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Logic and Computation II� �
• Part 4. Modal logic

• Part 5. Modal µ-calculus

• Part 6. Automata on infinite objects

• Part 7. Recursion-theoretic hierarchies� �
Part 6. Schedule (tentative)� �
• Apr.15, (1) Second-order arithmetic and analytical hierarchy

• Apr.17, (2) Büchi automata

• Apr.22, (3) Safra’s theorem

• Apr.24, (4) The decidability of S1S

• May 6, (5) Tree automata

• May 8, (6) The decidability of S2S

• May 13, (7) Finite model theory

• May 15, (8) Parity games� �
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Recap
• For an infinite run σ, the set of states that appear infinitely in σ is denoted by Inf(σ).

• The ω-language L(M) ⊂ Ωω accepted by a Büchi automaton M is defined as

L(M) = {α ∈ Ωω | there is a run σ of M on α such that Inf(σ) ∩ F ̸= ∅}.
• The ω-language L(M) accepted by a Muller automaton M is defined as

L(M) = {α ∈ Ωω | there is a run σ of M on α such that Inf(σ) ∈ F}.

The Büchi condition Inf(σ)∩F ̸= ∅ can be expressed in terms of the Muller condition

F = {A ⊆ Q | A ∩ F ̸= ∅}.
• The ω-language L(M) accepted by a Rabin automaton M is defined as

L(M) = {α ∈ Ωω | ∃ σ on α s.t. for some i, Inf(σ) ∩Gi ̸= ∅, Inf(σ) ∩Ri = ∅}.

The Rabin condition can be expressed by the Muller condition:

F = {A ⊆ Q |
∨
i

(A ∩Gi ̸= ∅ ∧A ∩Ri = ∅)}
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• b○, e○ and g○ are obvious. c○ and d○ have been explained
above. Now, we are going to show f○.

• Let M be an NMA with an accepting set F . Goal:
construct an NBA N to simulate M .

• For input x, N mimics M by nondeterministically
guessing a run σ of M on x.

• At some point, N nondeterministically predicts that
all states of M not in Inf(σ) have appeared and also
guesses that Inf(σ) is a certain set A ∈ F .

• Then check if A is indeed Inf(σ) as follows:
• Any state of σ (from that point) is in A, and

• Let s be the state of N representing that every
state of A appeared at least once. Then N
accepts the input if s appears inf. many times.

• a○:NBA→ DRA is the most difficult to prove.

NMA

NRA DMA

DRA

NBA

a

b c

d e

f

DBA

g

In the figure, “XXA → YYA”
means “for any XXA M1, there
exists a YYA M2 such that

L(M1) = L(M2)”.
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Definition of Stacks
• A stack is a pile of colored tokens, which is placed on spots of a board, namely,
nodes of the diagram of NBA B. A stack moves from one spot to another along the
edges, sometimes changes its contents, and sometimes gets removed.

• A board with some stacks on some spots is a state of DRA R.
• The board is connected to different bells and buzzers for each color.
• The height of the stack σ is written as |σ|.

𝑞𝑞𝑗𝑗

…Buzzer and bell for each color

stack
token

top
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• The colors in play (on the board) are ordered by their age, namely the time they
appeared in play. Tokens of the same color in play come into play at the same time
and are all of the same age. When adding new tokens, use colors that are not
currently in play (reusable) and put them on top of the stack.

• At time t, the stacks are linearly ordered by the reverse lexicographic order σ ≪t τ .
• σ is a proper extension of τ (τ is obtained by removing the top of σ), or
• Neither σ nor τ is an extension of the other, and at the lowest position where σ

and τ differ in color, the color of σ is older.

• The simulation starts with a board with one white token at each initial state spot of B.

• At each time, the three steps (Move, Cover, Remove) are all executed in this order.

• It should be noted that to make a DRA R deterministic, we must determine the order
of all construction steps. However, since a detailed description would make the whole
construction less visible, I leave the details to the reader.
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Move� �
• An input symbol a is given. For each q ∈ Q, (a copy of) the stack at spot q is

moved to each p ∈ δ(q, a).

• If there are multiple stacks to put in p, put the smallest stack with respect to ≪t.

• If a color disappears in this process, sound the buzzer of that color.� �
Cover� �
• For each accepting state q ∈ F , put a token of a new color on the top of a stack

at spot q so that stacks with the same visible color are covered with tokens of the
same new color, and two with different colors are covered with different new
colors.

• New colors enter only in this process. Thus, if color c is placed directly above
color d in a stack, then all tokens of color c in play are placed directly above
tokens of color d.� �
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Remove� �
• For any invisible color c in play, remove all tokens above tokens of color c, sound

the buzzer of the removed color, and ring the bell of the visible color c.

• Note that when a token is removed in this process, all tokens of that color are
removed. The order of removal is not important.� �

After performing these three steps, there are at most n (= the number of the states) colors
left in play. Otherwise, there must be at least one invisible color, then repeat the remove
step.

Lemma 6.13

The following are equivalent

(1) An NBA B accepts an input x.

(2) In the DRA R thus constructed, there is a color that rings the bell infinitely many
times but sounds the buzzer only finitely many times.
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Proof.
To show (2) ⇒ (1)

• Suppose that there exists a color, say yellow, that rings the bell infinitely many times
but the buzzer a finitely many times.

• Let t0, t1, . . . be the times when the yellow bell rings after the last buzzer.

• From time t0, yellow continues to be in play. Otherwise the buzzer will sound.

• To get a yellow bell at each time ti, all yellow tokens must be invisible just before and
some yellow tokens become visible. In other words, no matter how to move a stack
with a yellow token on top from ti to ti+1, it visits some spot of F .

• Therefore, there exists a run where the state of F appears infinitely.
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Proof.
To show (1) ⇒ (2)

• Conversely, suppose that there is an accepted run ρ of B for x.

• Let σt be the stack following ρ at time t.

• Then, set m = lim inf |σt|. In other words, after a certain time t0, the minimum stack
height is m, and it reaches the height m infinitely many times. White (the oldest
color) is always in play, so m ≥ 1, and there are at most n colors in play, so m ≤ n.

• After time t0, the color tokens at height ≤ m may be replaced by ≪t-smaller ones,
which however happens only finite times by the definition of ≪t.

• So, from a certain time t1, the colors in the stack below m can be assumed to remain
unchanged. We assume that the color at the height m is black.

• Since this sequence of actions is an accepted run, a state of F is visited infinitely
many times. Although the stack gets a new token each time, eventually the stack
height reduces to m again, which rings a black bell.

• Therefore, the black bell rings infinite times and the buzzer sounds only finite times. □
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Example 2

Consider L = {{b, c}∗a ∪ b}ω.

An NBA accepting L� �

q0start q1

a,b

b,c

b,c

a� �

A DRA accepting L� �

1start 2

3

a
b

c

a

b

ca

b,c� �
11 / 24



Logic and
Computation

K. Tanaka

Decidability of S1S

S1S vs. NBA A state of the Rabin automaton R consists of the states of B and the stacks (which may
be empty). The number of combinations of stacks is roughly nn. The treatment of bells
and buzzers and auxiliary machineries needs nn at most. So, the states of R roughly
nkn = 2O(n logn). The acceptance condition consists of n pairs, one for each color.

Therefore, we have

Theorem 6.14 (Safra)

Any NBA with n states can be simulated with a DRA consisting of 2O(n logn) states and n
pairs of acceptance conditions. Therefore, it can also be simulated with a DMA with the
same number of states.
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Corollary 6.15

The class of ω-regular languages is closed with Boolean operations.

Proof.

• We already known that the class of languages accepted by NBA is closed with ∪ and
∩.

• The closure of complement follows from the above theorem, classes of languages
accepted by NBA and DMA are the same.

• In fact, a DMA that accepts the complement of the language of a DMA
M = (Q,Ω, δ, q0,F) by replacing the acceptance condition F of M with P(Q)−F .
□

Homework� �
Prove that L = {uω : u ∈ {0, 1}+} is not an ω-regular language.� �

13 / 24



Logic and
Computation

K. Tanaka

Decidability of S1S

S1S vs. NBA

Decidability of S1S

• We showed in Lecture-03-06 that the FO theory of (N,+, 0) is decidable, but the
MSO theory of (N,+, 0) is undecidable since multiplication is definable there.

• Today, we will show the MSO theory of (N, x+ 1, 0), called S1Si, is decidable, by
reducing its decision problem to the emptiness problem of NBA.

• In the following, S1S is treated in the language with x+ 1, 0, a relation symbol ϵ,
numerical variables x, y, . . . and set variables X,Y, . . ..

• We consider that an S1S formula holds iff it is true in the standard structure with the
ordinary mathematical sense.

• Recall that pure MSO logic (with the standard structure) is not axiomatizable.
Thus, the decidability of S1S also implies its axiomatizability.

iThe first ”S” stands for ”second-order”, and the next ”1S” stands for ”One Successor”. But note that
this is a monadic second-order theory. Indeed, the SO theory of (N,+, 0) is undecidable.
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In S1S, the equality symbol =, the inequality symbol ≤, and the constant 0 are defined as
follows, and they have their usual meanings.

• “x = y” : ∀X(x ∈ X ↔ y ∈ X).

• “X ⊆ Y ” : ∀x(x ∈ X → x ∈ Y ).

• “X = Y ” : X ⊆ Y ∧ Y ⊆ X.

• “x = 0” : ∀y¬(x = y + 1); x has no predecessor.

• “x = 1” : x = 0 + 1. Since 0 is defined above, 0 is treated like a given symbol. In
terms of the original symbols, we can write ∃y(x = y + 1 ∧ ∀z¬(y = z + 1)).

• “x ≤ y” : ∀X(x ∈ X ∧ ∀z(z ∈ X → z + 1 ∈ X)) → y ∈ X. That is, any set X that
contains x and is closed under successor also contains y.

• “X is finite” : ∃x∀y(y ∈ X → y ≤ x).
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Homework� �
(1) Express the following predicates with S1S formulas.

(a) X is the set of even numbers.

(b) X is finite with even number of elements.

(2) Explain why “X and Y have the same cardinality” cannot be expressed by an S1S
formula.� �
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For a set A ⊆ N, the infinite sequence α ∈ {0, 1}N such that α(i) = 1 ⇔ i ∈ A is called
the characteristic function of A.

In the following, a number a ∈ N is identified with the singleton set {a}. Then the
characteristic function of a tuple (a1, . . . , an, A1, . . . , Am) ∈ Nn × (P(N))m can be
expressed as an infinite sequence (called a characteristic sequence) over the alphabet
Ω = {0, 1}m+n. This sequence is divided into m+ n tracks, where each track is the
characteristic function of ai or Ai.

Example 7 The characteristic sequence of (3, 5, {even numbers}, {prime numbers}) is
described as follows.

0 0 0 1 0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 1 0 0 0 0 0 0 . . .
1 0 1 0 1 0 1 0 1 0 1 0 . . .
0 0 1 1 0 1 0 1 0 0 0 1 . . .

(⇐ 3)
(⇐ 5)
(⇐ even numbers)
(⇐ prime numbers)

∈ ({0, 1}4)N
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The following theorem asserts that S1S and NBA have equivalent expressive power. In the
proof, the equivalence of NBA, NMA, and DMA is used freely .

Theorem 6.16 (The equivalence of S1S and NBA)

The following holds.

(1) Let φ(x⃗, X⃗) be an S1S formula with free numerical variables x⃗ = (x1, . . . , xm) and

free set variables X⃗ = (X1, . . . , Xn). Then there exists an equivalent NBA Mφ on
Ω = {0, 1}m+n such that

L(Mφ) = {the characteristic sequence of (⃗a, A⃗) : φ(⃗a, A⃗) is true},

where a⃗ = (a1, . . . , am), A⃗ = (A1, . . . , An).

(2) Let M be an NBA on Ω = {0, 1}. There is an S1S formula φM (X) such that

L(M) = {the characteristic sequence of A : φM (A) is true}.
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Proof. We show (1) by induction on the construction of the formula φ.
1○ The atomic formula is in the form of

k︷ ︸︸ ︷
SS · · · Sx ∈ X.

To accept a characteristic sequence of (a,A), an NBA checks that in the track for x a
unique 1 occurs in the a-th position, and in the track for X a 1 is in the a+ k-th position.
For example, the figure below is an NBA (indeed, a DBA) for k = 3.

q0start q1 q2 q3 q4

(0,-)

(1,-) (0,-) (0,-) (0,1)

(0,-)

The edge label (b, c) represents the input

[
b
c

]
, where b and c are 0 or 1 on the track for

x and X, respectively. Also, - indicates either of 0 and 1.
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2○ Next, consider a formula of the form φ1(x⃗, X⃗) ∧ φ2(x⃗, X⃗). We may assume that there
is a DMA Mi = (Qi,Σ, δi, (q0)i,Fi) for each φi.

DMA M3 for φ1(x⃗, X⃗) ∧ φ2(x⃗, X⃗) = (Q3,Σ, δ3, (q0)3,F3) is constructed as follows.

Q3 = Q1 ×Q2

δ3((q1, q2), a) = (δ1(q1, a), δ2(q2, a))

(q0)3 = ((q0)1, (q0)2)

F3 = {A ⊆ Q3 | π1(A) ∈ F1 and π2(A) ∈ F2}

where π1 and π2 are the projections from Q1 ×Q2 to Q1 and Q2, respectively.

3○ If M = (Q,Σ, δ, q0,F) is a DMA for φ(x⃗, X⃗), then a DMA for ¬φ can be constructed
by taking the acceptance condition as P(Q)−F .

4○ Automata for ∨,→ cases are constructed similarly.
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A NMA M of ∃X1φ takes a1, . . . , an, A2, . . . , Am together with a nondeterministic guess
A1 as input and mimic Mφ on a1, · · · , an, A1, A2, . . . , Am.

6○ An automaton for ∀Xφ can be constructed as ¬∃X¬φ.

Thus, we can construct an NBA Mφ that accepts the set of characteristic sequences of

a⃗, A⃗ satisfying φ.

(Note: The NBA’s above may use some working tracks in addition to the input trucks.
Especially when φ is a sentence, it is appropriate to arrange for a meaningless track. See
the proof of decidability of S1S below. )
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We show (2). Let M = (Q, {0, 1}, δ, q0,F) be a DMA. Let X be a set variable for the

input binary sequence, and Yq be the set of times when q is visited. A run Y⃗ = {Yq} on
input X is defined as follows.

run(X, Y⃗ ) = 0 ∈ Yq0

∧∀n
∧
q

(n ∈ Yq ∧ n ̸∈ X → S(n) ∈ Yδ(q,0))

∧∀n
∧
q

(n ∈ Yq ∧ n ∈ X → S(n) ∈ Y
δ(q,1))

∧∀n
∧
p ̸=q

¬(n ∈ Yp ∧ n ∈ Yq)

Furthermore, “a run Y⃗ is accepted” can be defined:

accept(Y⃗ ) =
∨
F∈F

(
∧
q∈F

Yq is infinite ∧
∧
q ̸∈F

Yq is finite)

Finally, the desired formula is

φM (X) = ∃Y⃗ (run(X, Y⃗ ) ∧ accept(Y⃗ ))
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Corollary 6.17

S1S is decidable.

Proof.
Let σ a S1S sentence. Its truth can be determined by the emptiness of an NBA that is
equivalent to σ ∧ (X = X), which is decidable by the above theorem. □

Note.
• We have treated Pressburger arithmetic on the natural numbers as a regular language.
Similarly, we can treat addition of real numbers as infinite decimals in ω-languages.

• A real number may have two distinct decimal notations, but the equality = between
them can be recognized by an NBA

Further readings� �
• Infinite Words. Automata, Semigroups, Logic and Games. Dominique Perrin and
Jean-Éric Pin. Pure and Applied Mathematics Vol 141. Elsevier, 2004.

• Automata, Logics, and Infinite Games: A Guide to Current Research. Editors:
Erich Grädel, Wolfgang Thomas, Thomas Wilke. Lecture Notes in Computer
Science (LNCS, volume 2500), Springer Berlin, Heidelberg, 2002.� �
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Thank you for your attention!
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