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~ Logic and Computation Il ~
® Part 4. Modal logic
® Part 5. Modal p-calculus
® Part 6. Automata on infinite objects
® Part 7. Recursion-theoretic hierarchies
~ Part 7. Schedule (tentative) ~
® May 20, (1) Oracle computation and relativization
® May 22, (2) m-reducibility and simple sets
® May 27, (3) T-reducibility and Post’s problem
® May 29, (4) Miscellaneous
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Productive sets

o A <., B, if there exists a computable function f such that for any =z,
xreA & f(x)eB.

e A <t B, if Ais computable in oracle B (i.e., recursive in xp).

® A set A is said to be (T-)complete/m-complete (with respect to CE) if A is CE and
B <r A/ B <,, A for any CE set B.

Theorem 7.12 (Post's theorem, 1944)

There exists a CE set that is neither computable nor m-complete.

® Post’s problem: Is there a CE set that is neither computable nor (T-)complete.

® To challenge this problem, various notions of CE set (such as immune sets, simple sets,
and productive sets) were introduced. A simple set satisfies Post's theorem.
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Definition 7.13

An infinite set B C N that does not contain an infinite CE subset is called an immune set.
A CEset A C N whose complement is an immune set is called a simple set.

® A simple set is a CEset that has a nonempty intersection with any infinite CE set and
whose complement is an infinite set.

® Simple sets are not computable. This is because if it were computable, then its
complement would be an infinite CE set.

Lemma 7.14 (Dekker)
Let f: N — N be a computable injection. Then
Range(f) =1 {n:3Im >n (f(m) < f(n))}.

The set on the right-hand side is called the deficiency set of f, denoted by Dfc(f).

Lemma 7.15
f:N — Nis a computable injection, and if Range(f) is not computable, then Dfc(f) is a

simple set. 4/22
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~ Incompleteness theorems and simple sets (1/2) ~
® For any CEset C, in a proper arithmetic system T, there exists ¥; formula ¢(z)
neC<eTk o).
Now suppose C'is a simple set. Since {n: T F —¢(m)} is CE, if it is an infinite
set, it has non-empty intersection with C', which implies the inconsistency of T'.

® Thus, if T is a consistent system, {n : T F —p(7)} is finite.

® On the other hand, since C°€ is an infinite set, there are infinitely many n such
that neither ¢(7) nor —p(m) can be proved in T'.

- J
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~ Incompleteness theorems and simple sets (2/2)

-

® Various concrete examples of C or ¢(x) have been studied in relation to the
incompleteness theorem. One of them is the set of non-random numbers.

® Forn € N, ue({e}(0) =n) can be regareded as a minimal program that outputs
n, and such e is called the Kolmogorov complexity of n, represented by K(n).

® When K(n) > n, n is called random.

® Then the set {n : K(n) < n} of non-random numbers is a simple set.

® |t turns out that there are only finitely many numbers that can be proven to be

random in an appropriate system of arithmetic.

~

J

Homework

Show that {n : K(n) < n} is a simple set.
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Productive sets

A set A C N that satisfies the following condition is called productive:
e There exists a computable function f such that f(z) € A — W, for each W, C A.

Such an f is called a productive function for A.

Productive sets are not CE sets.

Example

The complement K¢ of K is a productive set whose productive function is the identity
map Az.x, where © — f(z) is represented as \x.f(x).

To show this, suppose W, C K¢. By the definition of K, x € W, < x € K. Then either
€W, Nx e Korax¢ W, ANx ¢ K, where the former contradicts with W, C K°.
So, only the latter case holds, that is, x € K¢ — W,,.
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Productive sets

A productive set contains an infinite CE subset. Hence the complement of a simple set is
not a productive set.

Proof Let C be a productive set with a productive function f. We will construct an
infinite CE subset of C' by applying f repeatedly from &.
First, let i be the index of the empty set. That is,

Wio =g cC.
Suppose now that W; C C has been constructed. Then, since f(i,) € C — W, , by
putting
Win+1 = Win U {f(z’ﬂ)}7
we have W; . C C.
Here, since i1 is computable in i, the set {f(io), f(i1), f(i2),...} is an infinite
CE subset of C. The second half follows from the definition of simple sets. O
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Logic and A CEset A such that B <,, A for any CEset B is called an m-complete CEset. In

Computation . i
T particular, K is an m-complete CE set.
. lanaka

Productive sets Le m m a 7 . 18
If Ais an m-complete CE set, then A€ is a productive set.
Proof Let A be an m-complete CEset. Then there exists a computable function f such

that for any =
xreK<& f(x) € A

Thus K¢ = f~1(A°).
Now let 7(e) be the index of Az.@.(f(z)). That is,
Wiy = {z | pe(f(2)) 1}
Then, for W, C A€,
Wiiey = {a | f(x) e W} = f71(We) € fH(A°) =K.
From the example in page 7, the identity map Az.x is a productive function on K¢, so
T(e) € KC =Wy = [T (AY) = f7H(We) = f7H(A° = W),

That is, f(7(e)) € A° — W,. Thus f o is a productive function for A¢. O
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Producie sis Theorem 7.12 (Post theorem, 1944)

There exists an incomputable CE set that is not m-complete.

Proof By Lemma 7.15, there exists a simple set A. By Lemma 7.17, A¢ is not productive.

From the definition of simple sets, A is CE. By Lemma 7.18, A is not m-complete. g

~ Homework ~
If A <,, B and A is productive, show that B is also productive.

N J

~ Further Reading ~

® Kozen, D. C. (2006). Theory of computation (Vol. 170). Heidelberg: Springer.

® Soare, R. I. (2016). Turing computability. Theory and Applications of
Computability. Springer.
= J
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Productive sets

® Post’s problem was independently solved by Friedberg (1957) and Muchnik (1956).
Their proof technique is now called the finite injury priority argument.

® Although this proof method is already common in the study of computability, it is still
difficult for a novice to grasp the argument. So, it may be a good idea to start with a
quick look at its outline, and then gradually deepen your understanding by reading the
proof repeatedly.

® Now, if A <t B but not B <1 A, we write A <t B. Then, Post’s problem can be
expressed as follows.

Theorem 7.19 (Friedberg, Mucinik)

There exists a set A such that @ <t A <1 K.
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Productive sets

® We proved Post's theorem by showing the existence of a simple set, which is
incomputable CE set that is not m-complete. Now, we introduce the notion of low
sets to extend from “non-m-complete” to “non-T-complete”.

® Fix aset ACN, and let {7} be a Godel numbering of partial recursive functions
©0,¢1,- - in A. Suppose W and K4 are also defined naturally as follows:

Witi={z ] 92 (2) 1},
K' = {zlep@) ) = {zlazew}
® We can prove that K4 is not computable in A, etc., in the same way as A = @.
e K4 is also written as A’ and called A-jump.

Definition 7.20
A set A such that A’ <t K is called low.
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Lemma 7.21
A<t Kif Ais a low set.

Proof. If Aisalowset, A <t A’ <7 K, and so A <1 K. O

Thus, to solve Post’s problem, it is sufficient to prove the following:

Lemma 7.22 (main lemma for Post's problem)

There exists a simple low set.

We introduce some notations related to oracle computations.

By “@és(x) =", we denote the computation of ¢ () = y will be completed within
s steps, and if it exceeds s steps, we denote it as @és(m) 0

For a given s, it is decidable whether or not the computation terminates within s
steps. Thus, “pZ',(z) =y" is a function computable in A (in fact, primitive recursive
in A). Also, 1 can be regarded as a finite value.

It doesn’'t matter how you measure the number of steps. What we essentially need is
pMx) =y (<o0) & o CAIs VT D0 Vt>s ¢f (x) = y.

Here o C A means o is an initial segment of x 4. Let W2, := domep!,. 13 /22
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® In the finite injury priority argument, a desired CEset A is constructed as the infinite
sum | J, A of finite sets A,, where Ay = @ and A, is “the (finite) set of numbers
that are verified to be members of A within s step”. Once an element is determined
to be a member of A, it is never removed. Thus A; C A1 for each s.

® To ensure that A is low and simple, we construct Ay to satisfy several requirements.

® A positive requirement is satisfied by adding some elements to a desired set A and a
negative requirement is by excluding some elements from A.

® Satisfying one requirement may injure another requirement that is already satisfied.
So, priorities are set to all requirements, so that a requirement will be injured by only
a finite number of requirements (with higher-priority).

14 /22
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peess (i) Ais CE,
(i) A¢ is infinite,
(iii) A has a common element with each infinite CE set, and
(iv) K4 <t K.

® In the above, condition (i) naturally holds from the inductive construction of A.
Condition (ii) is also easily satisfied.

® The essential ones are the positive condition (iii) and the negative condition (iv).
Rewriting these into requirements for each e, we have

P, . |We=0c0=>ANW, 49>
Ne @ 3%sgli(e) 1= ¢i(e) |-

Here, 3°° means “exists infinitely many”.

15 /22



Logic and
Computation

K. Tanaka ® |t is clear that (iii) holds if P, holds for each e.

Productive sets

® Next, we show that (iv) holds if N, holds for each e. First, assume that s — A is

computable.
If N, holds, then

3%s piile) L = @fi(e) L= s>t gie) |
= Vids>t pli(e) L= I%s pili(e) |
® Thus, KA = {e: p?(e) |} isa Ay set.
Corollary 7.11 (Revisited)

A'is As if and only if A <r K.

® By the above fact, we have KA <r K.
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Now we explain why N, is a negative requirement.

We define the following computable function r as a tool to control N,:
r(e,s) = u(As, e, e, s).

Here, the right-hand side is called the use function, which is 1 + the maximum
number used in the computation of goé;(e), and 0O if the computation never halts.

If s — A, is assumed to be computable, then 7 is also computable, which is called the
restraint function.

That is, given A, if gpég(e) 1, then by not adding elements x less than r(e, s) to A,
we have Alr = A, [r, so @eA(e) J, and thus N, is fullfilled as a negative requirement.
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Among all P, and N,, set the priority as
Py>Ng>P; >Ny >PFP, >Ny > ...

Note that for any requirement there are only a finitely many requirements with higher
priorities. So, numbers below r(e, s) may be added to A only for P; with i < e.

Now, we show the construction of A.

Step s = 0: Set Ay = @.
Step s + 1: Assume that A, is obtained.
If there is an i < s which satisfies (i) W; ;N As = &, and
(i) Jz € Wi s(x > 2i AVe <ir(e,s) <x),
then take the smallest such i and choose the smallest = that satisfies (ii) and set
A5+1 = AS U {l‘}

Then the requirement P; is satisfied, and after s + 1 it will never receive attention.

If there is no such i <'s, put A, = As.

18 /22
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i ® When Agy 1 = Ag U {a}, for e such that = < r(e, s), N, is injured by x at s + 1.
However, we have
Claim 1
[For every e, N, is injured at most finitely many times. ]

(") Ne can be injured only by P; for i < e.

Claim 2
[For all e, r(e) = lim, (e, s) exists and hence N, holds. ]

() Fix any e. From Claim 1, there exists a step s. such that N, is not injured after s..
But if p7ts(e) | for s > s, then for t > s, (e, t) = r(e,s) and so r(e) = lim, 7 (e, s)
exists. Hence A, [r = A[r and p2(e) |, which implies N, holds.
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P; holds for all 3.

(.) Suppose that W; is an infinite set. From Claim 2, we take such an s that

Yt > s Ve <ir(et)=r(e).

We may assume that no P; with j < i receives attention after s'(> s), In addition, take
t > s’ such that
dxr € Wii(x >2i AVe <ir(e) <x).

Then we already have W, ; N A; # @ or P; receives attention at £+ 1. In either case,
Wit N A1 # @, and so P; holds.

From the above, A = |,y As is a simple low set. Also, A° is infinite, since from condition
(i) that = > 2i, we have | {z € A: 2 < 2i} |< . O
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K. Tanaka Theorem 7.23 (Friedberg, Muchnik)
B There exist CEsets A, B such that A £1 B and B £1 A.

It is clear that A, B in this theorem are neither computable nor complete. By the finite
injury priority argument, these sets are constructed as A = |J, As and B = J, B; with the
following requirements:

Roe : A# WP
R25+1 . B 75 WeA

Among many generalizations of the above theorem, the following theorem is particularly
important.

Theorem 7.24 (G. E. Sacks)

Let C be an incomplete CE set.

(1) There is a simple set A such that C £ A.

(2) There exists low CEsets A, B s.t. A £t B and B £1 A with C = AU B and
ANB=2.
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Thank you for your attention!
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