
Logic and
Computation

K. Tanaka

Introducing tree
automata

Parity trees

Parity games

Closed under
compliment

Logic and Computation II
Part 6. Automata on infinite objects

Kazuyuki Tanaka

BIMSA

May 6, 2025

1 / 17

Logic and
Computation

K. Tanaka

Introducing tree
automata

Parity trees

Parity games

Closed under
compliment

Logic and Computation II� �
• Part 4. Modal logic

• Part 5. Modal µ-calculus

• Part 6. Automata on infinite objects

• Part 7. Recursion-theoretic hierarchies� �
Part 6. Schedule (tentative)� �
• Apr.15, (1) Second-order arithmetic and analytical hierarchy

• Apr.17, (2) Büchi automata

• Apr.22, (3) Safra’s theorem

• Apr.24, (4) The decidability of S1S

• May 6, (5) Tree automata

• May 8, (6) The decidability of S2S

• May 13, (7) Finite model theory

• May 15, (8) Parity games� �
2 / 17

Logic and
Computation

K. Tanaka

Introducing tree
automata

Parity trees

Parity games

Closed under
compliment

Recap
• Let Ω be a finite set (alphabet) and Ωω be the set of ω-words a0a1a2 · · · on Ω.

• A run of a nondeterministic automaton M = (Q,Ω, δ, Q0,Acc) on an input
α = a0a1a2 · · · ∈ Ωω is an infinite sequence of states q0q1q2 · · · ∈ Qω satisfying:

q0 ∈ Q0, (qi, ai, qi+1) ∈ δ (i ≥ 0).

• By Inf(σ), we denote the set of states that appear infinitely many times in σ.

• A run σ is accepted by an NBA with Büchi condition (F ⊆ Q) if Inf(σ) ∩ F ̸= ∅;
an NMA with Muller condition (F ⊆ P(Q)) if Inf(σ) ∈ F ;
an NRA with Rabin condition (F =

{
(Gi, Ri) | (1 ≤ i ≤ k)

}
, Gi, Ri ⊂ Q), if there

exists i such that Inf(σ) ∩Gi ̸= ∅ and Inf(σ) ∩Ri = ∅.

• A deterministic automaton with a Büchi/Muller/Rabin condition is called a
DBA/DMA/DRA. Then, we have DBA < NBA = DRA = NRA = DMA = NMA

• S1S is the MSO theory of (N ∪ P(N), x+ 1,∈).
• We proved that S1S and NBA have equivalent expressive power. The decision problem
of S1S can be reduced to the emptiness problem of NBA.

3 / 17

Logic and
Computation

K. Tanaka

Introducing tree
automata

Parity trees

Parity games

Closed under
compliment

§6.5. Introducing tree automata
• Fix a finite set of symbols (or labels) Ω.
• An (Ω-)labeled tree is an infinite complete binary tree {0, 1}∗ with each vertex
labeled by a symbol in Ω. It can be viewed as a function t : {0, 1}∗ → Ω.

We define a tree automaton that accepts labeled trees.

Definition 6.18

The tree automaton M = (Q,Ω, δ, Q0, Acc):

• Q: a set of states,

• δ ⊆ Q× Ω×Q2: a transition relation,

• Q0 ⊆ Q: a set of initial states, and

• Acc: an acceptance conditions, such as Büchi ,
Rabin, Muller.

q

q1 q2

a a

(q, a, q1, q2) ∈ δ means that
by reading a, the state changes
from q to (q1, q2) at once.

M is deterministic if δ is a function (δ : Q× Ω → Q2) and Q0 is a singleton set.
However, for tree automata, deterministic ones are rarely used.

4 / 17

Logic and
Computation

K. Tanaka

Introducing tree
automata

Parity trees

Parity games

Closed under
compliment

Run-trees of tree automata
• To determine the acceptance of the input tree, we
define a run-tree representing the state
transitions.

• For an input Ω-labelled tree t : {0, 1}∗ → Ω, a
run-tree of M is a Q-labelled tree
s : {0, 1}∗ → Q such that

• s(ϵ) ∈ Q0, where ϵ is empty and represents
the root of the binary tree.

• for any u ∈ {0, 1}∗,
(s(u), t(u), s(u0), s(u1)) ∈ δ.

• If M is deterministic then there is only one
run-tree for any input tree.

• To simplify the discussion, assume that for any
input, a run-tree can be constructed. (Such an
automaton is said to be complete). This
modification is easily done by adding new
meaningless states.

… …
𝒂𝒂𝟏𝟏

= 𝑡𝑡(𝜖𝜖)

𝒂𝒂𝟐𝟐
= 𝑡𝑡(0)

𝒂𝒂𝟐𝟐
= 𝑡𝑡(1)

𝒂𝒂𝟑𝟑
= 𝑡𝑡(00)

𝒂𝒂𝟒𝟒
= 𝑡𝑡(01)

𝒂𝒂𝟓𝟓
= 𝑡𝑡(10)

𝒂𝒂𝟔𝟔
= 𝑡𝑡(11)

… …

𝒒𝒒𝟎𝟎
= s(𝜖𝜖)

𝒒𝒒𝟏𝟏
= s(0)

𝒒𝒒𝟐𝟐
= s(1)

𝒒𝒒𝟑𝟑
= s(00)

𝒒𝒒𝟒𝟒
= s(01)

𝒒𝒒𝟓𝟓
= s(10)

𝒒𝒒𝟔𝟔
= s(11)

An Ω label
input tree

A 𝑄𝑄 label
run of the input tree

5 / 17

Logic and
Computation

K. Tanaka

Introducing tree
automata

Parity trees

Parity games

Closed under
compliment

• A (infinite) path through the binary tree {0, 1}∗ is a function f : N → {0, 1}∗ such
that f(0) = ϵ and f(n+ 1) is a child (an immediate successor) of f(n) for all n.

• For a Q-labelled tree s and an infinite path α through {0, 1}∗, s(α) denotes the
ω-sequence of states (labels) on path α in s.

• An input tree t is accepted by a tree automaton M if there is a run-tree s in which all
of the paths s(α) satisfy (one of) the following acceptance conditions.

• If M is a Büchi tree automaton (BTA), then the acceptance condition Acc is
F (⊆ Q): an input tree t ∈ L(M) if there is a run-tree s in which all its infinite
paths s(α) satisfying Inf(s(α)) ∩ F ̸= ∅.

• If M is a Muller tree automaton (MTA), Acc is F(⊆ P(Q)): an input tree
t ∈ L(M) if there is a run-tree s in which all its infinite paths s(α) satisfying that
Inf(s(α)) ∈ F .

• If M is a Rabin tree automata(RTA), Acc is F =
{
(Gi, Ri) | 1 ≤ i ≤ k

}
, where

Gi, Ri ⊂ Q: an input tree t ∈ L(M) if there is a run-tree s s.t in all its infinite
paths s(α) there exists i satisfying Inf(s(α)) ∩Gi ̸= ∅ and Inf(s(α)) ∩Ri = ∅.

6 / 17

Logic and
Computation

K. Tanaka

Introducing tree
automata

Parity trees

Parity games

Closed under
compliment

Example� �
• Let Ω = {a, b}. Let T1 be the set of Ω-labelled trees with at

least one path in which a appears infinitely many times.

• A BTA M = (Q,Ω, δ, Q0, F) is defined as follows.
Q = {qa, qb, q∞}, Q0 = {qa}, F = {qa, q∞},
δ(qy, x) = {(qx, q∞), (q∞, qx)}, δ(q∞, x) = {(q∞, q∞)},

where x, y are any combination of a, b.

• Therefore, the acceptance of the input tree t is determined by
whether or not qa appears infinitely in a nondeterministically
selected path.

• Thus M accepts language T1.� �
Remarks from the viewpoint of analytical hierarchy� �
The accepting language of any deterministic tree automaton can be
expressed as a Π1

1 statement (∵ Its run-tree is uniquely determined).
Since T1 is (fnc-)Σ1

1 and cannot be simplified any further, it cannot
be accepted by any deterministic tree automaton.� �

q∗

qa q∞

a a

q∗

q∞ qa

a a

q∗

qb q∞

b b

q∗

q∞ qb

b b

q∞

q∞ q∞
∗ ∗

∗ = a or b7 / 17

Logic and
Computation

K. Tanaka

Introducing tree
automata

Parity trees

Parity games

Closed under
compliment

• We will prove the decidability of S2S, a monadic second-order theory of 2 successors,
by using the expressive equivalence between S2S and MTA.

• The standard model of S2S is

({0, 1}∗ ∪ P({0, 1}∗), S0(x), S1(x),∈),

where Si(x) is a kind of successor function, i.e., Si(w) is wˆi for any w ∈ {0, 1}∗
(i = 0, 1). (Note: wˆi is also written as w · i or simply w i.)

• Let Pa be the set of nodes with label a ∈ Ω, i.e., Pa = t−1(a). If an S2S formula φ
(in an extended language with {Pa : a ∈ Ω}) holds in the structure
({0, 1}∗ ∪ P({0, 1}∗), S0(x), S1(x),∈, Pa)a∈Ω, we say that the formula φ holds for t.

• Then there is a two-way translation between an MTA M and an S2S formula φ, and
for any Ω-labeled tree t,

“M accepts t” is equivalent to “φ satisfies t”.

8 / 17

Logic and
Computation

K. Tanaka

Introducing tree
automata

Parity trees

Parity games

Closed under
compliment

Lemma 6.19

The class of languages accepted by MTA is closed under set union and projections.

Proof

• Let M1 = (Q1,Ω, δ1, Q
1
0,F1) and M2 = (Q2,Ω, δ2, Q

2
0,F2) be MTA’s. We may

assume Q1 ∩Q2 = ∅.
Then, an MTA that accepts L(M1) ∪ L(M2) is

N = (Q1 ∪Q2,Ω, δ1 ∪ δ2, Q
1
0 ∪Q2

0,F1 ∪ F2).

• Suppose that a set L of Ω1 × Ω2-labeled trees is accepted by an MTA
M = (Q,Ω1 × Ω2, δ, Q0,F). An MTA N = (Q,Ω1, δ

′, Q0,F) that accepts the
projection of L onto Ω1 is defined as,

(p, a, q1, q2) ∈ δ′ ⇔ there exists b ∈ Ω2 such that (p, (a, b), q1, q2) ∈ δ.

□

9 / 17

Logic and
Computation

K. Tanaka

Introducing tree
automata

Parity trees

Parity games

Closed under
compliment

• The difficulty of equivalence of MTA and S2S lies
in proving the class of languages accepted by
MTA is closed under complement.

• Since MTA is different from DTA and DRA, it is
even more difficult to prove its closure under
complement than the ω-language case.

• To simplify the original argument of Rabin
(1969), Y. Gurevich and L. Harrington (1982)
brought in the idea of infinite games and gave an
elegant proof.

• They call a strategy that has only bounded
memory a forgetful strategy, and use the fact
that certain games have such winning strategies
to simplify the treatment of complements
significantly.

TREES, AUTOMATA, AND GAMES

Yuri Gurevich and Leo Harrington

ABSTRACT. In 1969 Rabin introduced tree automata
and proved one of the deepest decidability results.
If you worked on decision problems you did most
probably use Rabin's result. But did you make your
way through Rabin's cumbersome proof with its
induction on countable ordinals? Building on ideas
of our predecessors--and especially those of
Buchi--we give here an alternative and transparent
proof of Rabin's result. Generalizations and
further results will be published elsewhere.

§1. INTRODUCTION. Here E is an alphabet. All
our alphabets are finite and not empty. Recall
that a non-deterministic E-automaton is a quad­
ruple (S,T,sin'F) where S is an alphabet (of

states), T S S x E x S is the t.ransi tion table,
sin E. S is the initial state, and F ,; S is the

set of final states. The automaton is said to
accept a string a

1
... an of letters in E if

there is a string s0s
1

... sn of states such that

s0 =
sin and every (si,ai+l'si+l) ET and

sn E. F. The theory of automata working on finite

strings is well-known. It was generalized in the
1960s for a theory of automata on finite trees; an
algebraic treatment of automata on finite trees, a
survey of results and further references can be
found in Thatcher & Wright 1968. (The game
technique, developed in this paper, gives an
alternative and simple way to handle automata on
finite trees.)

The idea to use automata for recognizing
infinite sequences is due to BUchi 1962. A Buchi
E-automaton is a usual non-deterministic E-auto­
maton (S,T,sin'F) working on infinite sequences
of letters of E. It accepts a sequence a1a2 ...

if there is a sequence s0s1s2 ... of states such

that every

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-067-2/82/005/0060 $00.75

E.O

{n: s E F} is infinite.n
Buchi used sequential automata to prove

decidability of the monadic second-order theory of
natural numbers with the successor relation which
is called, for short, the second-order theory of
one successor, or SlS. The variables of SlS range
over sets of natural numbers. SlS atomic formulas
have a form X �y or Suc(X,Y). The latter means
that there is a natural number n with X = {n},
Y = {n + l}. Other SlS formulas are built from
SIS atomic formulas using conjunction, disjunction,
negation and the existential quantifier. Every
set X of natural numbers can be identified with
its characteristic function, i.e. X(n) = 1 if
n EX, and X(n) = 0 otherwise. For any natural
number m, let Em be the direct product of m

copies of the set {0,1}.

THEOREM 1 (Buchi 1962). For every S1S
formuTa-¢-wi:th m variables there is a Buchi
rm-automaton M such that for alZ sets x1, ,Xm
of natural numbers, ¢(X1, ... ,Xm) holds iff M

accepts the r
m

-sequence

X 1 (o) . . . Xm (o), x 1 (1) . . . xm (1), x /2J . . . xm (2),

The desired automaton M is constructed by
induction on ¢. The atomic case and the cases of
conjunction, disjunction and the existential
quantifier are easy. A natural way to handle the
negation case would be to show that every Btichi
automaton is equivalent to a deterministic Buchi
automaton. This is not true however, and Blichi
used Ramsey's theorem to solve the complementation
problem.

THEOREM 2 (Buchi 1962). The emptiness problem
for Buch� automata is decidable.

Theorem 2 is easy. Theorems 1 and 2 give
decidability of SlS.

Muller 1969 entered the field through study­
ing a problem in asynchronous switching theory.
A deterministic Muller automaton is a quadruple
(S,T,sin'F) where S is the alphabet of states,

T: S x E � S, sin€ S, and F is a set of sub­

sets of S. It accepts a E-sequence a1a2 ... if

F contains the set of states appearing infinitely
often in the sequence

so = sin' sl = T(sO,al), s2 = T(sl,a2),

Given a deterministic Muller Z-automaton, it
is easy to construct a B~chi Z-automaton accepting
the same Z-sequences.

THEOREM 3 (McNaughton 1966). For every B~chi
Z-automaton there is a deterministic Muller
Z-automaton accepting the same Z-sequences.

McNaughton's proof is constructive and
sophisticated. Theorem 3 gives another solution
for the complementation problem for B~chl auto-
mata.

Then Rabin 1969 introduced automata working
on infinite trees and proved decidability of the
monadic second-order theory of the infinite binary
tree which is called, for short, the second-order
theory of two successors, or $2S. The second-
order theories of 3,4 and even ~ successors
reduce easily to $2S.

The infinite binary tree can be seen as the
set {~,r} ~ of all strings in the alphabet {~,r}.
Variables of $2S range over subsets of the
infinite binary tree. 82S formulas are defined in
the same way as SiS formulas but instead of
Suc(X,Y), atomic formulas Suc~(X,Y), SUCr(X,Y)

are used. They mean that there is a string
w ~ {~,r}* such that X = {w} and, Y = {w~} or
Y = {wr} respectively.

Rabin proved the analogues of Theorems i and
2 for $2S. Once again the atomic case and the
cases of conjunction, disjunctipn and existential
quantifier were easy. The difficult parts of
Rabin 1969 were the complementation and--to a
lesser extent--the emptiness problem. Rackoff
1972 found a simple reduction of the emptiness
problem for Rabln automata to the emptiness
problem for automata on finite trees. Also he
simplified to an extent Rabin's solution for the
complementation problem. Using games we give in
the sequel a transparent solution for all these
problems. Our exposition is essentially self-
contained.

The idea to use games is not new. It was
aired by McNaughton and exploited in Landweber
1967, BHchi & Landweber 1969 and especially in
B~chi 1977 where the complementation problem was
reduced (for an able reader) to a certain
determinancy result. Our §2 gives such a reduc-
tion too. Our §3 provides the necessary
determinancy result. When this solution had been
reported in several places including Purdue B~chi
kindly sent us a manuscript, B[chi 1981. To be
sure BHchi proved the determinancy result, and he
certainly was the first to do so. His proof still
is, however, a very complicated induction on
countable ordinals, much more difficult than our

Our games form a special case of games
studied in set theory. The most relevant set-
theoretic paper is Davis 1964. However the
determinancy results of Davis 1964 and other set-
theoretic papers do not suffice for our purposes
because we are interested only in very special
memory-restricted strategies.

Let us mention that David E. Muller and
Paul E. Schupp are developing an alternative
approach to handle $2S.

An impressive generalization of Rabin's
decidability result was formulated in Shelah 1975
and proved in details in Stupp 1975. The proof
used Rabin's technique. The game technique,

developed in the sequel, gives the generalized
result fairly easily.

A few words on negative results. Solving
Rabin's uniformization problem, Gurevich &
Shelah 198? prove that no tree automaton picks a
unique element from any nonempty subset of the
infinite binary tree. Using automata B[chi 1973
proved decidability of monadic second-order theory
of 91 . Gurevich & Magidor & Shelah 1987 prove

that the corresponding theory of ~2 can be of

any given Turing degree (in different set-theo-
retic worlds).

We thank ~enachem ~gidor and Saharon Shelah
for useful discussions, and J. Richard Buchi for
sending us his manuscript, and Anil Nerode and
Andrew Glass for terms Pathfinder and Exposure
respectively.

~2. TREE AUTOMATA. The infinite binary tree is
here the set 9~,r}* of words in the alphabet
{Z,r}. Its root is the empty word e. The nodes
xZ and xr are respectively the left and the
right successors of a node x E {Z,r}*. A mapping
V from the infinite binary tree to an alphabet Z
will be called a Z-valuation or a Z-tree.

Rabin 1969 defined automata working on
Z-trees. They are somewhat ~nconvenient to play
our games. Here is an alternative definition of
tree automata.

A tree Z-automaton is a quadruple
(S,T,Tin,F) where S is an alphabet (of states),

and T ~S x (Z,r} x Z x S is the transition
table, and T. ~ Z x S is the initial state im

table, and F is a family of subsets of S.
Given a tree z-automaton M = (S,T,Tin,F)

and a Z-tree V consider the followimg game
r(M,V) between the automaton M and another
player called Pathfinder:

The automaton chooses: Pathfinder chooses:

s O
d I

s I
d 2

s 2
d 3

s 3

Here (V(e),s O) E Tdn, and every d n £ {~,r},

and every (Sn,dn+l,V(dl...dn+l),Sn+ I) ~ T.

The automaton wins a play SodlSld2... if F

contains {s 6 S: s = s for infinitely many m},
n

otherwise Pathfinder wins the play. The automaton
accepts V if it has a winning strategy in the
game r(M,V).

We clarify the notion of a strategy. Any
finite prefix of any play S0dlSld2... will be

called a position. Note that the automaton makes
a move in a position p iff the length Ipl is
even. A (deterministic)

61

10 / 17

Logic and
Computation

K. Tanaka

Introducing tree
automata

Parity trees

Parity games

Closed under
compliment

Parity condition of PTA

• Subsequently, Emerson and Jutla (1988), McNoughton (1993), Zielonka (1998) and
others further simplified the proof by discovering and utilizing the relation between
parity tree automata and memoryless (positional) strategies of parity games.

• A function π : Q → {0, 1, . . . , k} is called a priority function. A parity tree
automaton (PTA) is equipped with a priority function as its accepting condition.
An input tree is accepted by a PTA, if there exists a run-tree where in each path, the
smallest priority of the states appearing infinitely many times is even.

Theorem 6.20

PTA and MTA accept the same languages.

Proof.
It is easy to see that the languages accepted by a PTA can be accepted by a MTA such
that F ∈ F iff F is a set of states whose smallest priority is even.

11 / 17

Logic and
Computation

K. Tanaka

Introducing tree
automata

Parity trees

Parity games

Closed under
compliment

• Conversely, given an MTA M = (Q,Ω, δ, Q0,F), we want to construct a PTA
M ′ = (Q′,Ω, δ′, Q′

0, π) which accepts the same language.

• Let Q′ be the set of permutations of Q∪{♮} (where ♮ /∈ Q). An element of Q′ denotes
a Last Appearing Record of the states so that the rightmost q corresponds to the
current state of M , and ♮ represents the place where such q appeared just before now.

• Thus, if δ(p, a, r1, r2) in M and q1 . . . qm♮qm+1 . . . qn ∈ Q′ and
qn = p, qi = r1, qj = r2,

δ′(q1 . . . qm♮qm+1 . . . qn, a, q1 . . . qi−1♮qi+1 . . . qnqi, q1 . . . qj−1♮qj+1 . . . qnqj).

• Also, the definition of a priority function π is as follows. For u♮v ∈ Q′,

π(u♮v) =

{
2|u|, {q ∈ Q : v contains q} ∈ F
2|u|+ 1, {q ∈ Q : v contains q} /∈ F

• Then, π : Q′ → {0, 1, . . . , 2|Q|+ 1}.
• Q′

0 can be Q′, but a more efficient choice is the set of sequences in Q′ with the
rightmost belonging to Q0.

12 / 17

Logic and
Computation

K. Tanaka

Introducing tree
automata

Parity trees

Parity games

Closed under
compliment

• We compare the run-trees of MTA M and PTA M ′ for the same input tree.

• A state q that appears finitely (infinitely) many times in a path of the run-tree of M
also occurs finitely (infinitely) many times to the right of ♮ in the corresponding path
of the run-tree of M ′.

• Therefore, from a certain time onwards, the states that appear finitely are fixed in a
sequence u on the left side of ♮, and the states that appears infinitely and ♮ are
permuted repeatedly. We fix such a sequence u and let V be the set of states not in u.

• If ♮ comes to the leftmost in the sequence, that is, if it comes immediately after u, it
has the lowest priority. Such cases always occur infinitely. So, V is the set of states
appearing infinitely many times. Hence, if a path satisfies the acceptance of M , i.e.,
V ∈ F , the lowest priority of states of M ′ appearing infinitely many time is even, and
so it also satisfies the acceptance condition for M ′.

• Conversely, consider a path satisfying the acceptance condition of M ′. Since the states
appearing infinitely with the lowest priority is u♮v for a sequence v from V , the path
also satisfies the acceptance condition of M because the lowest priority must be even.

• Therefore, the accepted tree languages of M and M ′ are the same. □

13 / 17

Logic and
Computation

K. Tanaka

Introducing tree
automata

Parity trees

Parity games

Closed under
compliment

Parity games
A parity game G = (VI, VII, E, π) is a game on a directed graph (VI ∪ VII, E) with a priority
function π : VI ∪ VII → {0, 1, · · · , k}:
• The set of vertices is partitioned into VI and VII (VI ∩ VII = ∅).

• Two players, player I and II, move a token along the edges of the graph, which results
in a path ρ = v0v1 · · · , called a play.

• At a vertex v ∈ VI (VII), it is player I (II)’s turn to choose some v′ such that
(v, v′) ∈ E.

• A strategy for player I is a mapping σ : (VI ∪ VII)
<ωVI → VI ∪ VII.

A strategy for player II is a mapping τ : (VI ∪ VII)
<ωVII → VI ∪ VII.

• The winner of a finite play is the player whose opponent is unable to move.

• Parity winning condition: Player I wins with an infinite play if the smallest parity that
occurs infinitely often in the play is even. II wins otherwise

• σ is a winning strategy for player I if whenever he follows σ the resulting play satisfies
the parity condition.

14 / 17

Logic and
Computation

K. Tanaka

Introducing tree
automata

Parity trees

Parity games

Closed under
compliment

Example� �
Consider the following parity game G = (VI, VII, E, π), where VI = {q2, q3} and VII =
{q1}, π(qi) = i for i = 1, 2, 3.

2 1 3

q2 q1 q3

Assume the game starts from q1, show that player II has a winning strategy.� �
• A game G is determined if one of the two players has a winning strategy.

• A game G is positionally determined if one of the two players has a memoryless
winning strategy.

• A memoryless strategy for player I is a mapping σ : VI → VI ∪ VII.
A memoryless strategy for player II is a mapping τ : VII → VI ∪ VII.

• As we’ll show later, parity games are positionally determined.

15 / 17

Logic and
Computation

K. Tanaka

Introducing tree
automata

Parity trees

Parity games

Closed under
compliment

Characterize a run tree as an infinite game
• Given a PTA M = (Q,Ω, δ, Q0, π) and an input tree t, we construct an
infinite game G(M, t) in which two players alternately move as follows:

(1) Player I (Automaton) chooses next pair of states (q1, q2) from
δ(p, a).

(2) Player II (Path Finder) chooses either 0 or 1 for the next direction.

p

q2q1

aa

• The goal of the Path Finder is to find a path α ∈ {0, 1}∗ in the run-tree s that does
not satisfy the acceptance condition, whereas the goal of the Automaton is to find
the Q labels of the run-tree so that the label sequence satisfies the acceptance
conditions.

• Player I (automaton) wins in G(M, t) if the label string s(α) produced by the two
players satisfies the accepting condition of M .

• Thus “M accepts t ⇔ The automaton has a winning strategy in G(M, t).”
• Assume the determinacy of this game (one of players has a winning strategy),

“M does not accept t ⇔ The path finder has a winning strategy in G(M, t).”
• For the moment, we also assume the following (which we will prove in next week).

“The parity game has a memoryless winning strategy.” 16 / 17

Logic and
Computation

K. Tanaka

Introducing tree
automata

Parity trees

Parity games

Closed under
compliment

Thank you for your attention!

17 / 17

	Introducing tree automata
	Parity trees
	Parity games
	Closed under compliment

