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Logic and Computation II� �
• Part 4. Modal logic

• Part 5. Modal µ-calculus

• Part 6. Automata on infinite objects

• Part 7. Recursion-theoretic hierarchies� �
Part 6. Schedule (tentative)� �
• May 20, (1) Oracle computation and relativization

• May 22, (2) m-reducibility and simple sets

• May 27, (3) T-reducibility and Post’s problem

• May 29, (4) Arithmetical hierarchy� �
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§6.7. Parity games
• A parity game G = (VI, VII, E, π) is a game on a directed graph (VI ∪ VII, E) with a
priority function π : VI ∪ VII → {0, 1, · · · , k} and VI ∩ VII = ∅. Player I wins in an
infinite path (play) ρ iff the smallest number appearing infinitely often in π(ρ) is even.

• A (memoryless) strategy for player I is a mapping σ : VI → VI ∪VII. Similar for II’s τ .

• A play ρ is consistent with such a σ if for all i, ρi ∈ VI ⇒ σ(ρi) = ρi+1. Similarly for
τ .
σ (τ) is a winning strategy if player I (II) wins in any play consistent with σ (τ) .

• Let WI(G, σ) be the set of starting points ρ0 ∈ V such that σ is a winning strategy for
player I. Let

WI(G) =
⋃

I′s winning strategy σ

WI(G, σ).

• Similarly, WII(G, τ) and WII(G) are defined.

• When WI(G) ∪WII(G) = V , the game G is said to have memoryless determinacy.
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Lemma 6.26

In any parity game G, there exists a strategy σ for player I such that WI(G, σ) = WI(G).
Similarly, there exists a II’s strategy τ such that WII(G, τ) = WII(G).

If there exist σ and τ such that WI(G, σ) ∪WII(G, τ) = V , game G is said to have
uniform memoryless determinacy. From the above lemma, if a parity game has
memoryless determinacy, it also has uniform memoryless determinacy.

Before proving that any parity game has (uniform) memoryless determinacy, we introduce
some notions.

• We say that v ∈ V is an absorbing vertex if no edges exit from v, i.e.,
{w : (v, w) ∈ E} = {v}. Note that we assume that no deadlocks exist.

• We say that v ∈ V is a vanishing vertex if no edges enter v, i.e.,
{w : (w, v) ∈ E} = ∅.

• Vertices that are neither absorbing nor vanishing are called relevant vertices, and the
set of such vertices is denoted by Vr.

• π(v) for v ∈ Vr is called a relevant priority.
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Theorem 6.27

Any parity game G = (VI, VII, E, π) has uniform memoryless determinacy.

Proof We prove by induction on the number of relevant priorities π(Vr).

Base case: There are no relevant points, that is, all vertices are absorbing or vanishing.

• From an absorving vertex v, v ∈ WI(G, σ) for any σ (if π(v) is even), or v ∈ WII(G, τ)
for any τ (if it is odd).

• From a vanishing vertex v, each edge goes to an absorbing vertex, and so by selecting
an appropriate σ(v) or τ(v), we have v ∈ WI(G, σ) ∪WII(G, τ). Thus, there exist σ
and τ such that WI(G, σ) ∪WII(G, τ) = V .

Induction case: Suppose the number of relevant priorities is k > 0.

• We first prove a weak claim WI(G) ∪WII(G) ̸= ∅.

• For simplicity, assume that the minimum of the relevant priorities is 0.
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• We will modify the game G so that the vertices with priority 0 are changed to
non-relevant vertices. Such a modified game is called G+, to which we will apply the
induction hypothesis.

• Let D be the set of relevant vetices with priority 0 in G.

• Make a copy of D and put D̃ := {ṽ : v ∈ D}.

• G+ = (V +
I , V +

II , E
+, π+) is defined as follows.

• V +
I := VI ∪ {ṽ : v ∈ D ∩ VI},

• V +
II := VII ∪ {ṽ : v ∈ D ∩ VII},

• E+ := {(u, v) ∈ E : v /∈ D} ∪ {(u, ṽ) : (u, v) ∈
E ∧ v ∈ D} ∪ {(ṽ, ṽ) : v ∈ D}

• π+ := π ∪ {(ṽ, 0) : v ∈ D}.

0

00

i=I, II
G+ is obtained by separating each
vertex v of D into vanishing vertex

v and absorbing vertex ṽ.
Therefore, the number of relevant priorities of G+ is less than that of G.
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• By induction hypothesis, there exist σ+ and τ+ such that
WI(G

+, σ+) ∪WII(G
+, τ+) = V + = V +

I ∪ V +
II .

• Let σ± : VI → V and τ± : VII → V strategies in G
derived from σ+ : V +

I → V + and τ+ : V +
II → V +,

respectively by restricting them to V .
That is, σ± restricts the domain of σ+ to VI: when
σ+(u) = ṽ ∈ D̃, let σ±(u) = v. Similarly for τ±.

• Then, we will show that WI(G, σ±)∪WII(G, τ±) ̸= ∅.

• First, consider the case WI(G
+, σ+) = V +.

• Take any play ρ consistent with σ± in G.
• If a vertex of D appears infinitely many times in ρ, then I wins in ρ.
• Otherwise, from some vertex in ρ, its remaining play ρ′ does not visit D, and since ρ′

also obeys σ± in G, ρ′ obeys σ+ in G+, which means that player I wins in G+, and
thus also wins with ρ′ in G, because any finite part of the play makes no difference to
the parity condition.

• Therefore, I wins in every play consistent with σ± in G. That is, WI(G, σ±) = V .
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• Next, consider the case WI(G
+, σ+) ̸= V +. Since WI(G

+, σ+) ∪WII(G
+, τ+) = V +,

we have v ∈ WII(G
+, τ+) = V + −WI(G

+, σ+).

• Consider a play starting from v consistent with τ+. If an absorbing vertex ṽ ∈ D̃
appears in the middle, then after that, it just repeats ṽ, and so priority 0 appears
infinitely often, which means player I wins, which contradicts with v ∈ WII(G

+, τ+).

• Thus, in such a play of G+ from v, no vertexes in D ∪ D̃ appear except for v as a
vanishing vertex.

• Hence, any play of G starting from v and consistent with τ± does not also enter D in
the middle, and so it is also consistent with τ+, which means player II wins in it. That
is, v ∈ WII(G, τ±).

• Combining the above two cases, we can say at least WI(G) ∪WII(G) ̸= ∅ for any
game G with the number k of relevant priorities.
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• Next we show WI(G) ∪WII(G) = V . By the way of contradiction, assume
WI(G) ∪WII(G) ̸= V .

• Let V − := V − (WI(G) ∪WII(G)) and consider the game G− by restricting G to V −.
Note that for every v ∈ V − there is a u ∈ V − such that (v, u) ∈ E. Because if every
u such that (v, u) ∈ E belongs to WI(G) ∪WII(G), so is v, which contradicts
v ∈ V −. Therefore, the game G− is a correct parity game.

• In the following, for contradiction, we will show WI(G
−) ∪WII(G

−) = ∅. This
contradicts with the previous claim WI(G) ∪WII(G) ̸= ∅, noticing that the number of
the relevant priorities of G− is not larger than that number k of G, and so we can use
the induction hypothesis. Therefore, our assumption WI(G) ∪WII(G) ̸= V is denied.

• First, we assume WI(G
−) ̸= ∅. Then, let v ∈ WI(G

−) and σ− be a winning strategy
for I starting from v in G−. Consider a play ρ starting at v in G consistent with σ−.
We will show that ρ is also a winning play for I in G, and therefore v ∈ WI(G), which
contradicts with the choice of v ∈ V −.

• Now, if ρ is always in G−, then it is a winning play for I since it is consistent with σ−.
Actually, at u ∈ VI ∩ V − in the middle of ρ, the next move is selected within V − by
σ−. 9 / 22
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• At u ∈ VII ∩ V − in the middle of ρ, if a vertex of WII(G) can be chosen as the next
move, then u is also in WII(G), which contradicts with u ∈ V −.

• At u ∈ VII ∩ V − in the middle of ρ, if a vertex of WI(G) is chosen as the next move,
then from the vertex, player I can change strategies to win in G, and thus in sum, we
have v ∈ WI(G), a contradiction. This shows WI(G

−) = ∅.

• Similarly, WII(G
−) = ∅. Hence, WI(G

−) ∪WII(G
−) = ∅.

• Since G− is a parity game with at most k relevant priorities, WI(G
−)∪WII(G

−) ̸= ∅,
which denies the assumption of WI(G, σ) ∪WII(G, τ) ̸= V . □

Further readings� �
The above proof is based on S. Le Roux’s paper:
“Memoryless determinacy of infinite parity games: Another simple proof”, Info. Proc.
Letters 143 (2019).
Le Roux’s proof also relies on Haddad’s paper: “ Memoryless determinacy of finite parity
games: another simple proof”, Info. Proc. Letters 132 (2018) 19–21.
which in turn refers to many previous studies.� �
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§7.1. Oracle computation and relativization

• Fix a function ξ : N → N. Then, a function f : Nn → N is said to be computable in ξ
if there exists an algorithm that computes f using ξ as a database.

• Consider a Turing machine as a computational model. Besides the usual input tape
and working tapes, it is equipped with an infinite tape storing ξ as data, from which
necessary information (values of ξ(n)) can be retrieved.

• Such a machine is called an oracle Turing machine. A function that can be
computed by oracle ξ is called ξ-computable or computable in ξ.

• The three classes of functions defined in part 1 in last semester (primitive recursive
functions, recursive functions, and partial recursive functions) are extended as
primitive recursive functions in ξ, recursive functions in ξ, and partial recursive
functions in ξ, by adding ξ to the initial functions in each definition.
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Primitive recursive in ξ

Definition 7.1

Given a function ξ : N → N, the functions primitive recursive in ξ are defined as below.

1. Constant 0, successor function S(x) = x+ 1, projection
Pn
i (x1, x2, . . . , xn) = xi (1 ≤ i ≤ n) and ξ are primitive recursive in ξ.

2. Composition.
If gi : Nn → N, h : Nm → N (1 ≤ i ≤ m) are primitive recursive in ξ, so is
f = h(g1, . . . , gm) : Nn → N defined as below:

f(x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)).

3. Primitive recursion.
If g : Nn → N, h : Nn+2 → N are primitive recursive in ξ, so is f : Nn+1 → N defined
as below:

f(x1, . . . , xn, 0) = g(x1, . . . , xn),

f(x1, . . . , xn, y + 1) = h(x1, . . . , xn, y, f(x1, . . . , xn, y)).

12 / 22



Logic and
Computation

K. Tanaka

Parity games

Uniform memoryless
determinacy

Recursion-
theoretic
hieararchy

Oracle computation

Relativization

Recursive in ξ

Definition 7.1

The functions recursive in ξ are defined as below.

1. Constant 0,
Successor function S(x) = x+ 1,
Projection Pn

i (x1, x2, · · · , xn) = xi (1 ≤ i ≤ n) and ξ are recursive in ξ.

2. Composition. Analogous to primitive recursive in ξ.

3. Primitive recursion. Analogous to primitive recursive in ξ.

4. Minimalization (minimization).
Let g : Nn+1 → N be recursive in ξ satisfying that
∀x1 · · · ∀xn∃y g(x1, · · · , xn, y) = 0. Then, the function f : Nn → N defined by

f(x1, · · · , xn) = µy(g(x1, · · · , xn, y) = 0)

is recursive in ξ, where µy(g(x1, · · · , xn, y) = 0) denotes the smallest y such that
g(x1, · · · ,xn, y) = 0.
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Partial recursive in ξ (part 1/3)

Definition 7.1

The function partial recursive in ξ are defined as follows.

1. Constant 0, Successor function S(x) = x+ 1, Projection
Pn
i (x1, x2, · · · , xn) = xi (1 ≤ i ≤ n) and ξ are partial recursive in ξ.

2. Composition. If gi : Nn → N, h : Nm → N(1 ≤ i ≤ m) are partial recursive in ξ, the
composed function f = h(g1, · · · , gm) : Nn → N defined by

f(x1, · · · , xn) ∼ h(g1(x1, · · · , xn), · · · , gm(x1, · · · , xn))

is partial recursive in ξ, where h(g1(x1, · · · , xn), · · · , gm(x1, · · · , xn)) = z means that
each gi(x1, · · · , xn) = yi is defined and h(y1, · · · , ym) = z.

Note: By f(x1, · · · , xn) ∼ g(x1, · · · , xn), we mean that either both functions are
undefined or defined with the same value.
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Partial recursive in ξ (part 2/3)

Definition 7.1

3. Primitive recursion.
If g : Nn → N, h : Nn+2 → N are partial recursive in ξ, the function f : Nn+1 → N
defined by

f(x1, · · · , xn, 0) ∼ g(x1, · · · , xn)

f(x1, · · · , xn, y + 1) ∼ h(x1, · · · , xn, y, f(x1, · · · , xn, y))

is partial recursive in ξ.
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Partial recursive in ξ (part 3/3)

Definition 7.1

4. Minimization.

• Let g : Nn+1 → N be partial recursive in ξ.

• If “g(x1, · · · , xn, c) = 0, and for each z < c, g(x1, · · · , xn, z) is defined with non-zero
values”, then we put µy(g(x1, · · · , xn, y) = 0) = c;
if there is no such c, then µy(g(x1, · · · , xn, y) = 0) is undefined.

• Then f : Nn → N satisfying

f(x1, · · · , xn) ∼ µy(g(x1, · · · , xn, y) = 0)

is partial recursive in ξ.
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Definition 7.1

An n-ary relation R ⊂ Nn is called (primitive) recursive in ξ, if its characteristic function
χR : Nn → {0, 1} is (primitive) recursive in ξ;

χR(x1, . . . , xn) =

{
1 if R(x1, . . . , xn)
0 otherwise

• All the theorems of recursion theory mentioned in part 1 of the last semester can be
extended to statements with oracles, which are called relativizations of the original
theorems. We will show some examples of relativization in the following slides.

• The (partial) recursive functions in ξ also match the (partial) computable functions in
ξ, and the domain of a partial recursive function in ξ is called compututably
enumerable in ξ (ξ-CE).
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Theorem 7.2 (Relativized Kleene normal form theorem)

There are a primitive recursive function U(y) and a primitive recursive relation in ξ
T ξ(e, x1, · · · , xn, y) such that if f(x1, · · · , xn) is partial recursive in ξ , then there exists e
such that

f(x1, · · · , xn) ∼ U(µyT ξ(e, x1, · · · , xn, y)),

where µyT ξ(e, x1, · · · , xn, y) takes the smallest value y satisfying T ξ(e, x1, · · · , xn, y);
if there is no such y, it is undefined.

Proof.
• We define a relation T ξ(e, x1, · · · , xn, y) as follows:
T ξ(e, x1, · · · , xn, y) ⇔ “y is the Gödel number (code) of the whole computation

process γ of TM of index e with input (x1, · · · , xn) and oracle ξ”

• The whole computation process γ is a sequence of configurations α0 ▷ α1 ▷ · · · ▷ αn

with an initial α0 and an accepting αn, which can regarded as a word over
Ω ∪Q ∪ {▷}.

• In general, it is not decidable whether a whole computation process γ exists or not.
But for a given γ, we can easily check that for each i < n, αi ▷ αi+1 is a valid
transition of a TM, as well as α0 and αn are an initial and accepting configurations.18 / 22
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Some remarks on the proof

• A primitive recursive function U(y) that extracts the output from the code of the
computational process does not depend on ξ. □

• We call U(µyT ξ(e, x1, · · · , xn, y)) a partial recursive function in ξ of index e,
denoted as {e}ξ(x1, · · · , xn).

• If ξ in {e}ξ(x1, · · · , xn) is regarded as an argument, it can be rewritten as
{e}(x1, · · · , xn, ξ).

• Notice that to evaluate {e}(x1, · · · , xn, ξ), at most the initial segment ξ ↾y is used in
the calculation, where y is the code of the whole calculation process γ. Furthermore,
if the finite sequence ξ ↾y is identified with its code, {e}(x1, · · · , xn, ξ ↾y) becomes an
ordinary partial recursive function.
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Definition

Let U(y) and T be primitive recursive functions defined in and after the relativized Kleene
normal form theorem. The following function F : Nn × (NN)k → N is called a partial
recursive functional with index e,

F (x1, · · · , xn, ξ1, · · · , ξk) = U(µyT (e, x1, · · · , xn, y, ξ1 ↾y, · · · , ξk ↾y)).

• Here NN is the set of total functions from N to N. The domain D of a partial
recursive functional F : Nn × (NN)k → N is

(x1, · · · , xn, ξ1, · · · , ξk) ∈ D ⇔ ∃yT (e, x1, · · · , xn, y, ξ1 ↾y, · · · , ξk ↾y),

which is called a CE set (in a broad sense) or Σ0
1 set.

• Such general classes will be treated in the following lectures.
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Theorem 7.3 (Relativized enumeration theorem)

{e}ξ(x1, · · · , xn) is partial recursive in ξ on e, x1, · · · , xn, and it is also a partial recursive
functional on e, x1, · · · , xn, ξ.

Theorem 7.4 (Relativized parameter theorem)

For any m,n ≥ 1, there exists a primitive recursive function Sm
n :Nm+1 → N such that

{e}ξ(x1, · · · , xn, y1, · · · , ym) ∼ {Sm
n (e, y1, · · · , ym)}ξ(x1, · · · , xn).

Theorem 7.5 (Relativized recursion theorem)

Let f(x1, · · · , xn, y) be partial recursive in ξ. There exists e such that

{e}ξ(x1, · · · , xn) ∼ f(x1, · · · , xn, e).
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Further Reading� �
• Kozen, D. C. (2006). Theory of computation (Vol. 170). Heidelberg: Springer.

• Soare, R. I. (2016). Turing computability. Theory and Applications of
Computability. Springer.� �

Thank you for your attention!
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