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Logic and Computation II� �
• Part 4. Modal logic

• Part 5. Modal µ-calculus

• Part 6. Automata on infinite objects

• Part 7. Recursion-theoretic hierarchies� �
Part 6. Schedule (tentative)� �
• Apr.15, (1) Second-order arithmetic and analytical hierarchy

• Apr.17, (2) Büchi automata

• Apr.22, (3) Safra’s theorem

• Apr.24, (4) The decidability of S1S

• May 6, (5) Tree automata

• May 8, (6) The decidability of S2S

• May 13, (7) Finite model theory

• May 15, (8) Parity games� �
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Recap
• An (Ω-)labeled tree is the complete binary tree {0, 1}∗
with each vertex labeled by a symbol in Ω. It can be
viewed as a function t : {0, 1}∗ → Ω.

• The tree automaton M = (Q,Ω, δ, Q0, Acc):
• Q: a set of states,

• δ ⊆ Q× Ω×Q2: a transition relation,

• Q0 ⊆ Q: a set of initial states, and

• Acc: an acceptance conditions.

• For an input Ω-labeled tree t : {0, 1}∗ → Ω, a run-tree of
M is a Q-labeled tree s : {0, 1}∗ → Q such that
• s(ϵ) ∈ Q0, where ϵ is empty and represents the root
of the binary tree.

• for any u ∈ {0, 1}∗, (s(u), t(u), s(u0), s(u1)) ∈ δ.

• To simplify the discussion, assume that for any input, a
run-tree can be constructed. (Such an automaton is said
to be complete).

… …

𝒂𝒂𝟏𝟏
= 𝑡𝑡(𝜖𝜖)

𝒂𝒂𝟐𝟐
= 𝑡𝑡(0)

𝒂𝒂𝟐𝟐
= 𝑡𝑡(1)

𝒂𝒂𝟑𝟑
= 𝑡𝑡(00)

𝒂𝒂𝟒𝟒
= 𝑡𝑡(01)

𝒂𝒂𝟓𝟓
= 𝑡𝑡(10)

𝒂𝒂𝟔𝟔
= 𝑡𝑡(11)

… …

𝒒𝒒𝟎𝟎
= s(𝜖𝜖)

𝒒𝒒𝟏𝟏
= s(0)

𝒒𝒒𝟐𝟐
= s(1)

𝒒𝒒𝟑𝟑
= s(00)

𝒒𝒒𝟒𝟒
= s(01)

𝒒𝒒𝟓𝟓
= s(10)

𝒒𝒒𝟔𝟔
= s(11)

An Ω label 
input tree

A 𝑄𝑄 label 
run of the input tree
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• For a Q-labeled tree s and an infinite path α : N → {0, 1}∗, s(α) denotes the
ω-sequence of states (labels) on a path α in s. Inf(s(α)) denotes the set of states
which appears infinitely often on s(α).

• An input tree t is accepted by a tree automaton M (t ∈ L(M)) iff there is a run-tree
s in which all its infinite paths s(α) satisfy the following condition.
• For a Büchi tree automaton (BTA) M , the acceptance condition Acc is
F (⊆ Q): Inf(s(α)) ∩ F ̸= ∅.

• For a Muller tree automaton (MTA) M , Acc is F(⊆ P(Q)): Inf(s(α)) ∈ F .

• For a Rabin tree automata(RTA) M , Acc is F =
{
(Gi, Ri) | 1 ≤ i ≤ k

}
, where

Gi, Ri ⊂ Q: there exists i satisfying Inf(s(α)) ∩Gi ̸= ∅ and Inf(s(α)) ∩Ri = ∅.

• For a parity tree automaton (PTA) M , Acc is a priority function
π : Q → {0, 1, . . . , k}: min{π(q) : q ∈ Inf(s(α))} is even.

• Even with nondeterminism, BTA has less expressive power than the other three.
PTA → RTA → NMA is easy, and NMA → PTA was shown in the last lecture.
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Parity condition of PTA

Theorem 6.20

PTA and MTA accept the same languages.

Proof. A parity condition can be easily expressed as a Muller condition: F ∈ F iff F is a
set of states whose smallest priority is even.
Conversely, given an MTA M = (Q,Ω, δ, Q0,F), we want to construct a PTA
M ′ = (Q′,Ω, δ′, Q′

0, π) which accepts the same language.
• Let Q′ be the set of permutations of Q∪{♮} (where ♮ /∈ Q). An element of Q′ denotes
a Last Appearing Record of the states so that the rightmost q corresponds to the
current state of M , and ♮ represents the place where such q appeared just before now.
If δ(p, a, r1, r2) in M and q1 . . . qm♮qm+1 . . . qn ∈ Q′ and qn = p, qi = r1, qj = r2,

δ′(q1 . . . qm♮qm+1 . . . qn, a, q1 . . . qi−1♮qi+1 . . . qnqi, q1 . . . qj−1♮qj+1 . . . qnqj).

• A priority function π : Q′ → {0, 1, . . . , 2|Q|+ 1} is defined as follows: For u♮v ∈ Q′,

π(u♮v) = 2|u| if {q ∈ Q : v contains q} ∈ F ; = 2|u|+ 1 otherwise.

• Q′
0 can be Q′, but a more efficient choice is the set of sequences in Q′ with the

rightmost belonging to Q0. 5 / 19
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• We compare the run-trees of MTA M and PTA M ′ for the same input tree.

• A state q that appears finitely (infinitely) many times in a path of the run-tree of M
also occurs finitely (infinitely) many times to the right of ♮ in the corresponding path
of the run-tree of M ′.

• Therefore, from a certain time onwards, the states that appear finitely are fixed in a
sequence u on the left side of ♮, and the states that appears infinitely and ♮ are
permuted repeatedly. We fix such a sequence u and let V be the set of states not in u.

• If ♮ comes to the leftmost in the sequence, that is, if it comes immediately after u, it
has the lowest priority. Such cases always occur infinitely. So, V is the set of states
appearing infinitely many times. Hence, if a path satisfies the acceptance of M , i.e.,
V ∈ F , the lowest priority of states of M ′ appearing infinitely many time is even, and
so it also satisfies the acceptance condition for M ′.

• Conversely, consider a path satisfying the acceptance condition of M ′. Since the states
appearing infinitely with the lowest priority is u♮v for a sequence v from V , the path
also satisfies the acceptance condition of M because the lowest priority must be even.

• Therefore, the accepted tree languages of M and M ′ are the same. □
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Parity games
A parity game G = (VI, VII, E, π) is a game on a directed graph (VI ∪ VII, E) with a priority
function π : VI ∪ VII → {0, 1, · · · , k}:
• The set of vertices is partitioned into VI and VII (VI ∩ VII = ∅).

• Two players, player I and II, move a token along the edges of the graph, which results
in a path ρ = v0v1 · · · , called a play.

• At a vertex v ∈ VI (VII), it is player I (II)’s turn to choose some v′ such that
(v, v′) ∈ E. Note that the choice of v′ may depend on the past moves.

• A strategy for player I is a mapping σ : (VI ∪ VII)
<ωVI → VI ∪ VII.

A strategy for player II is a mapping τ : (VI ∪ VII)
<ωVII → VI ∪ VII.

• The winner of a finite play is the player whose opponent is unable to move.

• Parity winning condition: Player I wins with an infinite play if the smallest priority that
occurs infinitely often in the play is even. II wins otherwise

• σ is a winning strategy for player I if whenever he follows σ the resulting play
satisfies the parity condition.
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Example� �
Consider the following parity game G = (VI, VII, E, π), where VI = {q2, q3} and VII =
{q1}, π(qi) = i for i = 1, 2, 3.

2 1 3

q2 ∈ VI q1 ∈ VII q3 ∈ VI

Assume the game starts from q1, player II has a winning strategy.� �
• A game G is said to be determined if one of the two players has a winning strategy.

• A game G is said to be positionally determined if one of the two players has a
memoryless winning strategy.

• A memoryless strategy for player I is a mapping σ : VI → VI ∪ VII.
A memoryless strategy for player II is a mapping τ : VII → VI ∪ VII.

• As we’ll show later, parity games are positionally determined.
8 / 19
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Express a PTA as an infinite game
• Given a PTA M = (Q,Ω, δ, Q0, π) and an input tree t, we construct an
infinite game G(M, t) in which two players alternately move as follows:

(1) Player I (Automaton) chooses a next pair of states (q1, q2) from
δ(p, a).

(2) Player II (Path Finder) chooses either 0 or 1 for the next direction.

p

q2q1

aa

• The goal of the Path Finder is to find a path α ⊆ {0, 1}∗ in the run-tree s that does
not satisfy the acceptance condition, whereas the goal of the Automaton is to find
the Q labels of the run-tree so that the label sequence satisfies the acceptance
conditions.

• Player I (automaton) wins in G(M, t) if the label string s(α) produced by the two
players satisfies the acceptance condition of M .

• Thus “M accepts t ⇔ The automaton has a winning strategy in G(M, t).”
• Assume the determinacy of this game (either player has a winning strategy),

“M does not accept t ⇔ The path finder has a winning strategy in G(M, t).”
• For the moment, we also assume the following (which we will prove in next week).

“The parity game is positionally determined.” 9 / 19
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Now we present the main lemma.

Lemma 6.21

For any PTA M , there is a PTA M ′ that accepts the complement of L(M).

Proof.

• Let M = (Q,Ω, δ, Q0, π) be a PTA and Lc the complement of L(M). First, we will
define a parity game G(M, t) such that

“an input tree t belongs to Lc ⇔ player II has a winning strategy.”

• G(M, t) = (VI, VII, E, π) is defined as follows:
V1 = {0, 1}∗×Q, V2 = {(d, (q, q0, q1)) ∈ {0, 1}∗×Q3 : δ(q, t(d), q0, q1)},
E = {(d, (q, q0, q1)), (dˆi, qi)) ∈ V2×V1 : i = 0, 1}∪{((d, q), (d, (q, q0, q1))) ∈ V1×V2}.

• The game starts with I by choosing an element from {ϵ} ×Q0.

• The priority function of the games follows π of PTA M , i.e., the priority for
(d, (q, q0, q1)) ∈ V2 and (d, q) ∈ V1 are both π(q). Then, the same π(q) always
appears twice consecutively, but it does not matter with the parity condition. Player I
wins when the smallest priority appearing infinitely often is even.

10 / 19
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• Let SII be the set of total functions from Q3 to {0, 1}. Then, II’s memoryless strategy
can be viewed as σ : {0, 1}∗ → SII. Hence, it can also be viewed as a SII-labelled tree.

• So, given an input tree t and a memoryless strategy σ for II (not necessarily a winning
strategy), we have a Ω× SII-labelled tree of (a0, s0)(a1, s1)(a2, s2) · · · (an, sn) such
that ai = t(d0d1 · · · di−1), si = σ(d0d1 · · · di−1) (di ∈ {0, 1}, 0≤ i ≤ n).

• Moreover, we treat an infinite path (a0, s0)(a1, s1)(a2, s2) · · · through this tree as an
ω-word α = (a0, s0, d0)(a1, s1, d1)(a2, s2, d2) · · · on Ω′ = Ω× SII × {0, 1}.
Let L(t, σ) denote the set of all such words.

• We can define an NPA A which accepts an ω-word α = (a0, s0, d0)(a1, s1, d1) · · · iff a
sequence q0, q1, q2 · · · can be chosen consistently with α to satisfy the parity condition.

• Now, we set A = (Q,Ω′, δ′, Q0, π), where Q,Q0, π are the same as the PTA M , and
Ω′ = Ω× SII × {0, 1}, and

δ′ = {(q, (a, s, i), qi) : there exists (q, a, q0, q1) ∈ δ s.t. s(q, q0, q1) = i}.

Note that this definition does not depend on II’s strategy σ.

11 / 19
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Claim 1� �
II’s memoryless strategy σ is the winning strategy ⇔ L(t, σ) ∩ L(A) = ∅ .� �

(⇒) By way of contradiction, let α ∈ L(t, σ) ∩ L(A).

• Then there exists a run q0q1q2 · · · of A on input α satisfying the parity condition.

• On the other hand, for II’s strategy σ, if player I chooses (q, a, q0, q1) ∈ δ following δ′,
then they produce a play q0q1q2 · · · in which I wins. So, σ is not a winning strategy.

(⇐) By way of contradiction, suppose strategy σ is not a winning strategy for II.

• If player I chooses (q, a, q0, q1) ∈ δ appropriately, there exists
α = (a0, s0, d0)(a1, s1, d1) · · · such that its corresponding q0, q1, q2 · · · satisfies the
parity condition.

• Thus α ∈ L(t, σ) ∩ L(A).

12 / 19
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Now, since L(A) is an ω-regular language, there exists a DPA A′ = (P,Ω′, η, q0, π
′) that

accepts the complement of L(A) on Ω′.

• Then we construct a desired PTA M ′ from a DPA A′. That is, M ′ = (P,Ω, η′, P0, π
′),

η′ = {(p, a, p0, p1) : ∃s ∈ SII ((p, (a, s, 0), p0) ∈ η ∧ (p, (a, s, 1), p1) ∈ η)}.

Claim 2� �
t ∈ L(M ′) ⇔ t /∈ L(M).� �

(⇒) Suppose t ∈ L(M ′), and fix an accepting run-tree r.

• For each node d ∈ {0, 1}∗ in r, there exists sd ∈ SII satisfying η′.

• Then we merge them to define a memoryless strategy σ : {0, 1}∗ → SII.

• Next, consider a run of DPA A′ for an ω-word α in L(t, σ). It is the sequence of labels
of the tree r for the {0, 1}ω components of α and satisfies the parity condition. So
α ∈ L(A′), which means α /∈ L(A).

• Thus, L(t, σ) ∩ L(A) = ∅. By Claim 1, σ is a memoryless winning strategy for II in
G(M, t). Therefore, t /∈ L(M).

13 / 19
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• (⇐) Suppose t /∈ L(M).

• Then player II has a memoryless winning strategy σ in G(M, t), which can be viewed
as a SII-labeled tree. From claim 1, L(t, σ) ∩ L(A) = ∅, so L(t, σ) ⊂ L(A′).

• A P -labeled sequence of DPA A′ for a finite subsequence of ω-word α in L(t, σ) is
uniquely determined. Based on them, there exists a P -labeled tree r which is a
run-tree of M ′ for t.

• Since each P -labeled path of the tree r satisfies the parity condition, r satisfies the
acceptance condition of M ′ and so M ′ accepts the input tree t. □

14 / 19
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The outline of the proof is shown in the following diagram.

PTA 𝑀 does not accept 𝑡 ⟺ II has a winning strategy 𝜎 for 𝑡 in the game 𝐺 𝑀, 𝑡 .
⇕

⇕

⇕

PTA 𝑀′ accepts 𝑡.

The Ω ൈ 𝑆୍୍ labeled 𝑇௧,ఙ has no path satisfying the 
parity conditions. 

The 𝜔-language 𝐿ሺ𝑡, 𝜎ሻ on Ω′ ൌ Ω ൈ 𝑆୍୍ has no 𝜔-
sequence of states satisfying the parity condition.  

Let 𝐴′ be a DPA which accepts 
the complement of 𝐿ሺ𝐴ሻ. Let 𝑀′
be a PTA constructed form 𝐴ᇱ.

𝐿 𝑡, 𝜎 ∩ 𝐿 𝐴 ൌ ∅. Let 𝐴 be an NPA which 
accepts all 𝜔-words on Ωᇱ. 

⟺

15 / 19



Logic and
Computation

K. Tanaka

Parity trees

Parity games

Closed under
complement

S2S and MTA

Using a parity game similar to G(M, t) above, it is easy to show the following.

Lemma 6.22 (PTA emptiness problem)

It is decidable whether the accepted language of PTA is empty or not.

Proof. Given PTA M = (Q,Ω, δ, Q0, π), consider the following parity game
G(M) = (V1, V2, E,Q0, π

′).

• V1 = Q, V2 = δ,

• E = {(q, (q, a, q0, q1)) ∈ V1 × V2} ∪ {((q, a, q0, q1), qi) ∈ V2 × V1 : i = 0, 1},
• π′(q) = π(q), π′((q, a, q0, q1)) = π(q).

This is like removing the position information d ∈ {0, 1}∗ from the above G(M, t).
Therefore,� �

Player I has a winning strategy in G(M) starting from a state in Q0 ⇔ L(M) ̸= ∅� �
And if player I has a winning strategy in G(M), he has a memoryless winning strategy.
Since V1, V2 are finite sets, it is decidable in finite steps that player I has a winning strategy.

□
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S2S and MTA

• Now we will show the equivalence of S2S and MTA.

• First, to translate an S2S formula φ(x⃗, X⃗) into a tree language, we need something
like the characteristic sequence we defined to translate S1S.

• For simplicity, we replace the first-order variable x with second-order variable X
representing the singleton set, and consider the translation of the formula φ(X⃗) with
no free occurrences of first-order variables.

• Let T⃗ = (T1, . . . , Tn) be an n-tuple of subsets of {0, 1}∗. Letting Ω = {0, 1}n, we
express T⃗ by an Ω-labeled tree t : {0, 1}∗ → {0, 1}n such that for each i = 1, . . . , n,

Ti = {d ∈ {0, 1}∗ : ith element of t(d) is 1}

Then, such a t is called the characteristic representation tree (representation tree,

in short) of T⃗ .

17 / 19
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Lemma 6.23

Given an S2S formula φ(X⃗), there exists an MTA Mφ on Ω = {0, 1}n such that,

L(Mφ) = { The representation tree of T⃗ : φ(T⃗ ) holds}.

Proof. The atomic formula of S2S has a form

Sb1Sb2 . . . Sbkx ∈ X (where bi = 0, 1).

Then (d, T ) satisfies the above relation iff the word dbk . . . b2b1 belongs to T . So, it is easy
to construct a PTA M that accepts the set of the representation trees of such (d, T )’s.
Furthermore, since the class of languages accepted by MTA’s is closed under Boolean
operations and projections, any S2S formula has an equivalent MTA. □
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Thank you for your attention!
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