K. Tanaka

Productive sets

Logic and Computation II Part 7. Recursion-theoretic hierarchies

Kazuyuki Tanaka

BIMSA

May 27, 2025

・ロト ・四ト ・ヨト ・ヨト

K. Tanaka

Productive sets

- Logic and Computation II

- Part 4. Modal logic
- Part 5. Modal μ -calculus
- Part 6. Automata on infinite objects
- Part 7. Recursion-theoretic hierarchies

– Part 7. Schedule (tentative) -

• May 20, (1) Oracle computation and relativization

イロト 不得下 イヨト イヨト

- May 22, (2) m-reducibility and simple sets
- May 27, (3) T-reducibility and Post's problem
- May 29, (4) Miscellaneous

K. Tanaka

Productive sets

• $A \leq_{\mathrm{m}} B$, if there exists a computable function f such that for any x,

 $x \in A \quad \Leftrightarrow \quad f(x) \in B.$

- $A \leq_{\mathrm{T}} B$, if A is computable in oracle B (i.e., recursive in χ_B).
- A set A is said to be (T-)complete/m-complete (with respect to CE) if A is CE and B ≤_T A / B ≤_m A for any CE set B.

Theorem 7.12 (Post's theorem, 1944)

There exists a CE set that is neither computable nor m-complete.

- Post's problem: Is there a CE set that is neither computable nor (T-)complete.
- To challenge this problem, various notions of CE set (such as immune sets, simple sets, and productive sets) were introduced. A simple set satisfies Post's theorem.

Recap

K. Tanaka

roductive sets

Definition 7.13

An infinite set $B \subset \mathbb{N}$ that does not contain an infinite CE subset is called an **immune set**. A CE set $A \subset \mathbb{N}$ whose complement is an immune set is called a **simple set**.

- A simple set is a CE set that has a nonempty intersection with any infinite CE set and whose complement is an infinite set.
- Simple sets are not computable. This is because if it were computable, then its complement would be an infinite CE set.

Lemma 7.14 (Dekker)

Let $f:\mathbb{N}\rightarrow\mathbb{N}$ be a computable injection. Then

```
\operatorname{Range}(f) \equiv_{\mathrm{T}} \{ n : \exists m > n \ (f(m) < f(n)) \}.
```

The set on the right-hand side is called the **deficiency set** of f, denoted by Dfc(f).

Lemma 7.15

 $f: \mathbb{N} \to \mathbb{N}$ is a computable injection, and if $\operatorname{Range}(f)$ is not computable, then $\operatorname{Dfc}(f)$ is a simple set.

K. Tanaka

Productive sets

 \sim Incompleteness theorems and simple sets (1/2)

• For any CE set C, in a proper arithmetic system T, there exists Σ_1 formula $\varphi(x)$

 $n \in C \Leftrightarrow T \vdash \varphi(\overline{n}).$

Now suppose C is a simple set. Since $\{n: T \vdash \neg \varphi(\overline{n})\}$ is CE, if it is an infinite set, it has non-empty intersection with C, which implies the inconsistency of T.

- Thus, if T is a consistent system, $\{n: T \vdash \neg \varphi(\overline{n})\}$ is finite.
- On the other hand, since C^c is an infinite set, there are infinitely many n such that neither $\varphi(\overline{n})$ nor $\neg \varphi(\overline{n})$ can be proved in T.

K. Tanaka

 \sim Incompleteness theorems and simple sets (2/2) \cdot

- Various concrete examples of C or $\varphi(x)$ have been studied in relation to the incompleteness theorem. One of them is the set of non-random numbers.
- For $n \in \mathbb{N}$, $\mu e(\{e\}(0) = n)$ can be regarded as a minimal program that outputs n, and such e is called the **Kolmogorov complexity** of n, represented by K(n).
- When $K(n) \ge n$, n is called **random**.
- Then the set $\{n : K(n) < n\}$ of non-random numbers is a simple set.
- It turns out that there are only finitely many numbers that can be proven to be random in an appropriate system of arithmetic.

Homework

```
Show that \{n : K(n) < n\} is a simple set.
```

K. Tanaka

Productive sets

Definition 7.16

A set $A \subset \mathbb{N}$ that satisfies the following condition is called **productive**:

• There exists a computable function f such that $f(x) \in A - W_x$ for each $W_x \subset A$.

Such an f is called a **productive function** for A.

Productive sets are not CE sets.

🔶 Example -

The complement K^c of K is a productive set whose productive function is the identity map $\lambda x.x$, where $x \mapsto f(x)$ is represented as $\lambda x.f(x)$. To show this, suppose $W_x \subset K^c$. By the definition of K, $x \in W_x \Leftrightarrow x \in K$. Then either $x \in W_x \land x \in K$ or $x \notin W_x \land x \notin K$, where the former contradicts with $W_x \subset K^c$. So, only the latter case holds, that is, $x \in K^c - W_x$.

K. Tanaka

Productive sets

Lemma 7.17

A productive set contains an infinite CE subset. Hence the complement of a simple set is not a productive set.

Proof Let C be a productive set with a productive function f. We will construct an infinite CE subset of C by applying f repeatedly from \emptyset . First, let i_0 be the index of the empty set. That is,

$$W_{i_0} = \emptyset \subset C.$$

Suppose now that $W_{i_n} \subset C$ has been constructed. Then, since $f(i_n) \in C - W_{i_n}$, by putting

$$W_{i_{n+1}} := W_{i_n} \cup \{f(i_n)\},\$$

we have $W_{i_{n+1}} \subset C$. Here, since i_{n+1} is computable in i_n , the set $\{f(i_0), f(i_1), f(i_2), \ldots\}$ is an infinite CE subset of C. The second half follows from the definition of simple sets.

3 / 22

K. Tanaka

Productive sets

A CE set A such that $B\leq_{\rm m} A$ for any CE set B is called an m-complete CE set. In particular, K is an m-complete CE set.

Lemma 7.18

If A is an m-complete CE set, then A^c is a productive set.

 \mathbf{Proof} Let A be an m-complete CE set. Then there exists a computable function f such that for any x

$$x \in \mathbf{K} \Leftrightarrow f(x) \in A.$$

Thus $\mathbf{K}^c = f^{-1}(A^c)$. Now let $\tau(e)$ be the index of $\lambda x.\varphi_e(f(x))$. That is,

$$W_{\tau(e)} = \{ x \mid \varphi_e(f(x)) \downarrow \}$$

Then, for $W_e \subset A^c$,

$$W_{\tau(e)} = \{x \mid f(x) \in W_e\} = f^{-1}(W_e) \subset f^{-1}(A^c) = \mathbf{K}^c$$

From the example in page 7, the identity map $\lambda x.x$ is a productive function on \mathbf{K}^c , so

$$\tau(e) \in \mathbf{K}^c - W_{\tau(e)} = f^{-1}(A^c) - f^{-1}(W_e) = f^{-1}(A^c - W_e).$$

That is, $f(\tau(e)) \in A^c - W_e$. Thus $f \circ \tau$ is a productive function for $A^c_{\mathbb{P}}$, as the set of $\mathbb{P}_{\mathbb{Q}}$ and $\mathbb{P}_{\mathbb{Q}}$.

/ 22

K. Tanaka

Productive sets

Now we are ready to show the post theorem.

Theorem 7.12 (Post theorem, 1944)

There exists an incomputable CE set that is not m-complete.

Proof By Lemma 7.15, there exists a simple set A. By Lemma 7.17, A^c is not productive. From the definition of simple sets, A is CE. By Lemma 7.18, A is not m-complete.

/ Homework

If $A \leq_{\mathrm{m}} B$ and A is productive, show that B is also productive.

Further Reading

- Kozen, D. C. (2006). Theory of computation (Vol. 170). Heidelberg: Springer.
- Soare, R. I. (2016). *Turing computability. Theory and Applications of Computability.* Springer.

K. Tanaka

Productive sets

Introduction to Post's problem

- Post's problem was independently solved by Friedberg (1957) and Muchnik (1956). Their proof technique is now called the **finite injury priority argument**.
- Although this proof method is already common in the study of computability, it is still difficult for a novice to grasp the argument. So, it may be a good idea to start with a quick look at its outline, and then gradually deepen your understanding by reading the proof repeatedly.
- Now, if $A \leq_T B$ but not $B \leq_T A$, we write $A <_T B$. Then, Post's problem can be expressed as follows.

Theorem 7.19 (Friedberg, Mucinik)

There exists a set A such that $\varnothing <_{\rm T} A <_{\rm T} {\rm K}$.

Low sets

人口》 人間》 人名米人名米人

- Logic and Computation
- K. Tanaka
- Productive sets

- We proved Post's theorem by showing the existence of a simple set, which is incomputable CE set that is not m-complete. Now, we introduce the notion of **low** sets to extend from "non-m-complete" to "non-T-complete".
- Fix a set $A \subset \mathbb{N}$, and let $\{\varphi_e^A\}$ be a Gödel numbering of partial recursive functions $\varphi_0, \varphi_1, \ldots$ in A. Suppose W_x^A and K^A are also defined naturally as follows:

$$\begin{split} W^A_x &:= \{ z \mid \varphi^A_x(z) \downarrow \}, \\ \mathbf{K}^A &:= \{ x \mid \varphi^A_x(x) \downarrow \} = \{ x \mid x \in W^A_x \}. \end{split}$$

- We can prove that K^A is not computable in A, etc., in the same way as $A = \emptyset$.
- \mathbf{K}^A is also written as A' and called A-jump.

Definition 7.20

A set A such that $A' \leq_{\mathrm{T}} \mathrm{K}$ is called **low**.

K. Tanaka

Productive sets

Lemma 7.21

$A <_{T} K$ if A is a low set. **Proof.** If A is a low set, $A <_{T} A' <_{T} K$, and so $A <_{T} K$.

Thus, to solve Post's problem, it is sufficient to prove the following:

Lemma 7.22 (main lemma for Post's problem)

There exists a simple low set.

- We introduce some notations related to oracle computations.
- By " $\varphi_{e,s}^A(x) = y$ ", we denote the computation of $\varphi_e^A(x) = y$ will be completed within s steps, and if it exceeds s steps, we denote it as $\varphi_{e,s}^A(x) \uparrow$.
- For a given s, it is decidable whether or not the computation terminates within s steps. Thus, " $\varphi_{e,s}^A(x) = y$ " is a function computable in A (in fact, primitive recursive in A). Also, \uparrow can be regarded as a finite value.
- It doesn't matter how you measure the number of steps. What we essentially need is $\varphi^A_e(x) = y \ (<\infty) \Leftrightarrow \exists \sigma \subset A \ \exists s \ \forall \tau \supseteq \sigma \ \forall t \ge s \ \varphi^\tau_{e,t}(x) = y.$
- Here $\sigma \subset A$ means σ is an initial segment of χ_A . Let $W_{e,s}^A := \operatorname{dom} \varphi_{e,s}^A$. 13 / 22

K. Tanaka

Productive sets

Proof

- In the finite injury priority argument, a desired CE set A is constructed as the infinite sum $\bigcup_s A_s$ of finite sets A_s , where $A_0 = \emptyset$ and A_s is "the (finite) set of numbers that are verified to be members of A within s step". Once an element is determined to be a member of A, it is never removed. Thus $A_s \subset A_{s+1}$ for each s.
- To ensure that A is low and simple, we construct A_s to satisfy several requirements.
- A **positive requirement** is satisfied by adding some elements to a desired set A and a **negative requirement** is by excluding some elements from A.
- Satisfying one requirement may **injure** another requirement that is already satisfied. So, **priorities** are set to all requirements, so that a requirement will be injured by only a finite number of requirements (with higher-priority).

K. Tanaka

Productive sets

- $\bullet~A$ is low and simple if all of the following are satisfied.
 - (i) *A* is CE,
 - (ii) A^c is infinite,
 - (iii) \boldsymbol{A} has a common element with each infinite CE set, and
 - (iv) $\mathbf{K}^A \leq_{\mathbf{T}} \mathbf{K}$.
- In the above, condition (i) naturally holds from the inductive construction of *A*. Condition (ii) is also easily satisfied.
- The essential ones are the positive condition (iii) and the negative condition (iv). Rewriting these into *requirements* for each *e*, we have

$$\begin{array}{rcl} P_e & : & |W_e| = \infty \Rightarrow A \cap W_e \neq \varnothing \\ N_e & : & \exists^{\infty} s \ \varphi^{A_s}_{e,s}(e) \downarrow \Rightarrow \varphi^{A}_e(e) \downarrow \,. \end{array}$$

15 / 22

Here, \exists^{∞} means "exists infinitely many".

K. Tanaka

Productive sets

- It is clear that (iii) holds if P_e holds for each e.
- Next, we show that (iv) holds if N_e holds for each e. First, assume that $s \mapsto A_s$ is computable.

If N_e holds, then

$$\begin{split} \exists^{\infty} s \ \varphi_{e,s}^{A_s}(e) \downarrow \Rightarrow \ \varphi_e^A(e) \downarrow \Rightarrow \ \exists t \forall s > t \ \varphi_{e,s}^{A_s}(e) \downarrow \\ \Rightarrow \ \forall t \exists s > t \ \varphi_{e,s}^{A_s}(e) \downarrow \equiv \ \exists^{\infty} s \ \varphi_{e,s}^{A_s}(e) \downarrow . \end{split}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

16 / 22

• Thus,
$$\mathbf{K}^A = \{e: \varphi_e^A(e) \downarrow\}$$
 is a Δ_2 set.

Corollary 7.11 (Revisited)

 $A \text{ is } \Delta_2 \text{ if and only if } A \leq_T \mathbf{K}.$

• By the above fact, we have $K^A \leq_{\rm T} K.$

K. Tanaka

Productive sets

- Now we explain why N_e is a negative requirement.
- We define the following computable function r as a tool to control N_e :

$$r(e,s) = u(A_s, e, e, s).$$

Here, the right-hand side is called the **use function**, which is 1 + the maximum number used in the computation of $\varphi_{e,s}^{A_s}(e)$, and 0 if the computation never halts.

- If $s \mapsto A_s$ is assumed to be computable, then r is also computable, which is called the restraint function.
- That is, given A_s , if $\varphi_{e,s}^{A_s}(e) \downarrow$, then by not adding elements x less than r(e,s) to A, we have $A \upharpoonright r = A_s \upharpoonright r$, so $\varphi_e^A(e) \downarrow$, and thus N_e is fullfilled as a negative requirement.

17 / 22

- K. Tanaka
- Productive sets

• Among all P_e and N_e , set the priority as

 $P_0 > N_0 > P_1 > N_1 > P_2 > N_2 > \dots$

- Note that for any requirement there are only a finitely many requirements with higher priorities. So, numbers below r(e, s) may be added to A only for P_i with i < e.
- Now, we show the construction of A.
- Step s = 0: Set $A_0 = \emptyset$.

Step s + 1: Assume that A_s is obtained.

If there is an $i \leq s$ which satisfies (i) $W_{i,s} \cap A_s = \emptyset$, and

(ii) $\exists x \in W_{i,s}(x > 2i \land \forall e \le i \ r(e,s) < x)$,

then take the smallest such i and choose the smallest x that satisfies (ii) and set $A_{s+1} = A_s \cup \{x\}.$

Then the requirement P_i is satisfied, and after s+1 it will never receive attention.

If there is no such $i \leq s$, put $A_{s+1} = A_s$.

K. Tanaka

Productive sets

• When $A_{s+1} = A_s \cup \{x\}$, for e such that $x \le r(e,s)$, N_e is injured by x at s+1. However, we have

✓ Claim 1

For every $e_{\rm r}$ N_e is injured at most finitely many times.

(::) N_e can be injured only by P_i for i < e.

Claim 2

For all e, $r(e) = \lim_{s} r(e, s)$ exists and hence N_e holds.

(:.) Fix any e. From Claim 1, there exists a step s_e such that N_e is not injured after s_e . But if $\varphi_{e,s}^{A_s}(e) \downarrow$ for $s > s_e$, then for $t \ge s$, r(e,t) = r(e,s) and so $r(e) = \lim_s r(e,s)$ exists. Hence $A_s \upharpoonright r = A \upharpoonright r$ and $\varphi_e^A(e) \downarrow$, which implies N_e holds.

19 / 22

化白豆 化间面 化医医化医医二 医

K. Tanaka

Productive sets

- Claim 3

 P_i holds for all i.

 (\because) Suppose that W_i is an infinite set. From Claim 2, we take such an s that

 $\forall t \ge s \ \forall e \le i \ r(e,t) = r(e).$

We may assume that no P_j with j < i receives attention after $s' (\geq s),$ In addition, take t > s' such that

$$\exists x \in W_{i,t} (x > 2i \land \forall e \le i \ r(e) < x).$$

Then we already have $W_{i,t} \cap A_t \neq \emptyset$ or P_i receives attention at t+1. In either case, $W_{i,t} \cap A_{t+1} \neq \emptyset$, and so P_i holds.

From the above, $A = \bigcup_{s \in \mathbb{N}} A_s$ is a simple low set. Also, A^c is infinite, since from condition (ii) that x > 2i, we have $|\{x \in A : x \le 2i\}| \le i$.

K. Tanaka

Productive sets

Friedberg and Mucinik actually proved the following assertion.

Theorem 7.23 (Friedberg, Muchnik)

There exist CE sets A, B such that $A \not\leq_{\mathrm{T}} B$ and $B \not\leq_{\mathrm{T}} A$.

It is clear that A, B in this theorem are neither computable nor complete. By the finite injury priority argument, these sets are constructed as $A = \bigcup_s A_s$ and $B = \bigcup_s B_s$ with the following requirements:

$$R_{2e} : A \neq W_e^B$$
$$R_{2e+1} : B \neq W_e^A$$

Among many generalizations of the above theorem, the following theorem is particularly important.

Theorem 7.24 (G. E. Sacks)

Let C be an incomplete CE set. (1) There is a simple set A such that $C \not\leq_{\mathrm{T}} A$. (2) There exists low CE sets A, B s.t. $A \not\leq_{\mathrm{T}} B$ and $B \not\leq_{\mathrm{T}} A$ with $C = A \cup B$ and $A \cap B = \emptyset$.

K. Tanaka

Productive sets

Thank you for your attention!

<ロト < 団ト < 国ト < 国ト < 国ト < 国 > のへの 22 / 22