the polynomial-time version of arithmetical hierarchy.
We defined PA and NPA for the set A ⊂ Ω∗. For a class C of sets,

P(C) =
⋃

A∈C
PA, NP(C) =

⋃

A∈C
NPA.

Definition 7.26 (Polynomial time hierarchy)

The polynomial-time hierarchy (PH) is defined inductively defined as follows

• ΣP
0 = ΠP

0 = P,

• ΣP
n+1 = NP(ΣP

n),

• ΠP
n+1 = co-ΣP

n+1,

• ∆P
n+1 = P(ΣP

n)

• PH =
⋃

n Σ
P
n
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Then it is easy to see that:

Lemma 7.27

PH ⊂ PSPACE

Proof. NP(PSPACE) ⊂ PSPACE(PSPACE) ⊂ PSPACE. □

Lemma 7.28

If PH = PSPACE, then ΣP
n = ΣP

n+1 for some n.

Proof. If TQBF ∈ ΣP
n then PSPACE ⊂ ∆P

n+1. □

Homework� �
Given A as an NP-complete set, show the following.

(1) ΣP
1 = {B : B ≤P

m A}.

(2) ∆P
2 = {B : B ≤P

T A}.

(3) ΣP
n+1 = ΣP

n(A).� �
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Further Reading� �
• Kozen, D. C. (2006). Theory of computation (Vol. 170). Heidelberg: Springer.

• Soare, R. I. (2016). Turing computability. Theory and Applications of
Computability. Springer.� �

Thank you for your attention!
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