K. Tanaka

Relativized arithmetical hierarc

Complete problem in the arithmetic hierarchy

Polynomial-time reducibility

Polynomial time hierarchy

Logic and Computation II Part 7. Recursion-theoretic hierarchies

Kazuyuki Tanaka

BIMSA

May 29, 2025

Relativized arithmetical hierarchy

Complete problems in the arithmetic hierarchy

Polynomial-time reducibility

Polynomial time hierarchy

- Logic and Computation II

- Part 4. Modal logic (7 lectures)
- Part 5. Modal μ -calculus (5 lectures)
- Part 6. Automata on infinite objects (8 lectures)
- Part 7. Recursion-theoretic hierarchies (4 lectures)

- Part 7. Schedule

• May 20, (1) Oracle computation and relativization

・ロト ・周ト ・ヨト ・ヨト

- May 22, (2) m-reducibility and simple sets
- May 27, (3) T-reducibility and Post's problem
- May 29, (4) Miscellaneous

K. Tanaka

Relativized arithmetical hierarchy

Complete problem in the arithmetic hierarchy

Polynomial-time reducibility

Polynomial tim hierarchy

• $A \leq_{\mathrm{m}} B$, if there exists a computable function f s.t. $x \in A \Leftrightarrow f(x) \in B$ for any x.

- $A \leq_{\mathrm{T}} B$, if A is computable in oracle B (i.e., recursive in χ_B).
- A CE set A is (T-)complete / m-complete if $B \leq_{T} A / B \leq_{m} A$ for any CE set B.

Theorem 7.12 (Post's theorem, 1944)

There exists a CE set that is neither computable nor m-complete.

- Post's problem: Is there a CE set that is neither computable nor (T-)complete.
- To challenge this problem, various notions of CE set were introduced. A **simple** set is a CE set that has a nonempty intersection with any infinite CE set and whose complement is an infinite set. A simple set satisfies Post's theorem.
- A set A is a low set if $A' := K^A \leq_T K$. A simple low set is a solution to Post's problem.

3 / 20

Recap

K. Tanaka

Relativized arithmetical hierarc

Complete problem in the arithmetic hierarchy

Polynomial-time educibility

^oolynomial time iierarchy

Lemma 7.21

$A <_{\mathrm{T}} \mathrm{K}$ if A is a low set.

Proof. If A is a low set, $A <_{\mathrm{T}} A' \leq_{\mathrm{T}} K$, and so $A <_{\mathrm{T}} K$.

Lemma 7.22 (main lemma for Post's problem)

There exists a simple low set.

Proof

- In the finite injury priority argument, a desired CE set A is constructed as the infinite sum $\bigcup_s A_s$ of finite sets A_s , where $A_0 = \emptyset$ and A_s is "the (finite) set of numbers that are verified to be members of A within s step". Once an element is determined to be a member of A, it is never removed. Thus $A_s \subset A_{s+1}$ for each s.
- To ensure that A is low and simple, we construct A_s to satisfy several requirements. A **positive requirement** is satisfied by adding some elements to a desired set A and a **negative requirement** is by excluding some elements from A.
- Satisfying one requirement may injure another requirement that is already satisfied.
 So, priorities are set to all requirements, so that a requirement will be injured by only a finite number of requirements (with higher-priority).

K. Tanaka

Relativized arithmetical hierarc

Complete problem in the arithmetic hierarchy

olynomial-time educibility

olynomial time ierarchy

- A is low and simple if all of the following are satisfied.
 - (i) *A* is CE,
 - (ii) A^c is infinite,
 - (iii) \boldsymbol{A} has a common element with each infinite CE set, and
 - (iv) $\mathbf{K}^A \leq_{\mathrm{T}} \mathbf{K}$.
- In the above, condition (i) naturally holds from the inductive construction of *A*. Condition (ii) is also easily satisfied.
- The essential ones are the positive condition (iii) and the negative condition (iv). Rewriting these into *requirements* for each *e*, we have

$$\begin{array}{rcl} P_e & : & |W_e| = \infty \Rightarrow A \cap W_e \neq \varnothing \\ N_e & : & \exists^{\infty} s \ \varphi^{A_s}_{e,s}(e) \downarrow \Rightarrow \varphi^{A}_e(e) \downarrow . \end{array}$$

Here, \exists^{∞} means "exists infinitely many". By " $\varphi_{e,s}^{A_s}(x) = y$ ", we denote the computation of $\varphi_e^A(x) = y$ will be completed within s steps, and if it exceeds s steps, we denote it as $\varphi_{e,s}^A(x) \uparrow$.

5 / 20

Relativized arithmetical hierarc

Complete problem in the arithmetic hierarchy

Polynomial-time reducibility

Polynomial time hierarchy

- It is clear that (iii) holds if P_e holds for each e.
- Next, we show that (iv) holds if N_e holds for each e. First, assume that $s \mapsto A_s$ is computable.

If N_e holds, then

$$\begin{split} \exists^{\infty} s \ \varphi_{e,s}^{A_s}(e) \downarrow \Rightarrow \ \varphi_e^A(e) \downarrow \Rightarrow \ \exists t \forall s > t \ \varphi_{e,s}^{A_s}(e) \downarrow \\ \Rightarrow \ \forall t \exists s > t \ \varphi_{e,s}^{A_s}(e) \downarrow \equiv \ \exists^{\infty} s \ \varphi_{e,s}^{A_s}(e) \downarrow . \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Thus,
$$\mathbf{K}^A = \{e: \varphi_e^A(e) \downarrow\}$$
 is a Δ_2 set.

Corollary 7.11 (Revisited)

 $A \text{ is } \Delta_2 \text{ if and only if } A \leq_T \mathbf{K}.$

• By the above fact, we have $K^A \leq_{\rm T} K.$

K. Tanaka

Relativized arithmetical hierarch

Complete problem in the arithmetic hierarchy

Polynomial-time reducibility

Polynomial time hierarchy

- Now we explain why N_e is a negative requirement.
- We define the following computable function r as a tool to control N_e :

$$r(e,s) = u(A_s, e, e, s).$$

Here, the right-hand side is called the **use function**, which is 1 + the maximum number used in the computation of $\varphi_{e,s}^{A_s}(e)$, and 0 if the computation never halts.

- Assuming $s \mapsto A_s$ is computable, r is also computable, called a restraint function.
- That is, given A_s such that $\varphi_{e,s}^{A_s}(e) \downarrow$, unless an element x < r(e,s) is added to A, we have $A \upharpoonright r = A_s \upharpoonright r$, so $\varphi_e^A(e) \downarrow$, and thus N_e is fullfilled as a negative requirement.

K. Tanaka

Relativized arithmetical hierarc

Complete problem in the arithmetic hierarchy

Polynomial-time reducibility

Polynomial time hierarchy • Among all P_e and N_e , set the priority as

 $P_0 > N_0 > P_1 > N_1 > P_2 > N_2 > \dots$

- Note that for any requirement there are only a finitely many requirements with higher priorities. So, numbers below r(e, s) may be added to A only for P_i with i < e.
- Now, we show the construction of A.
- Step s = 0: Set $A_0 = \emptyset$. Step s + 1: Assume that A_s is obtained. If there is an $i \leq s$ which satisfies (i) $W_{i,s} \cap A_s = \emptyset$, and (ii) $\exists x \in W_{i,s}(x > 2i \land \forall e \leq i \ r(e, s) < x)$.

then take the smallest such i and choose the smallest x that satisfies (ii) and set $A_{s+1}=A_s\cup\{x\}.$

Then the requirement P_i is satisfied, and after s + 1 it will never be injured.

If there is no such $i \leq s$, put $A_{s+1} = A_s$.

K. Tanaka

Relativized arithmetical hierarchy

Complete problems in the arithmetic hierarchy

Polynomial-time reducibility

Polynomial time hierarchy • When $A_{s+1} = A_s \cup \{x\}$, for e such that $x \le r(e,s)$, N_e is injured by x at s+1. However, we have

- Claim 1

For every $e,\,N_e$ is injured at most finitely many times.

(:..)
$$N_e$$
 can be injured only by P_i for $i < e$.

Claim 2

For all $e, \ r(e) = \lim_s r(e,s)$ exists and hence N_e holds.

(:.) Fix any e. From Claim 1, there exists a step s_e such that N_e is not injured after s_e . But if $\varphi_{e,s}^{A_s}(e) \downarrow$ for $s > s_e$, then for $t \ge s$, r(e,t) = r(e,s) and so $r(e) = \lim_s r(e,s)$ exists. Hence $A_s \upharpoonright r = A \upharpoonright r$ and $\varphi_e^A(e) \downarrow$, which implies N_e holds.

・ロト ・周ト ・ヨト ・ヨト

K. Tanaka

Relativized arithmetical hierarch

Complete problem in the arithmetic hierarchy

⁹olynomial-time educibility

Polynomial time hierarchy

- Claim 3

 P_i holds for all i.

(::) Suppose that W_i is an infinite set. From Claim 2, we take such an s that

 $\forall t \ge s \ \forall e \le i \ r(e,t) = r(e).$

We may assume that no P_j with j < i receives attention after $s' (\geq s),$ In addition, take t > s' such that

$$\exists x \in W_{i,t} (x > 2i \land \forall e \le i \ r(e) < x).$$

Then we already have $W_{i,t} \cap A_t \neq \emptyset$ or P_i receives attention at t+1. In either case, $W_{i,t} \cap A_{t+1} \neq \emptyset$, and so P_i holds.

From the above, $A = \bigcup_{s \in \mathbb{N}} A_s$ is a simple low set. Also, A^c is infinite, since from condition (ii) that x > 2i, we have $|\{x \in A : x \le 2i\}| \le i$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

K. Tanaka

Relativized arithmetical hierarc

Complete problems in the arithmetic hierarchy

Polynomial-time reducibility

olynomial time iierarchy Friedberg and Mucinik actually proved the following assertion.

Theorem 7.23 (Friedberg, Muchnik)

There exist CE sets A, B such that $A \not\leq_{\mathrm{T}} B$ and $B \not\leq_{\mathrm{T}} A$.

It is clear that A, B in this theorem are neither computable nor complete. By the finite injury priority argument, these sets are constructed as $A = \bigcup_s A_s$ and $B = \bigcup_s B_s$ with the following requirements:

 $\begin{aligned} R_{2e} &: \quad A \neq W_e^B \\ R_{2e+1} &: \quad B \neq W_e^A \end{aligned}$

Among many generalizations of the above theorem, the following theorem is particularly important.

Theorem 7.24 (G. E. Sacks)

Let C be an incomputable CE set. (1) There is a simple set A such that $C \not\leq_{\mathrm{T}} A$. (2) There exists low CE sets A, B s.t. $A \not\leq_{\mathrm{T}} B$ and $B \not\leq_{\mathrm{T}} A$ with $C = A \cup B$ and $A \cap B = \emptyset$.

K. Tanaka

Relativized arithmetical hierarchy

Complete problem in the arithmetic hierarchy

Polynomial-time reducibility

^oolynomial time nierarchy

Relativized arithmetical hierarchy

- $A = W_e^{\xi}$ is called ξ -CE if it is the domain of a partial recursive function $\{e\}^{\xi}$ with oracle ξ . In particular when $\xi = \chi_B$, we say A is CE in B.
- A set A is computable in B if A is recursive in χ_B , written as $A \leq_T B$.

Then a relativized arithmetical hierarchy for subsets of \mathbb{N}^k is defined as follows.

When ξ is a computable function, we omit to mention (ξ) or ξ , and classes $\Sigma_n, \Pi_n, \Delta_n$ are usual **arithmetical hierarchy**.

K. Tanaka

Relativized arithmetical hierarc

Complete problems in the arithmetic hierarchy

Polynomial-time educibility

Polynomial time nierarchy

- We write $A \leq_{\mathrm{m}} B$ if there exists a computable function $f : \mathbb{N} \to \mathbb{N}$ such that for any $x \in \mathbb{N}$, $x \in A \Leftrightarrow f(x) \in B$.
- A set B is called m-hard if A ≤_m B for every CE set A.
 A set B is called m-complete if B is CE and m-hard.

In the following, such CE sets will be generalized to $\mathcal{C} = \Sigma_n$, etc.

- Let C be a class of sets.
 A set B is said to be C-hard if for every A ∈ C, A ≤_m B.
 A set B is said to be C-complete if B is C-hard and B ∈ C.
- Clearly, if $A \leq_{\mathrm{m}} B$ and $B \in \Sigma_n$ (Π_n , Δ_n), then so is A.
- A Σ_n -complete set is not Π_n , since arithmetical hierarchy is strict.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

K. Tanaka

Relativized arithmetical hierarchy

Complete problems in the arithmetic hierarchy

Polynomial-time reducibility

Polynomial time iierarchy

Now, the following are typical m-complete sets.

- (i) $\mathsf{K} = \{e : e \in W_e\}$ is Σ_1 -complete.
- (ii) $\mathsf{MEM} = \{(e, x) : x \in W_e\}$ is Σ_1 -complete.
- (iii) $\mathsf{EMPTY} = \{e : W_e = \emptyset\}$ is Π_1 -complete.
- (iv) $FIN = \{e : W_e \text{ is finite}\}\$ is Σ_2 -complete.
- (v) TOTAL = $\{e : \{e\}$ is a total function $\}$ is Π_2 -complete.
- (vi) $COF = \{e : \text{the complement of } W_e \text{ is finite} \}$ is Σ_3 -complete.

(vii)
$$\mathsf{REC} = \{e : W_e \text{ is recursive}\}\$$
 is Σ_3 -complete.

14 / 20

Relativized arithmetical hierarc

Complete problem in the arithmetic hierarchy

Polynomial-time reducibility

olynomial tim ierarchy

Polynomial-time reducibility

15 / 20

- Finally, we discuss the polynomial-time versions of m-reduction and T-reduction.
- A is polynomial (time) reducible to B (A ≤_P B) if there exists a polynomial time computable function f and x ∈ A ⇔ f(x) ∈ B. This is a kind of m-reduciblity, which also written as A ≤^P_m B.
- On the other hand, A is said to be polynomial-time Turing reducible to B
 (A ≤^P_T B or A ∈ P^B) if there exists a polynomial q and a deterministic Turing
 machine M^B with oracle B that can decide whether x ∈ A within O(q(|x|)) time.
- We will not consider how to measure the time required for querying the oracle $(n \in B)$. We only treat it very naively as shown in the proof of the next theorem.
- Furthermore, making M^B nondeterministic, we also defines $A \in NP^B$.
- If $A \leq_{\mathrm{m}}^{\mathrm{P}} B$ then $A \leq_{\mathrm{T}}^{\mathrm{P}} B$. The reverse does not hold over a large class such as EXP(TIME) (Ladner, Lynch, and Selman [1975]).

K. Tanaka

Relativized arithmetical hierar

Complete problems in the arithmetic hierarchy

Polynomial-time reducibility

Polynomial time hierarchy

Theorem 7.25 (Baker, Gill, Solovay (1975))

(1) There exists a computable oracle A such that $P^A = NP^A$.

(2) There exists a computable oracle A such that $\mathsf{P}^A \neq \mathsf{NP}^A$.

Proof To show (1)

- Let A be a PSPACE complete problem such as TQBF (Lecture02-06). First, obviously $P^A \subset NP^A \subset PSPACE^A$.
- Since A is PSPACE, one can compute PSPACE^A in PSPACE without using A as an oracle. That is, PSPACE^A ⊂ PSPACE.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- Finally, due to the PSPACE completeness of A, PSPACE $\subset P^A$.
- Therefore, $P^A = NP^A = PSPACE^A$.

K. Tanaka

Relativized arithmetical hiera

Complete problem in the arithmetic hierarchy

Polynomial-time reducibility

olynomial time iierarchy To show (2)

- For any $A \subset \{0,1\}^*$, $B = \{0^{|x|} : x \in A\}$ is in NP^A.
- So, we only need to construct a computable $A = \bigcup_s A_s$ such that $B \notin \mathsf{P}^A$.
- Let M_e enumerate deterministic machines (or sets accepted by such machines) running in polynomial p_e time.
- We want to prove $R_e: M_e^A \neq B$ for all e. That is, for each e, we guarantee the existence of n such that

 $M_e^A(0^n) \neq B(0^n).$

- Assume that A_s is constructed at step s = e. Then, take n greater than any number used in the previous constructions and $2^n > p_e(n)$.
- When $M_e^{A_s}(0^n) = 1$, set $A_{s+1} = A_s$. Then, no words with length n are added to A and also will never be added, and hence we have $B(0^n) = 0$.
- Next assume $M_e^{A_s}(0^n) = 0$. This computation queries the oracle A_s at most $p_e(n)$ times, and so by the assumption $2^n > p_e(n)$, there is a word x of length n that is irrelevant to the oracle query. Then, by setting $A_{s+1} = A_s \cup \{x\}$, we have $M_e^{A_{s+1}}(0^n) = 0$ but $B(0^n) = 1$.

イロン 不良 とくほう イロン しゅう

Relativized arithmetical hierarc

Complete problem in the arithmetic hierarchy

Polynomial-time reducibility

Polynomial time hierarchy

Polynomial time hierarchy

Finally, we introduce the polynomial-time version of arithmetical hierarchy. We defined P^A and NP^A for the set $A \subset \Omega^*$. For a class C of sets,

$$\mathsf{P}(\mathcal{C}) = \bigcup_{A \in \mathcal{C}} \mathsf{P}^A, \quad \mathsf{N}\mathsf{P}(\mathcal{C}) = \bigcup_{A \in \mathcal{C}} \mathsf{N}\mathsf{P}^A.$$

Definition 7.26 (Polynomial time hierarchy)

The polynomial-time hierarchy (PH) is defined inductively defined as follows

- $\Sigma_0^{\mathrm{P}} = \Pi_0^{\mathrm{P}} = \mathsf{P}$,
- $\Sigma_{n+1}^{\mathrm{P}} = \mathsf{NP}(\Sigma_n^{\mathrm{P}})$,
- $\Pi_{n+1}^{P} = \text{co-}\Sigma_{n+1}^{P}$,
- $\Delta_{n+1}^{\mathrm{P}} = \mathsf{P}(\Sigma_n^{\mathrm{P}})$
- $\mathsf{PH} = \bigcup_n \Sigma_n^{\mathsf{P}}$

K. Tanaka

Relativized arithmetical hierard

Complete problems in the arithmetic hierarchy

Polynomial-time reducibility

Polynomial time hierarchy

Then it is easy to see that:

Proof. $NP(PSPACE) \subset PSPACE(PSPACE) \subset PSPACE.$

Lemma 7.28

l emma 7 27

 $PH \subset PSPACE$

If $\mathsf{PH}=\mathsf{PSPACE},$ then $\Sigma_n^{\mathsf{P}}=\Sigma_{n+1}^{\mathsf{P}}$ for some n.

Proof. If $\mathsf{TQBF} \in \Sigma_n^{\mathrm{P}}$ then $\mathsf{PSPACE} \subset \Delta_{n+1}^{\mathrm{P}}$.

- Homework Given A as an NP-complete set, show the following. (1) $\Sigma_1^P = \{B : B \leq_m^P A\}.$ (2) $\Delta_2^P = \{B : B \leq_T^P A\}.$ (3) $\Sigma_{n+1}^P = \Sigma_n^P(A).$

K. Tanaka

Relativized arithmetical hierarchy

Complete problem in the arithmetic hierarchy

Polynomial-time reducibility

Polynomial time hierarchy

Further Reading

- Kozen, D. C. (2006). Theory of computation (Vol. 170). Heidelberg: Springer.
- Soare, R. I. (2016). *Turing computability. Theory and Applications of Computability.* Springer.

Thank you for your attention!