Logic and
Computation

K. Tanaka

Logic and Computation |l

Part 7. Recursion-theoretic hierarchies

Kazuyuki Tanaka

BIMSA

May 20, 2025

1/22

Logic and
Computation

K. Tanaka

Parity games

Uniform memoryless

~ Logic and Computation Il

® Part 4. Modal logic

® Part 5. Modal p-calculus

® Part 6. Automata on infinite objects
® Part 7. Recursion-theoretic hierarchies

~ Part 6. Schedule (tentative)

* May 20, (
® May 22, (2
* May 27, (3
* May 29, (4

1) Oracle computation and relativization
m-reducibility and simple sets

T-reducibility and Post's problem

—_— — ~— ~—

Arithmetical hierarchy

-

2/22

Logic and
Computation

K. Tanaka §67 Parlty games

Parity games

® A parity game G = (W}, W}, E,) is a game on a directed graph (VUV}, E) with a
priority function 7 : VU Vj — {0,1,--- ,k} and ViNn'Vj; = &. Player | wins in an
infinite path (play) p iff the smallest number appearing infinitely often in w(p) is even.

A (memoryless) strategy for player | is a mapping o : Vi = ViU V. Similar for Il's 7.

e A play p is consistent with such a o if for all 4, p; € Vi = o(p;) = pi+1. Similarly for
T
o (7) is a winning strategy if player | (II) wins in any play consistent with o (7) .

Let W|(G, o) be the set of starting points pg € V such that ¢ is a winning strategy for
player |. Let

Wi(G) = U Wi(G,0).

I’s winning strategy o

Similarly, W} (G,) and W(G) are defined.

When W (G) U Wy (G) =V, the game G is said to have memoryless determinacy.
3/22

Logic and
Computation

K. Tanaka

Parity games

Uniform memoryless

Lemma 6.26
In any parity game G, there exists a strategy o for player | such that Wi (G, o) = Wi(G).
Similarly, there exists a Il's strategy 7 such that W (G, 7) = Wj(G).

If there exist o and 7 such that W|(G, o) U W) (G, 7) =V, game G is said to have
uniform memoryless determinacy. From the above lemma, if a parity game has
memoryless determinacy, it also has uniform memoryless determinacy.

Before proving that any parity game has (uniform) memoryless determinacy, we introduce
some notions.

® We say that v € V is an absorbing vertex if no edges exit from v, i.e.,
{w: (v,w) € E} = {v}. Note that we assume that no deadlocks exist.

® We say that v € V is a vanishing vertex if no edges enter v, i.e.,
{w: (w,v) € B} =@.

® Vertices that are neither absorbing nor vanishing are called relevant vertices, and the
set of such vertices is denoted by V;.

® 7(v) for v € V} is called a relevant priority.

422

Logic and
Computation

K. Tanaka

Theorem 6.27

Any parity game G = (V}, Vi1, E,) has uniform memoryless determinacy.

Proof We prove by induction on the number of relevant priorities m(V;).

Base case: There are no relevant points, that is, all vertices are absorbing or vanishing.

® From an absorving vertex v, v € W|(G, o) for any o (if 7(v) is even), or v € W) (G, T)
for any 7 (if it is odd).

® From a vanishing vertex v, each edge goes to an absorbing vertex, and so by selecting
an appropriate o(v) or 7(v), we have v € W|(G, o) U W, (G,). Thus, there exist o
and 7 such that W\(G,o) UW) (G, 1) = V.

Induction case: Suppose the number of relevant priorities is k > 0.

® We first prove a weak claim W(G) U W) (G) # .

® For simplicity, assume that the minimum of the relevant priorities is 0.

5/22

Logic and
Computation

® We will modify the game G so that the vertices with priority 0 are changed to
non-relevant vertices. Such a modified game is called G, to which we will apply the
induction hypothesis.

K. Tanaka

® Let D be the set of relevant vetices with priority 0 in G.

I ® Make a copy of D and put D := {#: v € D}. \.nl : E
o Gt = (V1V}, E*,nt) is defined as follows. / uu
v
e ViF:=Viu{o:ve DNW}, N\,
n 3 AR EN
eV, =Wu{t:ve DNnW}, / NED
o Bt = {(u,0) € B g D} U{(wd): (u,0) € =1
EANveDYU{(v,0):ve D} G is obtained by separating each

vertex v of D into vanishing vertex
v and absorbing vertex v.
Therefore, the number of relevant priorities of G is less than that of G.

o 7t :=7U{(9,0):v e D}.

6/22

Logic and
Computation

K. Tanaka

Parity games

Uniform memoryless
determinacy

By induction hypothesis, there exist o+ and 7 such that
Wi(GT, o) UW(GH,) =V =Vt Uy

Let oF : Vi — V and 7% : Vjj — V strategies in G
derived from ot : V[T — V* and 7+ : V;;F - V',
respectively by restricting them to V. ar 1
That is, oF restricts the domain of o to Vi: when
ot (u) =9 € D, let 0*(u) = v. Similarly for 7+

/
b
p

Then, we will show that Wi(G, o) UWy (G, %) # @.

First, consider the case Wi(Gt,07) =V,

Take any play p consistent with o* in G.

If a vertex of D appears infinitely many times in p, then | wins in p.

Otherwise, from some vertex in p, its remaining play p’ does not visit D, and since p’
also obeys o* in G, p/ obeys o+ in GT, which means that player | wins in G*, and
thus also wins with p’ in G, because any finite part of the play makes no difference to
the parity condition.

Therefore, | wins in every play consistent with & in G. That is, Wi(G,0%) =V,

7/22

Logic and
Computation

K. Tanaka

Next, consider the case Wi(Gt,0) # V*. Since Wi(GT, o) UW,(GT, 7)) =VT,
we have v € W (GT,7H) = VT — W (GT,0o™T).

Consider a play starting from v consistent with 7+. If an absorbing vertex & € D
appears in the middle, then after that, it just repeats ¥, and so priority 0 appears
infinitely often, which means player | wins, which contradicts with v € Wj;(G*, 7).

Thus, in such a play of G* from v, no vertexes in D U D appear except for v as a
vanishing vertex.

Hence, any play of G starting from v and consistent with 7% does not also enter D in
the middle, and so it is also consistent with 7, which means player Il wins in it. That
is, v € Wy(G, 7).

Combining the above two cases, we can say at least W1(G) U W)(G) # @ for any
game G with the number k of relevant priorities.

8/22

Lotic and ® Next we show Wi(G) U W (G) = V. By the way of contradiction, assume
Wi(G)UWi(G) # V.

K. Tanaka

Parity games

® let V™ :=V — (Wi (G) UWy(G)) and consider the game G~ by restricting G to V.
Note that for every v € V'~ there is a u € V'~ such that (v,u) € E. Because if every
u such that (v,u) € E belongs to Wi(G) U W)i(G), so is v, which contradicts
U v € V. Therefore, the game G~ is a correct parity game.

Uniform memoryless
determinacy

® In the following, for contradiction, we will show Wi(G~) U W} (G~) = @. This
contradicts with the previous claim Wi(G) U W) (G) # @, noticing that the number of
the relevant priorities of G~ is not larger than that number & of G, and so we can use
the induction hypothesis. Therefore, our assumption Wi (G) U W (G) # V is denied.

® First, we assume W1(G~) # @. Then, let v € Wi(G~) and 0~ be a winning strategy
for | starting from v in G~. Consider a play p starting at v in G consistent with 0.
We will show that p is also a winning play for | in G, and therefore v € W1 (G), which
contradicts with the choice of v € V.

® Now, if p is always in G, then it is a winning play for | since it is consistent with o~
Actually, at w € VNV~ in the middle of p, the next move is selected within V'~ _by

7 9/22

Logic and

Computation ® At w € VNV~ in the middle of p, if a vertex of W);(G) can be chosen as the next
K. Tanaka move, then w is also in W)(G), which contradicts with u € V.

Parity games

inti:;m;n;n:ymowless e At u € VNV~ in the middle of p, if a vertex of W|(G) is chosen as the next move,
then from the vertex, player | can change strategies to win in GG, and thus in sum, we
have v € Wi(G), a contradiction. This shows W1 (G~) = @.

e Similarly, W(G~) = @. Hence, Wi(G~)UW\j(G™) = @.

® Since G~ is a parity game with at most k relevant priorities, Wi(G~) UW},(G™) # &,
which denies the assumption of Wi(G,o) U Wy (G, 1) £ V. O

-~ Further readings ~

The above proof is based on S. Le Roux's paper:

“Memoryless determinacy of infinite parity games: Another simple proof”, Info. Proc.
Letters 143 (2019).

Le Roux's proof also relies on Haddad's paper: “ Memoryless determinacy of finite parity
games: another simple proof”, Info. Proc. Letters 132 (2018) 19-21.

which in turn refers to many previous studies.

N Y,
10 /22

Logic and
Computation

K. Tanaka

Recursion-
theoretic
hieararchy

Oracle computation

§7.1. Oracle computation and relativization

Fix a function £ : N — N. Then, a function f : N* — N is said to be computable in ¢

if there exists an algorithm that computes f using £ as a database.

Consider a Turing machine as a computational model. Besides the usual input tape
and working tapes, it is equipped with an infinite tape storing £ as data, from which

necessary information (values of £(n)) can be retrieved.

Such a machine is called an oracle Turing machine. A function that can be
computed by oracle ¢ is called ¢&-computable or computable in &.

The three classes of functions defined in part 1 in last semester (primitive recursive

functions, recursive functions, and partial recursive functions) are extended as
primitive recursive functions in £, recursive functions in £, and partial recursive
functions in &, by adding & to the initial functions in each definition.

11/22

Logic and
Computation

K. Tansla Primitive recursive in &

wemnenies Definition 7.1
Given a function £ : N — N, the functions primitive recursive in £ are defined as below.
orate oot 1. Constant 0, successor function S(z) = x + 1, projection

Relaiizaior P (21, 22,...,2,) = 2; (1 <i<n)and & are primitive recursive in &.

2. Composition.
If g; : N = N, h: N™ — N (1 <4 < m) are primitive recursive in &, so is
f="h(g1,---,9m) : N® — N defined as below:

flze, .. xn) = h(gi(x1, - o Tn)y ooy g (T, - oy X0)).

3. Primitive recursion.
If g:N* = N, h:N"t2 5 N are primitive recursive in &, so is f : N**!1 — N defined
as below:

f(xlv"'vwnvo) :g(xlv"wl’n)v

f(x17""xn7y+1) :h(gj17'"5znay7f(z17"'7$n7y))'
12 /22

Logic and
Computation

K. Tanaka

Recursive in &

Definition 7.1
The functions recursive in & are defined as below.
. Constant 0,

Successor function S(z) =z + 1,
Projection P} (1,22, -+ ,2,) = z; (1 <4 <n) and & are recursive in &.

. Composition. Analogous to primitive recursive in &.
. Primitive recursion. Analogous to primitive recursive in &.

. Minimalization (minimization).

Let g : N*T! — N be recursive in £ satisfying that
Vaq -+ -Vap,Jy g(z1, -+ ,2n,y) = 0. Then, the function f : N® — N defined by

flxe, - on) = py(g(z1, -+, T0,y) = 0)

is recursive in &, where uy(g(z1,- -, Tn,y) = 0) denotes the smallest y such that

g(xlv"' 7In7y):0' 13/22

Logic and
Computation

K Tors Partial recursive in & (part 1/3)
Definition 7.1
The function partial recursive in & are defined as follows.
R 1. Constant 0, Successor function S(x) = z + 1, Projection
P(x1, 2o, -+ ,xn) = x; (1 <4 <n)and ¢ are partial recursive in &.

2. Composition. If g; : N — N h: N™ — N(1 < ¢ < m) are partial recursive in &, the
composed function f = h(g1, -, gm) : N — N defined by

f(fEl,'" 737”) ~ h(gl(fﬁl,"' 7zn)"" 7gm($1a"' ,$n))

is partial recursive in &, where h(g1 (21, ,@n), + ,gm(z1, -+ ,2,)) = z means that
each g;(z1,- -+ ,z,) = y; is defined and h(y1, -, ym) = 2.

Note: By f(x1, -+ ,x,) ~ g(x1,- -+ ,2,), we mean that either both functions are
undefined or defined with the same value.

14 /22

Logic and
Computation

K Tonka Partial recursive in £ (part 2/3)

Definition 7.1

3. Primitive recursion.
If g: N® = N, h:N""2 — N are partial recursive in &, the function f : N*t! —+ N
defined by

f(xla"' 7$n70) ~ g(mla"' 7xn)
f(mla"'7xnay+1) ~ h<$17"'a$nyy7f(3717"'7$n7y))

is partial recursive in £.

15 /22

Logic and
Computation

K Tonka Partial recursive in £ (part 3/3)

Parity games

Uniform memoryless
determinac:

Definition 7.1

4. Minimization.

Oracle computation

® Let g: N**! — N be partial recursive in &.

o If “g(z1, -+ ,xn,c) =0, and for each z < ¢, g(z1, -+ ,x,, 2) is defined with non-zero
values”, then we put py(g(z1, - ,Zn,y) =0) =¢;
if there is no such ¢, then py(g(z1,: -+ ,zn,y) = 0) is undefined.

® Then f: N" — N satisfying

f(@1,-- ,20) ~ py(g(z1, -+, %n,y) = 0)

is partial recursive in £.

16 /22

Logic and
Computation

K. Tanaka

Definition 7.1

An n-ary relation R C N is called (primitive) recursive in &, if its characteristic function
Xr : N™ — {0,1} is (primitive) recursive in &;

Oracle computation .
Relsivizato ! if R(z1,...,%n)
XR(Z1,- -, Tn) = { 0 otherwise

® All the theorems of recursion theory mentioned in part 1 of the last semester can be
extended to statements with oracles, which are called relativizations of the original
theorems. We will show some examples of relativization in the following slides.

® The (partial) recursive functions in £ also match the (partial) computable functions in
&, and the domain of a partial recursive function in £ is called compututably
enumerable in £ (¢-CE).

17 /22

Logic and
Computation

K. Tanaka

Relativization

Theorem 7.2 (Relativized Kleene normal form theorem)

There are a primitive recursive function U(y) and a primitive recursive relation in &
T¢(e, 1, ,on,y) such that if f(z1,---,x,) is partial recursive in £ , then there exists e
such that

f('rlv to 7xn) ~ U(/-LyTg(ea L1y 7xn7y))’

where puyT¢(e, 1, -+ ,T,,y) takes the smallest value y satisfying T (e, 1, -+ , T, Y);
if there is no such y, it is undefined.

Proof.
® We define a relation T¢(e, 21, -+ , &, y) as follows:
T¢(e, 1, ,Tn,y) < "y is the Godel number (code) of the whole computation

process v of TM of index e with input (z1,---,2,) and oracle £"

® The whole computation process 7y is a sequence of configurations cg >y >+ > ay,

with an initial ap and an accepting a,,, which can regarded as a word over
QU U{r}.

® In general, it is not decidable whether a whole computation process 7y exists or not.
But for a given 7, we can easily check that for each i < n, a; > a;1 is a valid
transition of a TM, as well as o and «,, are an initial and accepting configuratigw7.22

Logic and
Computation

K. Tanaka Some remarks on the proof

® A primitive recursive function U(y) that extracts the output from the code of the

— computational process does not depend on &. 0
Relativization
® We call U(uyT¢(e,x1,--- ,2n,y)) a partial recursive function in ¢ of index e,
denoted as {e}*(xy, -+ ,1,).
® If ¢ in {e}(xy, - ,x,) is regarded as an argument, it can be rewritten as
{e}(‘rlv e 7‘rn7§)'
® Notice that to evaluate {e}(x1, -+ ,x,,£), at most the initial segment £ [y is used in
the calculation, where y is the code of the whole calculation process 7. Furthermore,
if the finite sequence & [y is identified with its code, {e}(x1, -+ ,2,,& [y) becomes an

ordinary partial recursive function.

19 /22

Logic and
Computation

K. Tanaka

N Definition

Lol Let U(y) and T be primitive recursive functions defined in and after the relativized Kleene
normal form theorem. The following function F : N* x (NY)* — N is called a partial
recursive functional with index e,

Relativization

F(.’E]_, o 7xn7£17 o 76/@) = U(/j/yT(e7xla e axnayafl Fya e 7£k Fy))
® Here NV is the set of total functions from N to N. The domain D of a partial
recursive functional F': N* x (NY)¥ = N is
(xlv"' a'rnvé-la'” 75/6) € D@EyT(B,Z’l,"' 7$n7y7§1 ryv 7€k:ry)7

which is called a CEset (in a broad sense) or ¢ set.
® Such general classes will be treated in the following lectures.

20 /22

Logic and
Computation

K. Tanaka

Theorem 7.3 (Relativized enumeration theorem)

{e}¢(zy1,- -+ ,x,) is partial recursive in £ on e,x1,- -+ ,x,, and it is also a partial recursive
functional on e, 1, -+, xp,&.

Theorem 7.4 (Relativized parameter theorem)

For any m,n > 1, there exists a primitive recursive function -:Nm+1 — N such that

{6}5(‘7}1"" sy Tny Y1, 0t 7ym) ~ {S';T(euyh"' >ym)}€($17 7xn>‘

Theorem 7.5 (Relativized recursion theorem)

Let f(z1, - ,Zn,y) be partial recursive in £&. There exists e such that

{6}5(5{71,' o 7$n) ~ f(mla T 7xn76)'

21 /22

Logic and
Computation

K. Tanaka

Further Reading

Oracle computation

® Kozen, D. C. (2006). Theory of computation (Vol. 170). Heidelberg: Springer.

® Soare, R. I. (2016). Turing computability. Theory and Applications of
Computability. Springer.

Relativization

Thank you for your attention!

22 /22

	Parity games
	Uniform memoryless determinacy
	Recursion-theoretic hieararchy
	Oracle computation
	Relativization

