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The outline of the proof of the main lemma.

Lemma 6.21
For any PTA M, there is a PTA M’ that accepts the complement of L(M).

PTAM does not acceptt. « |l has a winning strategy o for t in the game G(M, t).

¢
All the paths through the Q x S;-labeled tree T?

negates the parity condition.

The w-language L(t,a) on Q' = Q x §; X {0,1}
consists of w-words negating the parity condition.

¢
PTA M’ accepts t. < L(t,o)nL(A) = 0. Let A be an NPA which
‘ accepts all w-words on Q'
satisfying the parity cond.
Let A" be a DPA which accepts — i ,
the complement of L(A). Let M’
be a PTA constructed form A’.
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S2S and MTA

Now we will show the equivalence of S2S and MTA.

First, to translate an S2S formula gp(f,)?) into a tree language, we need something
like the characteristic sequence we defined to translate S1S.

For simplicity, we replace the first-order variable = with second-order variable X

representing the singleton set, and consider the translation of the formula cp()?) with
no free occurrences of first-order variables.

Let T = (T1,...,Ty) be an n-tuple of subsets of {0,1}*. Letting Q = {0,1}", we
express T by an Q-labeled tree ¢ : {0,1}* — {0,1}" such that for each i = 1,...,n,

T; ={d € {0,1}" : i-th element of ¢(d) is 1}

Then, such a ¢ is called the characteristic representation tree (representation tree,
in short) of T'.
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Lemma 6.23
Given an 525 formula (X), there exists an MTA M, on © = {0,1}" such that,

L(M,) = {The representation tree of T : (T') holds}.

Proof. The atomic formula of S2S has a form
SbySby - - - Sp,x € X (where b; =0,1).

Then (d,T) satisfies the above relation iff the word dby ... b2b; belongs to T'. So, it is easy
to construct a PTA M that accepts the set of the representation trees of such (d,T)'s.
Furthermore, since the class of languages accepted by MTA's is closed under Boolean
operations and projections, any S2S formula has an equivalent MTA. g

5/23



Logic and
Computation

K. Tanaka

S2S and MTA

Decidability of 525

Uniform memoryless
dete

Conversely, let {P, : a € Q} (P, =t !(a)) be the partition of {0,1}* determined by the
Q- labeled tree t. If an S2S formula ¢ holds in the structure

({O’ 1}* U P({07 1}*)? SO(J;)’ Sl (I‘), 67 Pa)aeQa
@ is said to holds in ¢t. Then,

Lemma 6.24

Given an MTA M on €, there exists an S2S formula s containing P,(a € Q) as a set
constant such that

t € L(M) < ¢ holds in t.

Proof. The idea of constructing the S2S formula ¢, from MTA M is almost the same
as the proof of the lemma for S1S. First, the basic predicates of S1S can be used in S2S.
For example, “z =y”, “X CY”, “X =Y etc. can be used. In addition, we define
o “e=¢ : —Jy(Soy =2V S1y =x).
o “‘Path(X)” : Ixe X(z=e)AVr e X(z#e— Jy € X(Soy =2V S1y =9))A
Ve e X3ly(Sox =y V S1z =y).
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g e Now, let M = (Q,,6,Qo, F) be a complete (no dead ends in state transitions) MTA .

Computation -
: Then, if the input tree is represented by {P, : a € Q}, the run-tree Y = {Y,} (Y} is the set
of vertices with label ¢) is expressed as follows.

K. Tanaka

S2S and MTA
D

run(Y) = \/ ecy,
q€Qo

AVz \/ (x € YgANPy(x) N2 € Yy ANzl €Yy))
(9,a,90,q1) €0

AV /\ ~(zeY, Nz €Y
p#q

Furthermore, the Muller acceptance condition is expressed as

oy = 3JY(run(Y)
AVX (Path(X) — \/ (/\ Yon X is infinite A /\ ¥, N X is finite)
FEeF qeF qg¢F
Obviously, this satisfies the lemma. ]
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Corollary 6.25
S2S is decidable.

Proof. Let o be an S2S sentence. Its truth can be determined by checking whether or
not the emptiness problem of the MTA language equivalent to o A (X = X). This problem
is decidable by the lemma in Page ?? of this slides. O
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25 an A parity game G = (V;, Vi, E, ) is a game on a directed graph (Vj UV}, E) with a
priority function 7 : ViU Vi — {0,1,--- ,k} and ViNV}; = @.

Two players, player | and Il, move a token along the edges of the graph. At a vertex
v e Vi (W), it is player | (II)'s turn to choose some v’ such that (v,v") € E.

For an infinite resulting path p = pop; - - - (called a play), let w(p) := w(po)7(p1) - - .
Player | wins in p iff the smallest number appearing infinitely often in 7(p) is even.

A strategy for player | is a mapping o : (VU V}))<“V| = VU W,.
A play p is consistent with o if for all i, p; € Vi = o (pop1 - pi) = pit1-

® o is a winning strategy for player | if Player | wins in any play consistent with o.
® A (winning) strategy for player |l can be defined similarly.

® A game is said to be determined if one of the players has a winning strategy.

Martin proved that Borel games (including parity games) are determined.
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A memoryless strategy for player Il is a mapping 7: Vj; = VU W),.

From now on, by a strategy we mean a memoryless strategy.

® A play p is consistent with such a ¢ if for all 4, p; € Vi = o(p;) = p;x1. Similar for 7.

o (7) is a winning strategy if player | (II) wins in any play consistent with o (7) .

Let W|(G, o) be the set of starting points pg € V such that ¢ is a winning strategy for
player |. Let

Wi(G) = U Wi(G,0).

I’s winning strategy o

Similarly, W} (G, ) and W(G) are defined.

Clearly, Wi(G) N Wy(G) = @.

When W(G) U Wy (G) =V, the game G is said to have memoryless determinacy.
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~ Example (revisit)

Consider the following parity game G = (Wi, Vij, E, ), where Vi = {¢2,q3} and W} =

{n1}, 7(q;) =ifori=1,2,3.

N

MG E

\/ \/
q2 q1 RS

* Wi(G) = {q}
* Wi(G) ={q1,q3}

® Since Wi(G) UW,(G) =V, the above game G has memoryless determinacy.

~

)
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: In any parity game G, there exists a strategy o for player | such that Wi(G, o) = Wi(G).
Similarly, there exists a II's strategy 7 such that W) (G, 1) = W)(G).

Proof
® By the well-ordering theorem, let W|(G) = {vs}s<a (@, 8 are ordinals).

® For each § < «a, let o3 be a winning strategy of player | starting from vg.

® Then, we define a function f : W|(G) — « as follows: for v € W|(G), let f(v) be the
smallest 5 < « such that v € W|(G, op).

® Finally, we define a strategy o as o(v) := o(,)(v). We want to show that
Wi(G, o) = Wi(G). Since Wi(G, o) C Wi(Q), it is sufficient to show any play
consistent with o starting from a vertex of W|(G) is a winning play for .
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Now, let p be a play consistent with o, starting from vertex po of Wi(G).

If p is also consistent with o(,,), then player | wins in p, which completes the proof.
Otherwise, we can get the smallest k such that p, € Vi and pry1 # 05(p0) (k)

Since p[(k + 1) is consistent with o ¢(,,), player | can win the game from pj, following
Tf(po) thatis, pi € Wi(G,05(p,)). But prs1 = 0(pk) = 0 5(01) (P1) # T f(p) (P). SO
flor) < f(po).-

Player | wins if p obeys o(,, ) from pj;, onwards.

Othewise, some k' appears such that px € Vi and prry1 7 05(,,)(prr), then

fowr) < flpr) < fpo).

By repeating this, the descending sequence of ordinal numbers ends in finite steps. So
there exists some | € w such that p is consistent with o (,,) from p;, and hence player
| wins.

Therefore, o is I's winning strategy starting from any vertex of W|(G). That is,
Wi(G, o) = WI(G).

Wi(G, 1) = Wi(G) can be shown similarly. &
13/23
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Uniform memoryless
determinac

If there exist o and 7 such that W|(G,0) U W\ (G, 7) =V, game G is said to have
uniform memoryless determinacy.

From the above lemma, if a parity game has memoryless determinacy, it also has
uniform memoryless determinacy.

We say that v € V is an absorbing vertex if no edges exit from v, i.e.,
{w: (v,w) € E} = {v}. Note that we assume that no deadlocks exist.

We say that v € V is a vanishing vertex if no edges enter v, i.e.,
{w: (w,v) € B} =@.

Vertices that are neither absorbing nor vanishing are called relevant vertices, and the
set of such vertices is denoted by V;.

7(v) for v € V; is called a relevant priority.
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25 and MTA Consider the following parity game G = (V, W, E, w), where Vi = {vq,v3,v4} and

prne Vi = {vo,v1}, w(v;) =i fori = 0,1,2,3,4.

Uniform memoryless
dete

Vg

A

L
(%) U1 V3 —>| Vo
—

3\
) S

Wi(G) = {vo,v1,v2,v3,v4}
Wi(G) =2

The above game G is uniform memoryless determined.

vg is absorbing, vy is vanishing, v1,v2 and w3 are relevant.

{1,2,3} is the set of relevant priorities.
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Theorem 6.27

Any parity game G has uniform memoryless determinacy.

Proof
Consider a parity game G = (Vj, Vi, E, 7). We prove by induction on the number of
relevant priorities 7(V%).
Base case:
® |f there are no relevant points, all vertices are absorbing or vanishing.

® From an absorving vertex v, v € W|(G, o) for any o (if 7(v) is even), or v € W\ (G, T)
for any 7 (otherwise).

® From a vanishing vertex v, each edge goes to an absorbing vertex, where the winner is
determined regardless of the strategy. So, by selecting an appropriate o(v) or 7(v), we
have v € W\(G, o) UW) (G, T), where the values of o and 7 at other vertex than v are
not irrelevant.

® Thus, there exist o and 7 such that Wi(G, o) UW)(G,7) =V.

16 /23



e Induction case:

Compuen ® Suppose the number of relevant priorities is & > 0. We first prove a weak claim
Wi(G) UW(G) # @.

® For simplicity, assume that the minimum of the relevant priorities is 0.

K. Tanaka

S2S and MTA

Uniform memoryless

e ® \We will modify the game G so that the vertices with priority 0 are changed to
non-relevant vertices. Such a modified game is called G, to which we will apply the
induction hypothesis.

® |et D be the set of relevant vetices with priority 0 in G.

* Make a copy of D and put D := {#: v € D}. \
o Gt = (V1V}, E*,nt) is defined as follows. a
v
e Vit :=Viu{o:ve DNW}, N
. ] rN (T
* Vi i=Wiu{o:ve DNV}, / N
e Ft:={(u,v) € E:vé¢ D}U{(u,d): (u,v) € 4i:I,II
EANveDtU{(v,0):v e D} G is obtained by separating each
o rt =7 U{(5,0):ve D). vertex v of D into vanishing vertex

v and absorbing vertex 47 / 23
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Therefore, the number of relevant priorities of G is less than that of G.

By induction hypothesis, there exist ot and 77 such that
Wi(GH ot ) Uy (G, 7)) =V =T u Y.

The strategies oF:Vi—>Vand 7¥: V) = Vin
G can be derived from o : V;* — V' and
t:VF — V7 by restricting it to V.

That is, o restricts the domain of o* to V4, and
when the value is v € D, change it to v. 7% can
be obtained similarly.

First, consider the case Wi(G+,0T) =V,

Take any play p consistent with & in G.

If a vertex of D appears infinitely many times in p, then player | wins in p.
Otherwise, from some vertex in p, its remaining play p’ does not visit D, and since p’
also obeys o* in G, p/ obeys o+ in GT, which means that player | wins in G*, and
thus also wins with p’ in G. Therefore, player | wins even with p in G, because any

finite part of the play makes no difference to the parity condition.

That is, Wi(G,0%) = V.
atis. Wi{G,o%) 18 /23
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® Then we have v € W (GT,77) =Vt — Wi(GT,0™T).

Uniform memoryless
determinacy

* Consider a play starting from v consistent with 7. If an absorbing vertex & € D
appears in the middle, then after that, it just repeats ¥, and so priority 0 appears
infinitely often, which means player | wins, which contradicts with v € W} (G*, 7).

® Therefore, in a play of G from v consistent with 7, a vanishing vertex may appear
only at the start, and no vertex in D U D appear in the middle.

® Thus, any play of G starting from v and consistent with 7+ does not enter D in the
middle, and so it is also consistent with 71, which means player Il wins. That is,
v e Wn(G, %),

e Combining the above two cases, we can say at least Wi(G) U W) (G) # 2.
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Next we show Wi (G) U W) (G) = V. By the way of contradiction, assume
Wi(G) U Wi(G) # V.

Let V™ :=V — (Wi(G) UW,(G)) and consider the game G~ by restricting G to V.

Note that for every v € V'~ there is a u € V'~ such that (v,u) € E. Because if every
u such that (v,u) € E belongs to Wi(G) U W)(G), so is v, which contradicts
v € V7. Therefore, the game G~ is a correct parity game.

In the following, we will show that Wi(G™) U W) (G™) = &, which contradicts with
the previous claim Wi(G) U W) (G) # @, since the number of the relevant priorities of
G~ is not larger than that number k of G.

Let v € Wi(G~) and o~ be a winning strategy for | starting from v in G~.
Now consider a play p starting at v consistent with o~ in G.

At u € VNV~ in the middle of play, no vertex of W} (G) will be chosen in the next
move. Because if it were selected, we would have u € W) (G), which contradicts
u € V™. Thus, pis always in G™.
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® Since p is also consistent with o~ in G, player | wins, that is, v € Wi(G).
® But since V- N W (G) = &, we must have Wi(G™) = @.

e Similarly, W, (G~) = @. Hence, Wi(GT)UWj(G™) = @.

® Since G~ is a parity game with at most k relevant priorities, Wi(G~)UW,(G™) # &,

which denies the assumption of Wi(G, o) U Wy (G, 1) # V.

O

~ Further readings

The above proof is based on S. Le Roux's paper:

“Memoryless determinacy of infinite parity games: Another simple proof”, Info. Proc.

Letters 143 (2019).

Le Roux'’s proof also relies on Haddad's paper: “ Memoryless determinacy of finite parity

games: another simple proof”, Info. Proc. Letters 132 (2018) 19-21.

which in turn refers to many previous studies.

~

J
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25 and MTA given memoryless strategy is a winning strategy. So Wi(G) is NP.

25

Decidability o

Parity games

U e Similarly W) (G) is also NP and W1(G) =V —-W(G), so Wi(G) € NPN co-NP.

determinacy

® However, it is not yet known whether it will be in P, and currently it is O(|G[\°8"+6)
(where n is the number of priorities), due to Calude-Jain-Khoussainov-Li-Stephan
results (STOC 2017).

DECIDING PARITY GAMES IN QUASI-POLYNOMIAL TIME*

CRISTIAN S. CALUDE', SANJAY JAIN!, BAKHADYR KHOUSSAINOVT WEI LI§, AND
FRANK STEPHAN?S

Abstract. It is shown that the parity game can be solved in quasi-polynomial time. The
parameterized parity game—with n nodes and m distinct values (a.k.a. colors or priorities)—is
proven to be in the class of fixed parameter tractable problems when parameterized over m. Both
results improve known bounds, from runtime n®V™) to O(n1°8(m)+6) and from an XP algorithm
with runtime O(ne("’>) for fixed parameter m to a fixed parameter tractable algorithm with runtime
O(n® + 2mlos(m)+6m) - Ag an application, it is proven that colored Muller games with n nodes and
m colors can be decided in time O((m™ - n)3); it is also shown that this bound cannot be improved
to 20(m-log(m)) . O(1) i the case that the exponential time hypothesis is true. Further investigations
deal with memoryless Muller games and multidimensional parity games.
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Thank you for your attention!
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