
Logic and
Computation

K. Tanaka

Closed under
complement

S2S and MTA

Decidability of S2S Logic and Computation II
Part 6. Automata on infinite objects

Kazuyuki Tanaka

BIMSA

May 13, 2025

1 / 19



Logic and
Computation

K. Tanaka

Closed under
complement

S2S and MTA

Decidability of S2S

Logic and Computation II� �
• Part 4. Modal logic

• Part 5. Modal µ-calculus

• Part 6. Automata on infinite objects

• Part 7. Recursion-theoretic hierarchies� �
Part 6. Schedule (tentative)� �
• Apr.15, (1) Second-order arithmetic and analytical hierarchy

• Apr.17, (2) Büchi automata

• Apr.22, (3) Safra’s theorem

• Apr.24, (4) The decidability of S1S

• May 6, (5) Tree automata

• May 8, (6) Tree automata and parity games

• May 13, (7) The decidability of S2S

• May 15, (8) Positional determinacy of parity games� �
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Recap
• An (Ω-)labeled tree is the complete binary tree {0, 1}∗
with each vertex labeled by a symbol in Ω. It can be
viewed as a function t : {0, 1}∗ → Ω.

• The tree automaton M = (Q,Ω, δ, Q0, Acc):
• Q: a set of states,

• δ ⊆ Q× Ω×Q2: a transition relation,

• Q0 ⊆ Q: a set of initial states, and

• Acc: an acceptance conditions.

• For an input Ω-labeled tree t : {0, 1}∗ → Ω, a run-tree of
M is a Q-labeled tree s : {0, 1}∗ → Q such that
• s(ϵ) ∈ Q0, where ϵ is empty and represents the root
of the binary tree.

• for any u ∈ {0, 1}∗, (s(u), t(u), s(u0), s(u1)) ∈ δ.

• To simplify the discussion, assume that for any input, a
run-tree can be constructed. (Such an automaton is said
to be complete).

… …

𝒂𝒂𝟏𝟏
= 𝑡𝑡(𝜖𝜖)

𝒂𝒂𝟐𝟐
= 𝑡𝑡(0)

𝒂𝒂𝟐𝟐
= 𝑡𝑡(1)

𝒂𝒂𝟑𝟑
= 𝑡𝑡(00)

𝒂𝒂𝟒𝟒
= 𝑡𝑡(01)

𝒂𝒂𝟓𝟓
= 𝑡𝑡(10)

𝒂𝒂𝟔𝟔
= 𝑡𝑡(11)

… …

𝒒𝒒𝟎𝟎
= s(𝜖𝜖)

𝒒𝒒𝟏𝟏
= s(0)

𝒒𝒒𝟐𝟐
= s(1)

𝒒𝒒𝟑𝟑
= s(00)

𝒒𝒒𝟒𝟒
= s(01)

𝒒𝒒𝟓𝟓
= s(10)

𝒒𝒒𝟔𝟔
= s(11)

An Ω label 
input tree

A 𝑄𝑄 label 
run of the input tree
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• For a Q-labeled tree s and an infinite path α : N → {0, 1}∗, s(α) denotes the
ω-sequence of states (labels) on a path α in s. Inf(s(α)) denotes the set of states
which appears infinitely often on s(α).

• An input tree t is accepted by a tree automaton M (t ∈ L(M)) iff there is a run-tree
s in which all its infinite paths s(α) satisfy the following condition.
• For a Büchi tree automaton (BTA) M , the acceptance condition Acc is

F (⊆ Q): Inf(s(α)) ∩ F ̸= ∅.

• For a Muller tree automaton (MTA) M , Acc is F(⊆ P(Q)): Inf(s(α)) ∈ F .

• For a Rabin tree automata(RTA) M , Acc is F =
{
(Gi, Ri) | 1 ≤ i ≤ k

}
, where

Gi, Ri ⊂ Q: there exists i satisfying Inf(s(α)) ∩Gi ̸= ∅ and Inf(s(α)) ∩Ri = ∅.

• For a parity tree automaton (PTA) M , Acc is a priority function
π : Q → {0, 1, . . . , k}: min{π(q) : q ∈ Inf(s(α))} is even.

• Even with nondeterminism, BTA has less expressive power than the other three.
PTA → RTA → NMA is easy, and NMA → PTA was shown in the last lecture.
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Express a PTA as an infinite game
• Given a PTA M = (Q,Ω, δ, Q0, π) and an input tree t, we construct an
infinite game G(M, t) in which two players alternately move as follows:

(1) Player I (Automaton) chooses a next pair of states (q1, q2) from
δ(p, a).

(2) Player II (Path Finder) chooses either 0 or 1 for the next direction.

p

q2q1

aa

• The goal of the Path Finder is to find a path α ⊆ {0, 1}∗ in the run-tree s that does
not satisfy the acceptance condition, whereas the goal of the Automaton is to find
the Q labels of the run-tree so that the label sequence satisfies the acceptance
conditions.

• Player I (automaton) wins in G(M, t) if the label string s(α) produced by the two
players satisfies the acceptance condition of M .

• Thus “M accepts t ⇔ The automaton has a winning strategy in G(M, t).”
• Assume the determinacy of this game (either player has a winning strategy),

“M does not accept t ⇔ The path finder has a winning strategy in G(M, t).”
• For the moment, we also assume the following (which we will prove in next week).

“The parity game is positionally determined.” 5 / 19
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Now we present the main lemma.

Lemma 6.21

For any PTA M , there is a PTA M ′ that accepts the complement of L(M).

Proof.

• Let M = (Q,Ω, δ, Q0, π) be a PTA and Lc the complement of L(M). First, we will
define a parity game G(M, t) such that

“an input tree t belongs to Lc ⇔ player II has a winning strategy.”

• G(M, t) = (VI, VII, E, π) is defined as follows:
V1 = {0, 1}∗×Q, V2 = {(d, (q, q0, q1)) ∈ {0, 1}∗×Q3 : δ(q, t(d), q0, q1)},
E = {(d, (q, q0, q1)), (dˆi, qi)) ∈ V2×V1 : i = 0, 1}∪{((d, q), (d, (q, q0, q1))) ∈ V1×V2}.

• The game starts with I by choosing an element from {ϵ} ×Q0.

• The priority function of the game essentially follows π of PTA M , i.e., the priority for
(d, (q, q0, q1)) ∈ V2 and (d, q) ∈ V1 are both π(q). Then, the same π(q) always
appears twice consecutively, but it does not matter with the parity condition. Player I
wins when the smallest priority appearing infinitely often is even.
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• Let SII be the set of total functions from Q3 to {0, 1}. Then, II’s memoryless strategy
can be viewed as σ : {0, 1}∗ → SII. Hence, it can also be viewed as a SII-labelled tree.

• So, given an input tree t and a memoryless strategy σ for II (not necessarily a winning
strategy), we have a Ω× SII-labelled tree. Then, we treat an infinite path through this
tree (a0, s0)(a1, s1)(a2, s2) · · · such that ai = t(d0d1 · · · di−1), si = σ(d0d1 · · · di−1)
(where di ∈ {0, 1}, i ≥ n) as an ω-word α = (a0, s0, d0)(a1, s1, d1)(a2, s2, d2) · · · on
Ω′ = Ω× SII × {0, 1}.
Let L(t, σ) denote the set of all such ω-words.

• We can define an NPA A which accepts an ω-word α = (a0, s0, d0)(a1, s1, d1) · · · iff a
sequence q0q1q2 · · · can be chosen consistently with α to satisfy the parity condition.
Actually, we set A = (Q,Ω′, δ′, Q0, π), where Q,Q0, π are the same as the PTA M ,
and Ω′ = Ω× SII × {0, 1}, and

δ′ = {(q, (a, s, i), qi) : there exists (q, a, q0, q1) ∈ δ s.t. s(q, q0, q1) = i}.

Note that this definition depends on Ω′, but does not directly on II’s strategy σ.
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Claim 1� �
II’s memoryless strategy σ is the winning strategy ⇔ L(t, σ) ∩ L(A) = ∅ .� �

(⇒) By way of contradiction, let α ∈ L(t, σ) ∩ L(A).

• For α ∈ L(a), there exists a run q0q1q2 · · · of A on input α satisfying the parity
condition.

• On the other hand, for II’s strategy σ, if player I chooses (q, a, q0, q1) ∈ δ following δ′,
then they produce a play q0q1q2 · · · in which I wins. So, σ is not a winning strategy
for II.

(⇐) By way of contradiction, suppose strategy σ is not a winning strategy for II.

• If player I chooses (q, a, q0, q1) ∈ δ appropriately, there exists
α = (a0, s0, d0)(a1, s1, d1) · · · such that its corresponding q0, q1, q2 · · · satisfies the
parity condition.

• Thus α ∈ L(t, σ) ∩ L(A).
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Now, since L(A) is an ω-regular language, there exists a DPA A′ = (P,Ω′, η, q0, π
′) that

accepts the complement of L(A) on Ω′.

• Then we construct a desired PTA M ′ from a DPA A′. That is, M ′ = (P,Ω, η′, P0, π
′),

η′ = {(p, a, p0, p1) : ∃s ∈ SII ((p, (a, s, 0), p0) ∈ η ∧ (p, (a, s, 1), p1) ∈ η)}.

Claim 2� �
t ∈ L(M ′) ⇔ t /∈ L(M).� �

(⇒) Suppose t ∈ L(M ′), and fix an accepting run-tree r.

• For each node d ∈ {0, 1}∗ in r, there exists sd ∈ SII satisfying η′. Then, we merge
them to define a memoryless strategy σ : {0, 1}∗ → SII.

• Next, for an ω-word α in L(t, σ), consider a run of DPA A′. This is nothing but the
sequence of labels of the tree r for the {0, 1}ω components of α, and so it satisfies the
parity condition. Thus, α ∈ L(A′), which means α /∈ L(A).

• Hence, L(t, σ) ∩ L(A) = ∅. By Claim 1, σ is a memoryless winning strategy for II in
G(M, t). Therefore, t /∈ L(M).
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• (⇐) Suppose t /∈ L(M).

• Then player II has a memoryless winning strategy σ in G(M, t), which can be viewed
as a SII-labeled tree. From claim 1, L(t, σ) ∩ L(A) = ∅, so L(t, σ) ⊂ L(A′).

• A P -labeled sequence of DPA A′ for a finite subsequence of ω-word α in L(t, σ) is
uniquely determined. Based on them, there exists a P -labeled tree r which is a
run-tree of M ′ for t.

• Since each P -labeled path of the tree r satisfies the parity condition, r satisfies the
acceptance condition of M ′ and so M ′ accepts the input tree t. □
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The outline of the proof is shown in the following diagram.

PTA 𝑀 does not accept 𝑡. ⟺ II has a winning strategy 𝜎 for 𝑡 in the game 𝐺 𝑀, 𝑡 .

⇕

⇕

⇕

All the paths through the Ω × 𝑆II -labeled tree 𝑇𝑡,𝜎

negates the parity condition.

The 𝜔-language 𝐿 𝑡, 𝜎 on Ω′ = Ω × 𝑆II × 0,1
consists of 𝜔-words negating the parity condition.

Let 𝐴 be an NPA which  

accepts all 𝜔-words on Ω′
satisfying the parity cond.

PTA 𝑀′ accepts 𝑡. ⟺ 𝐿 𝑡,𝜎 ∩ 𝐿 𝐴 = ∅.

Let 𝐴′ be a DPA which accepts  

the complement of 𝐿(𝐴). Let 𝑀′
be a PTA constructed form 𝐴′.
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Using a parity game similar to G(M, t) above, it is easy to show the following.

Lemma 6.22 (PTA emptiness problem)

It is decidable whether the accepted language of PTA is empty or not.

Proof. Given PTA M = (Q,Ω, δ, Q0, π), consider the following parity game
G(M) = (V1, V2, E,Q0, π

′).

• V1 = Q, V2 = δ,

• E = {(q, (q, a, q0, q1)) ∈ V1 × V2} ∪ {((q, a, q0, q1), qi) ∈ V2 × V1 : i = 0, 1},
• π′(q) = π(q), π′((q, a, q0, q1)) = π(q).

This is like removing the position information d ∈ {0, 1}∗ from the above G(M, t).
Therefore,� �

Player I has a winning strategy in G(M) starting from a state in Q0 ⇔ L(M) ̸= ∅� �
And if player I has a winning strategy in G(M), he has a memoryless winning strategy.
Since V1, V2 are finite sets, it is decidable in finite steps that player I has a winning strategy.

□
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S2S and MTA

• Now we will show the equivalence of S2S and MTA.

• First, to translate an S2S formula φ(x⃗, X⃗) into a tree language, we need something
like the characteristic sequence we defined to translate S1S.

• For simplicity, we replace the first-order variable x with second-order variable X
representing the singleton set, and consider the translation of the formula φ(X⃗) with
no free occurrences of first-order variables.

• Let T⃗ = (T1, . . . , Tn) be an n-tuple of subsets of {0, 1}∗. Letting Ω = {0, 1}n, we
express T⃗ by an Ω-labeled tree t : {0, 1}∗ → {0, 1}n such that for each i = 1, . . . , n,

Ti = {d ∈ {0, 1}∗ : i-th element of t(d) is 1}

Then, such a t is called the characteristic representation tree (representation tree,

in short) of T⃗ .
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Lemma 6.23

Given an S2S formula φ(X⃗), there exists an MTA Mφ on Ω = {0, 1}n such that,

L(Mφ) = {The representation tree of T⃗ : φ(T⃗ ) holds}.

Proof. The atomic formula of S2S has a form

Sb1Sb2 . . . Sbkx ∈ X (where bi = 0, 1).

Then (d, T ) satisfies the above relation iff the word dbk . . . b2b1 belongs to T . So, it is easy
to construct a PTA M that accepts the set of the representation trees of such (d, T )’s.
Furthermore, since the class of languages accepted by MTA’s is closed under Boolean
operations and projections, any S2S formula has an equivalent MTA. □
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Conversely, let {Pa : a ∈ Ω} (Pa = t−1(a)) be the partition of {0, 1}∗ determined by the
Ω- labeled tree t. If an S2S formula φ holds in the structure

({0, 1}∗ ∪ P({0, 1}∗), S0(x), S1(x),∈, Pa)a∈Ω,

φ is said to holds in t. Then,

Lemma 6.24

Given an MTA M on Ω, there exists an S2S formula φM containing Pa(a ∈ Ω) as a set
constant such that

t ∈ L(M) ⇔ φM holds in t.

Proof. The idea of constructing the S2S formula φM from MTA M is almost the same
as the proof of the lemma for S1S. First, the basic predicates of S1S can be used in S2S.
For example, “x = y”, “X ⊆ Y ”, “X = Y ” etc. can be used. In addition, we define

• “x = ϵ” : ¬∃y(S0y = x ∨ S1y = x).

• “Path(X)” : ∃x ∈ X(x = ϵ) ∧ ∀x ∈ X(x ̸= ϵ → ∃y ∈ X(S0y = x ∨ S1y = s))∧
∀x ∈ X∃!y(S0x = y ∨ S1x = y).
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Now, let M = (Q,Ω, δ, Q0,F) be a complete (no dead ends in state transitions) MTA .

Then, if the input tree is represented by {Pa : a ∈ Ω}, the run-tree Y⃗ = {Yq} (Yq is the set
of vertices with label q) is expressed as follows.

run(Y⃗ ) =
∨

q∈Q0

ϵ ∈ Yq

∧∀x
∨

(q,a,q0,q1)∈δ

(x ∈ Yq ∧ Pa(x) ∧ x0 ∈ Yq0 ∧ x1 ∈ Yq1)

∧∀x
∧
p ̸=q

¬(x ∈ Yp ∧ x ∈ Yq)

Furthermore, the Muller acceptance condition is expressed as

φM = ∃Y⃗ (run(Y⃗ )

∧∀X(Path(X) →
∨
F∈F

(
∧
q∈F

Yq ∩X is infinite ∧
∧
q ̸∈F

Yq ∩X is finite)

Obviously, this satisfies the lemma. □
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Corollary 6.25

S2S is decidable.

Proof. Let σ be an S2S sentence. Its truth can be determined by checking whether or
not the emptiness problem of the MTA language equivalent to σ ∧ (X = X). This problem
is decidable by the lemma in Page 12 of this slides. □
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Homework� �
Let Ω = {a, b}.
(1) Construct a PTA M1 that accepts Ω-labeled trees in which a appears finitely.
(2) Construct a a PTA M2 that accepts Ω-labeled trees in which a appears infinitely
many times only in one path.� �
Homework� �
By SωS, we denote the monadic second-order theory of Tω = (N∗, {Si(x)}i∈N,⊂,≼),
where Si(w) = wˆi (i ∈ N), ⊂ is the prefix and ≼ is the lexicographic order.
Now let f : N∗ → {0, 1}∗ be

f(n0n1 . . . nk−1) = 0n010n11 · · · 10nk−11, and f(ϵ) = ϵ.

Letting D be the range of f , we have D = (D, {SD
i (x)}i∈N,⊂D,≼D) ∼= Tω.

Then show that D is S2S-definable (Note: ⊂ and ≼ cannot be defined in
(N∗, {Si(x)}i∈N)). From this, derive that SωS is decidable.� �
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Thank you for your attention!
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