
Logic and
Computation

K. Tanaka

Productive sets

Logic and Computation II
Part 7. Recursion-theoretic hierarchies

Kazuyuki Tanaka

BIMSA

May 27, 2025

1 / 22

Logic and
Computation

K. Tanaka

Productive sets

Logic and Computation II� �
• Part 4. Modal logic

• Part 5. Modal µ-calculus

• Part 6. Automata on infinite objects

• Part 7. Recursion-theoretic hierarchies� �
Part 7. Schedule (tentative)� �
• May 20, (1) Oracle computation and relativization

• May 22, (2) m-reducibility and simple sets

• May 27, (3) T-reducibility and Post’s problem

• May 29, (4) Miscellaneous� �
2 / 22

Logic and
Computation

K. Tanaka

Productive sets

Recap

• A ≤m B, if there exists a computable function f such that for any x,

x ∈ A ⇔ f(x) ∈ B.

• A ≤T B, if A is computable in oracle B (i.e., recursive in χB).

• A set A is said to be (T-)complete/m-complete (with respect to CE) if A is CE and
B ≤T A / B ≤m A for any CE set B.

Theorem 7.12 (Post’s theorem, 1944)

There exists a CE set that is neither computable nor m-complete.

• Post’s problem: Is there a CE set that is neither computable nor (T-)complete.

• To challenge this problem, various notions of CE set (such as immune sets, simple sets,
and productive sets) were introduced. A simple set satisfies Post’s theorem.

3 / 22

Logic and
Computation

K. Tanaka

Productive sets

Definition 7.13

An infinite set B ⊂ N that does not contain an infinite CE subset is called an immune set.
A CE set A ⊂ N whose complement is an immune set is called a simple set.

• A simple set is a CE set that has a nonempty intersection with any infinite CE set and
whose complement is an infinite set.

• Simple sets are not computable. This is because if it were computable, then its
complement would be an infinite CE set.

Lemma 7.14 (Dekker)

Let f : N → N be a computable injection. Then

Range(f) ≡T {n : ∃m > n (f(m) < f(n))}.

The set on the right-hand side is called the deficiency set of f , denoted by Dfc(f).

Lemma 7.15

f : N → N is a computable injection, and if Range(f) is not computable, then Dfc(f) is a
simple set.

4 / 22

Logic and
Computation

K. Tanaka

Productive sets

Incompleteness theorems and simple sets (1/2)� �
• For any CE set C, in a proper arithmetic system T , there exists Σ1 formula φ(x)

n ∈ C ⇔ T ⊢ φ(n).

Now suppose C is a simple set. Since {n : T ⊢ ¬φ(n)} is CE, if it is an infinite
set, it has non-empty intersection with C, which implies the inconsistency of T .

• Thus, if T is a consistent system, {n : T ⊢ ¬φ(n)} is finite.

• On the other hand, since Cc is an infinite set, there are infinitely many n such
that neither φ(n) nor ¬φ(n) can be proved in T .� �

5 / 22

Logic and
Computation

K. Tanaka

Productive sets

Incompleteness theorems and simple sets (2/2)� �
• Various concrete examples of C or φ(x) have been studied in relation to the

incompleteness theorem. One of them is the set of non-random numbers.

• For n ∈ N, µe({e}(0) = n) can be regareded as a minimal program that outputs
n, and such e is called the Kolmogorov complexity of n, represented by K(n).

• When K(n) ≥ n, n is called random.

• Then the set {n : K(n) < n} of non-random numbers is a simple set.

• It turns out that there are only finitely many numbers that can be proven to be
random in an appropriate system of arithmetic.� �

Homework� �
Show that {n : K(n) < n} is a simple set.� �

6 / 22

Logic and
Computation

K. Tanaka

Productive sets

Definition 7.16

A set A ⊂ N that satisfies the following condition is called productive:

• There exists a computable function f such that f(x) ∈ A−Wx for each Wx ⊂ A.

Such an f is called a productive function for A.

Productive sets are not CE sets.

Example� �
The complement Kc of K is a productive set whose productive function is the identity
map λx.x, where x 7→ f(x) is represented as λx.f(x).
To show this, suppose Wx ⊂ Kc. By the definition of K, x ∈ Wx ⇔ x ∈ K. Then either
x ∈ Wx ∧ x ∈ K or x /∈ Wx ∧ x /∈ K, where the former contradicts with Wx ⊂ Kc.
So, only the latter case holds, that is, x ∈ Kc −Wx.� �

7 / 22

Logic and
Computation

K. Tanaka

Productive sets

Lemma 7.17

A productive set contains an infinite CE subset. Hence the complement of a simple set is
not a productive set.

Proof Let C be a productive set with a productive function f . We will construct an
infinite CE subset of C by applying f repeatedly from ∅.
First, let i0 be the index of the empty set. That is,

Wi0 = ∅ ⊂ C.

Suppose now that Win ⊂ C has been constructed. Then, since f(in) ∈ C −Win , by
putting

Win+1 := Win ∪ {f(in)},

we have Win+1
⊂ C.

Here, since in+1 is computable in in, the set {f(i0), f(i1), f(i2), . . . } is an infinite
CE subset of C. The second half follows from the definition of simple sets. □

8 / 22

Logic and
Computation

K. Tanaka

Productive sets

A CE set A such that B ≤m A for any CE set B is called an m-complete CE set. In
particular, K is an m-complete CE set.

Lemma 7.18

If A is an m-complete CE set, then Ac is a productive set.

Proof Let A be an m-complete CE set. Then there exists a computable function f such
that for any x

x ∈ K ⇔ f(x) ∈ A.

Thus Kc = f−1(Ac).
Now let τ(e) be the index of λx.φe(f(x)). That is,

Wτ(e) = {x | φe(f(x)) ↓}

Then, for We ⊂ Ac,

Wτ(e) = {x | f(x) ∈ We} = f−1(We) ⊂ f−1(Ac) = Kc.

From the example in page 7, the identity map λx.x is a productive function on Kc, so

τ(e) ∈ Kc −Wτ(e) = f−1(Ac)− f−1(We) = f−1(Ac −We).

That is, f(τ(e)) ∈ Ac −We. Thus f ◦ τ is a productive function for Ac. □

9 / 22

Logic and
Computation

K. Tanaka

Productive sets

Now we are ready to show the post theorem.

Theorem 7.12 (Post theorem, 1944)

There exists an incomputable CE set that is not m-complete.

Proof By Lemma 7.15, there exists a simple set A. By Lemma 7.17, Ac is not productive.
From the definition of simple sets, A is CE . By Lemma 7.18, A is not m-complete. □

Homework� �
If A ≤m B and A is productive, show that B is also productive.� �
Further Reading� �
• Kozen, D. C. (2006). Theory of computation (Vol. 170). Heidelberg: Springer.

• Soare, R. I. (2016). Turing computability. Theory and Applications of
Computability. Springer.� �

10 / 22

Logic and
Computation

K. Tanaka

Productive sets

Introduction to Post’s problem

• Post’s problem was independently solved by Friedberg (1957) and Muchnik (1956).
Their proof technique is now called the finite injury priority argument.

• Although this proof method is already common in the study of computability, it is still
difficult for a novice to grasp the argument. So, it may be a good idea to start with a
quick look at its outline, and then gradually deepen your understanding by reading the
proof repeatedly.

• Now, if A ≤T B but not B ≤T A, we write A <T B. Then, Post’s problem can be
expressed as follows.

Theorem 7.19 (Friedberg, Mucinik)

There exists a set A such that ∅ <T A <T K.

11 / 22

Logic and
Computation

K. Tanaka

Productive sets

Low sets

• We proved Post’s theorem by showing the existence of a simple set, which is
incomputable CE set that is not m-complete. Now, we introduce the notion of low
sets to extend from “non-m-complete” to “non-T-complete”.

• Fix a set A ⊂ N, and let {φA
e } be a Gödel numbering of partial recursive functions

φ0, φ1, . . . in A. Suppose WA
x and KA are also defined naturally as follows:

WA
x := {z | φA

x (z) ↓},

KA := {x | φA
x (x) ↓} = {x | x ∈ WA

x }.
• We can prove that KA is not computable in A, etc., in the same way as A = ∅.

• KA is also written as A′ and called A-jump.

Definition 7.20

A set A such that A′ ≤T K is called low.

12 / 22

Logic and
Computation

K. Tanaka

Productive sets

Lemma 7.21

A <T K if A is a low set.

Proof. If A is a low set, A <T A′ ≤T K, and so A <T K. □

Thus, to solve Post’s problem, it is sufficient to prove the following:

Lemma 7.22 (main lemma for Post’s problem)

There exists a simple low set.

• We introduce some notations related to oracle computations.

• By “φA
e,s(x) = y”, we denote the computation of φA

e (x) = y will be completed within

s steps, and if it exceeds s steps, we denote it as φA
e,s(x) ↑.

• For a given s, it is decidable whether or not the computation terminates within s
steps. Thus, “φA

e,s(x) = y” is a function computable in A (in fact, primitive recursive
in A). Also, ↑ can be regarded as a finite value.

• It doesn’t matter how you measure the number of steps. What we essentially need is
φA
e (x) = y (<∞) ⇔ ∃σ⊂A ∃s ∀τ⊇σ ∀t≥s φτ

e,t(x) = y.

• Here σ⊂A means σ is an initial segment of χA. Let W
A
e,s := domφA

e,s. 13 / 22

Logic and
Computation

K. Tanaka

Productive sets Proof

• In the finite injury priority argument, a desired CE set A is constructed as the infinite
sum

⋃
s As of finite sets As, where A0 = ∅ and As is “the (finite) set of numbers

that are verified to be members of A within s step”. Once an element is determined
to be a member of A, it is never removed. Thus As ⊂ As+1 for each s.

• To ensure that A is low and simple, we construct As to satisfy several requirements.

• A positive requirement is satisfied by adding some elements to a desired set A and a
negative requirement is by excluding some elements from A.

• Satisfying one requirement may injure another requirement that is already satisfied.
So, priorities are set to all requirements, so that a requirement will be injured by only
a finite number of requirements (with higher-priority).

14 / 22

Logic and
Computation

K. Tanaka

Productive sets

• A is low and simple if all of the following are satisfied.

(i) A is CE,
(ii) Ac is infinite,
(iii) A has a common element with each infinite CE set, and
(iv) KA ≤T K.

• In the above, condition (i) naturally holds from the inductive construction of A.
Condition (ii) is also easily satisfied.

• The essential ones are the positive condition (iii) and the negative condition (iv).
Rewriting these into requirements for each e, we have

Pe : |We| = ∞ ⇒ A ∩We ̸= ∅
Ne : ∃∞s φAs

e,s(e) ↓⇒ φA
e (e) ↓ .

Here, ∃∞ means “exists infinitely many”.

15 / 22

Logic and
Computation

K. Tanaka

Productive sets

• It is clear that (iii) holds if Pe holds for each e.

• Next, we show that (iv) holds if Ne holds for each e. First, assume that s 7→ As is
computable.
If Ne holds, then

∃∞s φAs
e,s(e) ↓ ⇒ φA

e (e) ↓ ⇒ ∃t∀s>t φAs
e,s(e) ↓

⇒ ∀t∃s>t φAs
e,s(e) ↓ ≡ ∃∞s φAs

e,s(e) ↓ .

• Thus, KA = {e : φA
e (e) ↓} is a ∆2 set.

Corollary 7.11 (Revisited)

A is ∆2 if and only if A ≤T K.

• By the above fact, we have KA ≤T K.

16 / 22

Logic and
Computation

K. Tanaka

Productive sets • Now we explain why Ne is a negative requirement.

• We define the following computable function r as a tool to control Ne:

r(e, s) = u(As, e, e, s).

Here, the right-hand side is called the use function, which is 1 + the maximum
number used in the computation of φAs

e,s(e), and 0 if the computation never halts.

• If s 7→ As is assumed to be computable, then r is also computable, which is called the
restraint function.

• That is, given As, if φ
As
e,s(e) ↓, then by not adding elements x less than r(e, s) to A,

we have A↾r = As ↾r, so φA
e (e) ↓, and thus Ne is fullfilled as a negative requirement.

17 / 22

Logic and
Computation

K. Tanaka

Productive sets

• Among all Pe and Ne, set the priority as

P0 > N0 > P1 > N1 > P2 > N2 > . . .

• Note that for any requirement there are only a finitely many requirements with higher
priorities. So, numbers below r(e, s) may be added to A only for Pi with i < e.

• Now, we show the construction of A.

• Step s = 0: Set A0 = ∅.
Step s+ 1: Assume that As is obtained.
If there is an i ≤ s which satisfies (i) Wi,s ∩As = ∅, and

(ii) ∃x ∈ Wi,s(x > 2i ∧ ∀e ≤ i r(e, s) < x),
then take the smallest such i and choose the smallest x that satisfies (ii) and set
As+1 = As ∪ {x}.

Then the requirement Pi is satisfied, and after s+ 1 it will never receive attention.

If there is no such i ≤ s, put As+1 = As.

18 / 22

Logic and
Computation

K. Tanaka

Productive sets
• When As+1 = As ∪ {x}, for e such that x ≤ r(e, s), Ne is injured by x at s+ 1.
However, we have

Claim 1� �
For every e, Ne is injured at most finitely many times.� �

(∵) Ne can be injured only by Pi for i < e.

Claim 2� �
For all e, r(e) = lims r(e, s) exists and hence Ne holds.� �

(∵) Fix any e. From Claim 1, there exists a step se such that Ne is not injured after se.
But if φAs

e,s(e) ↓ for s > se, then for t ≥ s, r(e, t) = r(e, s) and so r(e) = lims r(e, s)

exists. Hence As ↾r = A↾r and φA
e (e) ↓, which implies Ne holds.

19 / 22

Logic and
Computation

K. Tanaka

Productive sets

Claim 3� �
Pi holds for all i.� �

(∵) Suppose that Wi is an infinite set. From Claim 2, we take such an s that

∀t ≥ s ∀e ≤ i r(e, t) = r(e).

We may assume that no Pj with j < i receives attention after s′(≥ s), In addition, take
t > s′ such that

∃x ∈ Wi,t(x > 2i ∧ ∀e ≤ i r(e) < x).

Then we already have Wi,t ∩At ̸= ∅ or Pi receives attention at t+ 1. In either case,
Wi,t ∩At+1 ̸= ∅, and so Pi holds.

From the above, A =
⋃

s∈N As is a simple low set. Also, Ac is infinite, since from condition
(ii) that x > 2i, we have | {x ∈ A : x ≤ 2i} |≤ i. □

20 / 22

Logic and
Computation

K. Tanaka

Productive sets

Friedberg and Mucinik actually proved the following assertion.

Theorem 7.23 (Friedberg, Muchnik)

There exist CE sets A,B such that A ̸≤T B and B ̸≤T A.

It is clear that A,B in this theorem are neither computable nor complete. By the finite
injury priority argument, these sets are constructed as A =

⋃
s As and B =

⋃
s Bs with the

following requirements:

R2e : A ̸= WB
e

R2e+1 : B ̸= WA
e

Among many generalizations of the above theorem, the following theorem is particularly
important.

Theorem 7.24 (G. E. Sacks)

Let C be an incomplete CE set.
(1) There is a simple set A such that C ̸≤T A.
(2) There exists low CE sets A,B s.t. A ̸≤T B and B ̸≤T A with C = A ∪B and
A ∩B = ∅.

21 / 22

Logic and
Computation

K. Tanaka

Productive sets

Thank you for your attention!

22 / 22

	Productive sets

