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Logic and Computation II� �
• Part 4. Modal logic

• Part 5. Modal µ-calculus

• Part 6. Automata on infinite objects

• Part 7. Recursion-theoretic hierarchies� �
Part 6. Schedule (tentative)� �
• May 20, (1) Oracle computation and relativization

• May 22, (2) m-reducibility and simple sets

• May 27, (3) T-reducibility and Post’s problem

• May 29, (4) Arithmetical hierarchy� �
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Recap
• Fix a function ξ : N → N. Then, a function f : Nn → N is said to be computable in
oracle ξ if there exists an algorithm that computes f using ξ as a database.

• The three classes of functions (primitive recursive / recursive / partial recursive) are
extended as primitive recursive in ξ / recursive in ξ / partial recursive in ξ, by
adding ξ to the initial functions in each definition. (Definition 7.1)

• Almost all the theorems of recursion theory can be extended to statements with oracle
ξ, which are called relativizations of the original theorems. (Theorems 7.3-5).

• Relativized Kleene normal form theorem 7.2: A partial recursive function in ξ can
be expressed as U(µyT ξ(e, x1, · · · , xn, y)), also denoted {e}ξ(x1, · · · , xn).

• A partial recursive functional F : Nn × (NN)k → N is represented as

F (x1, · · · , xn, ξ1, · · · , ξk) = U(µyT (e, x1, · · · , xn, y, ξ1 ↾y, · · · , ξk ↾y)).
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Definition 7.6 (Relativized arithmetic hierarchy)

Given a ξ : N → N and k ≥ 0, the following set A is said to be Σ2k+1(ξ) (with index e).

(x1, . . . , xn) ∈ A⇔ ∃y1∀y2 · · · ∃y2k−1∀y2k{e}ξ(x1, . . . , xn, y1, . . . , y2k) ↓ .

The following set A is a Σ2k+2(ξ) set (with index e).

(x1, . . . , xn) ∈ A⇔ ∃y1∀y2 · · · ∀y2k∃y2k+1{e}ξ(x1, . . . , xn, y1, . . . , y2k) ↑ .

Πk(ξ) is the complement of Σk(ξ). ∆k(ξ) is Σk(ξ) and Πk(ξ).

• Here, ↓ / ↑ means that the function is defined / undefined.
• A Σ1(ξ) set is also called a ξ-CE set.
• We fix the arity n of set A ⊂ Nn arbitrarily so that Σk(ξ) and Πk(ξ) sets are treated
complementary. In fact, it is enough to consider the case n = 1 using the sequence
code c(x, i), i.e., a primitive recursive function that extracts the i-th element xi in the
sequence with code x. For instance, A ⊂ Nn is identified with the following set

{x ∈ N : (c(x, 0), · · · , c(x, n− 1)) ∈ A}.
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Theorem 7.7 (Relativized arithmetical enumeration theorem)

For each k ≥ 1, there exists Σk(ξ) (or Πk(ξ)) subset U of Nn+1 with the following
property (U is called a universal set). For any Σk(ξ) (or Πk(ξ)) subset R of Nn, there
exists some e such that

R(x1, · · · , xn) ⇔ U(e, x1, · · · , xn).

Proof.

• In the case of Σ1(ξ), it follows from the relativized enumeration theorem. For the
Π1(ξ) set, take the complement of universal set U for Σ1(ξ).

• For k > 1, a Σk(ξ) formula is obtained from a Σ1(ξ) or Π1(ξ) formula by adding
appropriate arithmetical quantifiers in the front. Since there is a universal set (or
formula) for Σ1(ξ) or Π1(ξ), the formula obtained from it by adding appropriate
arithmetical quantifiers is universal for Σk(ξ). Similarly for Πk(ξ). □
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Theorem 7.8 (Relativized arithmetical hierarchy theorem)

For every k ≥ 1 ,
Σk(ξ) ∪Πk(ξ) ⊊ ∆k+1(ξ).

Proof.

• keys: relativized arithmetical enumeration theorem and diagonalization argument.

• By the relativized arithmetical enumeration theorem, there exists a universal Σk(ξ)
subset U of N2. Then consider the Πk(ξ) subset V (e) of N1 defined by ¬U(e, e).

• Then, V (e) is not Σk(ξ). Suppose V (e) were Σk(ξ). There would exist some e0 such
that V (e) ⇔ U(e0, e). By substituting e = e0, we have
¬U(e0, e0) ⇔ V (e0) ⇔ U(e0, e0), which is a contradiction.

• Furthermore, by setting W (e) ⇔ ¬V (e), W (e) is not Πk(ξ), but a Σk(ξ) set.

• So, if we set Z(e, d) ⇔ (V (e) ∧ d = 0) ∨ (W (e) ∧ d > 0), then Z(e, d) is clearly a
∆k+1(ξ) subset of N2, which is neither Σk(ξ) nor Πk(ξ). □
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Comments on k = 0

• Note that we have not defined Σ0(ξ),Π0(ξ). To define Σ0(ξ),Π0(ξ) in the formal
arithmetical hierarchy, ξ must also be a formal object such as a formula.

• However, Σ0(ξ),Π0(ξ) are often used to denote the primitive recursive relations in ξ in
some literature. Then, for the empty oracle (ξ ≡ 0), they are simply the primitive
recursive relations, which contradicts with our formal definition: Σ0,Π0 represent
bounded formulas or sets defined by them.

• Therefore, no formal definition is given. But a similar statement would hold whatever
Σ0(ξ),Π0(ξ) are defined, since ∆1(ξ) is well-defined and large.
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Lemma 7.9

A is Σk+1(ξ) if and only if there exists some Πk(ξ) set B such that A is χB-CE , where
χB is the characteristic function of B. For k = 0, consider Π0(ξ) as the primitive recursive
relations in ξ.

Proof

• (⇒) Suppose A is Σk+1(ξ). By definition, there exists a Πk(ξ) predicate
B(x1, . . . , xn, y1) such that

(x1, . . . , xn) ∈ A⇔ ∃y1B(x1, . . . , xn, y1).

• Therefore,
(x1, . . . , xn) ∈ A⇔ ∃y1χB(x1, . . . , xn, y1) = 1,

and the right-hand side is χB-CE .
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• (⇐) Let B be a Πk(ξ) set and A be χB-CE .

• By relativized Kleene’s normal form theorem, we have,

(x1, . . . , xn) ∈ A⇔ ∃yT (e, x1, . . . , xn, y, χB ↾y).

• Furthermore,

w = χB ↾y ⇔ ∀i < y(i ∈ B ⇔ w(i) = 1) ∧ leng(w) = y,

and the right side is ∆k+1(ξ). Combining both formulas, A is Σk+1(ξ). □

In the above lemma, even if B is Σk(ξ), the class of χB-CE does not change.
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Theorem 7.10 (Post)

A is ∆k+1(ξ) if and only if there exists some Σk(ξ) set B such that A is computable in χB

(A ≤T B).

Corollary 7.11

A is ∆2 if and only if A ≤T K.

Homework� �
Prove the above theorem by using the last lemma in page 8.� �
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§7.2. m-reducibility and simple sets
• The early concern in recursion theory or computability theory was to understand the
structure of the m-degrees and T-degrees of CE sets.

• The m-degree of a set A is the equivalence class of A in the many-to-one reducibility
≤m. The T-degree of A is the equivalence class of A in the Turing reducibility ≤T.

• Obviously, there are at least two CET-degrees. That is, the degree of the computable
sets (or the degree of ∅) and the degree of the complete CE sets (or the degree of the
halting problem).

• Since any m-degree is a subset of a T-degree, there are at least two CEm-degrees
(except for ∅ and N).

• Furthermore, Post showed that there are more than two m-degrees of CE sets, and
raised the corresponding question about T-degrees (1944).

• Post’s problem was independently solved by Friedberg and Muchnik. The technique
used in their proof is called the finite injury priority method.
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• First, let us review the basic concepts and results in part 1 of last semester.

Recall� �
• A sequence (or set) of partial computable functions φ0, φ1, φ2, . . . (with

repetition) is called a CE numbering, if φ(e, x) := φe(x) is a partial computable
function.

• A sequence of CE sets A0, A1, A2, . . ., is called a CE numbering if
{⟨e, x⟩ : x ∈ Ae} is CE.

• The CE numbering of partial computable functions φ0, φ1, φ2, . . . is called a
Gödel numbering if for any CE numbering ψ0, ψ1, ψ2, . . ., there exists a
computable function σ such that for any e,

ψe(x) ∼ φσ(e)(x). (both undefined, or both defined and the same value)� �
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• A typical Gödel numbering is {{e} : e ∈ N}, where {e} is Kleene’s bracket notation.

• For a Gödel numbering φ0, φ1, . . ., let We = {x | φe(x) ↓}, where φe(x) ↓ means that
φe is defined at x. Then, W0,W1, . . . is a CE numbering.

• A typical incomputable CE set is the halting
problem K defined as follows.

K := {x | φx(x) ↓} = {x | x ∈Wx}.

• For A,B ⊂ N, if there exists a computable
function f , for any x,

x ∈ A ⇔ f(x) ∈ B

then we write A ≤m B.

• ∅ and N are minimal with respect to ≤m. K is
an m-complete CE set. Also, there is the degree
of computable sets (except for ∅ and N).

Theorem 1.60 (Lecture01-06)

For any A ⊂ N, the following
statements are equivalent.
(1) A ≤m K.
(2) A ≤1 K.
(3) A is CE.

Definition 1.61 (Lecture01-06)

We say that a set A is m-complete
(with respect to CE) if A is CE and
B ≤m A for any CE set B.
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• If A is computable in oracle B (or recursive in χB), we write A ≤T B.

• If A ≤m B then A ≤T B.

• Kc ≤T K is obvious, where Kc is the complement of K. But not Kc ≤m K.

• If A ≤m B and B ≤m A, we write A ≡m B. If A ≤T B and B ≤T A, then A ≡T B.

• The m-degree of A is {B : B ≡m A}. The T-degree of A is {B : B ≡T A}

Homework� �
Show that Kc ≤m K does not hold.� �
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• The minimum degree with respect to ≤m (except for ∅ and N) is the equivalence
class consisting of all computable sets.

• The maximum CEm-degree is the class of m-complete CE sets.

• Post showed that there exists a CEm-degree between these two.

Theorem 7.12 (Post theorem, 1944)

There exists a CE set that is neither computable nor m-complete.

• Following the above theorem, Post also sought an intermediate T-degree, which is
known as Post’s problem. To challenge it, various notions of CE sets (such as immune
sets, simple sets, and productive sets) were introduced.

Definition 7.13

An infinite set B ⊂ N that does not contain an infinite CE subset is called an immune set.
A CE set A ⊂ N whose complement is an immune set is called a simple set.
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• A simple set is a CE set that has a nonempty intersection with any infinite CE set and
whose complement is an infinite set.

• Simple sets are not computable. This is because if it were computable, then its
complement would be an infinite CE set. As we will see later, this set is closely related
to the incompleteness theorem.

• First, we must show the existence of simple sets, which is easily derived from the
following lemma.

Lemma 7.14 (Dekker)

Let f : N → N be a computable injection. Then

Range(f) ≡T {n : ∃m > n (f(m) < f(n))}.

The set on the right-hand side is called the deficiency set of f , denoted by Dfc(f).
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proof

• Let f : N → N be a computable injection and A = Range(f) and B = Dfc(f).

• To show B ≤T A.

• n ∈ B is equivalent to ∃k < f(n)(k ∈ A ∧ f−1(k) > n), the latter of which is
computable in A. Note that if k ∈ A is known, it is easy to compute the value
f−1(k) = µx(f(x) = k).

• To show A ≤T B.

• The complement Bc of B is always infinite. Because for any x, if we take yx such
that f(yx) = min{f(y) : y ≥ x}, then yx ∈ Bc ∧ yx ≥ x.

• Obviously n ∈ A is equivalent to ∃l ≤ k(f(l) = n)) for a sufficiently large k. So it is
also equivalent to a Σ1 formula ∃k > n(k ∈ Bc ∧ f(k) > n ∧ ∃l ≤ k(f(l) = n)).

• Also, if k ∈ Bc ∧ f(k) > n, then ∀l > k(f(l) > f(k) > n), and so n ∈ A is equivalent
to a Π1 formula ∀k > n(k ∈ Bc ∧ f(k) > n→ ∃l ≤ k(f(l) = n)).

• Therefore, A is computable in B. □
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In part 1, we prove that any nonempty CE set A is represented as the range of computable
injection f . Then, if A is not computable, then Dfc(f) is a simple set. For example,
setting A = K gives a simple set.

Lemma 7.15

f : N → N is a computable injection, and if Range(f) is not computable, then Dfc(f) is a
simple set.

Proof
Since B = Dfc(f) is also not computable, it is clear that its complement is not finite.
By way of contradiction, we assume that B is simple, that is, there exists an infinite CE set
C ⊂ Bc.
Then by the second half of the proof for the lemma in page 16, n ∈ Range(f) is equivalent
to

∃k > n(k ∈ C ∧ f(k) > n ∧ ∃l ≤ k(f(l) = n))

and
∀k > n(k ∈ C ∧ f(k) > n→ ∃l ≤ k(f(l) = n)),

which is computable and contradicts the assumption. □
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Incompleteness theorems and simple sets (1/2)� �
• For any CE set C, in a proper arithmetic system T , there exists Σ1 formula φ(x)

n ∈ C ⇔ T ⊢ φ(n).

Now suppose C is a simple set. Since {n : T ⊢ ¬φ(n)} is CE, if it is an infinite
set, it has non-empty intersection with C, which implies the inconsistency of T .

• Thus, if T is a consistent system, {n : T ⊢ ¬φ(n)} is finite.

• On the other hand, since Cc is an infinite set, there are infinitely many n such
that neither φ(n) nor ¬φ(n) can be proved in T .� �
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Incompleteness theorems and simple sets (2/2)� �
• Various concrete examples of C or φ(x) have been studied in relation to the

incompleteness theorem. One of them is the set of non-random numbers.

• For n ∈ N, µe({e}(0) = n) can be regareded as a minimal program that outputs
n, and such e is called the Kolmogorov complexity of n, represented by K(n).

• When K(n) ≥ n, n is called random.

• Then the set {n : K(n) < n} of non-random numbers is a simple set.

• It turns out that there are only finitely many numbers that can be proven to be
random in an appropriate system of arithmetic.� �

Homework� �
Show that {n : K(n) < n} is a simple set.� �
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Thank you for your attention!
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