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Logic and Computation II� �
• Part 4. Modal logic

• Part 5. Modal µ-calculus

• Part 6. Automata on infinite objects

• Part 7. Recursion-theoretic hierarchies� �
Part 6. Schedule (tentative)� �
• Apr.15, (1) Second-order arithmetic and analytical hierarchy

• Apr.17, (2) Büchi automata

• Apr.22, (3) Safra’s theorem

• Apr.24, (4) The decidability of S1S

• May 6, (5) Tree automata

• May 8, (6) The decidability of S2S

• May 13, (7) Finite model theory

• May 15, (8) Parity games� �
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§6.3. S1S and Büchi automata
Let Ω be a finite set (alphabet) and Ωω be the set of ω-words a0a1a2 · · · on Ω.

Definition 6.9

A nondeterministic Büchi automaton (NBA) is a 5-tuple M = (Q,Ω, δ, Q0, F ),

(1) Q is a non-empty finite set, whose elements are called states.

(2) Ω is a non-empty finite set, whose elements are called symbols.

(3) δ : Q× Ω → P(Q) is a transition relation, where P(Q) is the power set of Q.

(4) Q0 ⊂ Q is a set of initial states.

(5) F ⊂ Q is a set of final states.

(p, a, q) ∈ δ represents that M can make a transition from state p to state q for input a.
M is deterministic (DBA) if δ is a single-valued function (i.e., δ : Q× Ω → Q) and Q0 is
a singleton set.
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An infinite run and its acceptance condition
• A run of M on an input ω-word α = a0a1a2 · · · ∈ Ωω is an infinite sequence of states

q0q1q2 · · · ∈ Qω

such that q0 ∈ Q0 and (qi, ai, qi+1) ∈ δ (i ≥ 0).

• For an infinite run σ, the set of states that appear infinitely in σ is denoted by Inf(σ).
In other words, if σ = q0q1q2 · · · ,

Inf(σ) =
⋂
n≥0

{qi | i ≥ n}.

• An infinite run σ is said to be accepted by NBA M if Inf(σ) ∩ F ̸= ∅, that is, if a
state of F occurs infinitely many times in σ.

• An input word α is accepted by NBA M if there is an accepted run on α.

• Thus, the ω-language L(M) ⊂ Ωω accepted by by M is defined as

L(M) = {α ∈ Ωω | there is a run σ of M on α such that Inf(σ) ∩ F ̸= ∅}.
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Definition 6.10

A language accepted by an NBA is called an ω-regular language.

Theorem 6.11

The following are equivalent.

• L is an ω-regular language.

• L =
⋃

i<n UiV
ω
i for some regular languages Ui(⊂ Ω∗), Vi ⊂ (Ω+).

Theorem 6.12

The emptiness problem for ω-regular languages is decidable in polynomial time.

• It is easy to see the class of ω-regular languages is closed under ∪ and ∩. The
difficulty lies in the closure under complement.

• If an ω-regular language were accepted by a DBA, so is its complement. But, not all
ω-regular languages are accepted by some DBA. Therefore, we will consider Muller
and Rabin automata, whose deterministic machines can imitate NBA.
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Muller condition
• The acceptance condition of a Muller automaton is given by F ⊆ P(Q), and a run is
accepted iff Inf(σ) ∈ F .

• Büchi condition (Inf(σ) ∩ F ̸= ∅) can be expressed in terms of the Muller condition

F = {A ⊆ Q | A ∩ F ̸= ∅}.

• Non-deterministic / deterministic Muller automata are abbreviated as NMA / DMA.

An DMA accepting L = (0 + 1)∗0ω� �

q0start q1

1

0

0

1

where F = {{q1}}.� �

An equivalent NBA� �

q0start q1

0,1

0

0

where F = {q1}.� �
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Rabin condition
• The acceptance condition of a Rabin automaton is given by

F =
{
(Gi, Ri) | (1 ≤ i ≤ k)

}
,

where Gi, Ri ⊂ Q.

• A run σ is accepted, if there exists i such that Inf(σ)∩Gi ̸= ∅ and Inf(σ)∩Ri = ∅.

• Non-deterministic / deterministic Rabin automata are abbreviated as NRA / DRA.

• When a Gi/Ri state is visited, we say that the i-th green/red signal is on. A green
signal is expected to turn on infinitely many times but a red signal only finitely many.

• A Büchi automaton can be simulated by a Rabin automaton with

k = 1, G1 = F, R1 = ∅.

• A Rabin automaton turns into a Muller automaton if

F = {A ⊆ Q |
∨
i

(A ∩Gi ̸= ∅ ∧A ∩Ri = ∅)}
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• b○, e○ and g○ are obvious. c○ and d○ have been explained
above. Now, we are going to show f○.

• Let M be an NMA with an accepting set F . Goal:
construct an NBA N to simulate M .

• For input x, N mimics M by nondeterministically
guessing a run σ of M on x.

• At some point, N nondeterministically predicts that
all states of M not in Inf(σ) have appeared and also
guesses that Inf(σ) is a certain set A ∈ F .

• Then check if A is indeed Inf(σ) as follows:
• Any state of σ (from that point) is in A, and

• Let s be the state of N representing that every
state of A appeared at least once. Then N
accepts the input if s appears inf. many times.

• a○:NBA→ DRA is the most difficult to prove.

NMA

NRA DMA

DRA

NBA

a

b c

d e

f

DBA

g

In the figure, “XXA → YYA”
means “for any XXA M1, there
exists a YYA M2 such that

L(M1) = L(M2)”.
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NBA→ DRA
• It was first prove by McNaughton in 1966, but his construction was doubly
exponential. Safra propose a more efficient exponential construction in 1988.

NBA� �
Given B = (Q,Ω, δ, Q0, F ) with | Q |= n� �

DRA� �
We want to construct a deterministic Rabin automaton

R = (S,Ω, δ′, S0, {(G1, R1), (G2, R2) · · · (Gn, Rn)})

that accepts the same language.� �
Goal (Safra’s Theorem)

Any NBA with n states can be simulated with a DRA consisting of 2O(n logn) states and n
pairs of acceptance conditions. Therefore, it can also be simulated with a DMA with the
same number of states. 9 / 23
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Example 1

Consider L = (0 + 1)∗0ω, where 1 appears finitely times.

An NBA accepting L� �

q0start q1

0,1

0

0

This language cannot accepted by any
DBA.� �

A DRA accepting L� �

q0start q1

1

0

0

1

where F = {(G1, R1)} = {({q1}, {q0})}� �
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Two ideas of simimulating an NBA by a DRA
Strategy 1: Determinizing the non-determinism.
• We express the state transition of an NBA B by moving tokens from some nodes
(called spots) to another on the diagram of B (called board).

• A state of a DRA R is a board with a token on some spots.
• The simulation starts with a board with a token at each initial state of NBA B.
• For an input a, move a token at a spot q to every spot p ∈ δ(q, a). Note that the
change of the board is deterministic even if δ(q, a) is non-deterministic.

Strategy 2: Last visiting record to treat the Büchi accepting condition
• Each token should have some partial history of visiting final positions. Indeed, such a
token is expressed as a pile of colored tokens, which we call a stack.

• A stack is not only moved according to the transition of B, but it may get new color
token on the top at a final state. Also, an upper part of a stack may be removed by a
certain rule explained below.

• If a color disappear from the boards, sound the buzzer (red signal) of that color. If an
invisible color (not on the top) becomes visible, ring the bell (green signal) of the color.

• If a run of B visits a state q infinitely often, R rings the bell of the corresponding color
infinite times and sounds the buzzer of that color finite times.
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Definition of Stacks
• A stack is a pile of colored tokens, which is placed on spots of a board, namely,
nodes of the diagram of NBA B. A stack moves from one spot to another along the
edges, sometimes changes its contents, and sometimes gets removed.

• A board with some stacks on some spots is a state of DRA R.
• The board is connected to different bells and buzzers for each color.
• The height of the stack σ is written as |σ|.

𝑞𝑞𝑗𝑗

…Buzzer and bell for each color

stack
token

top
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• A token or its color on the board at time t is said to be in play at time t.

• A color is visible at time t if it is the color of the token on top of some stack at time t.

• The colors in play at time t are ordered by their age, namely the last time they
appeared in play. Tokens of the same color in play come into play at the same time
and are all of the same age. When adding new tokens, use colors that are not
currently in play (reusable) and put them on top of the stack.

• When removing tokens, remove all tokens above a token of a certain color.

• When moving a token, move an entire stack (possibly by making multiple duplicates)
to next spots.

• Therefore, in any stack at any time, the tokens are ordered from bottom to top as
oldest to youngest.

• At time t, the stacks are linearly ordered by the following reverse lexicographic order
σ ≪t τ .
• σ is a proper extension of τ (τ is obtained by removing the top of σ), or
• Neither σ nor τ is an extension of the other, and at the lowest position where σ

and τ differ in color, the color of σ is older.
The age of colors and order ≪t change depending on the time, as colors can be added
and removed as play progresses.
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Simulation

• The simulation starts with a board with one white token at each initial state spot of B.

• Suppose we have a stack of colored tokens at some spot at time t.

• At time t+ 1, the following three steps are all executed in this order:
Move, Cover, Remove

• It should be noted that we will make a DRA R deterministic. Within a construction
step, there may be several processes whose execution order is not essential. Formally,
we must clarify the order of such execution. However, since a detailed description
would make the whole construction less visible, I leave the details to the reader.

• Thus, we also note that R would use many intermediate states to execute a
combination of processes, which are not introduced here, but those do not change the
order of the size of R.
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Move� �
• Suppose B reads an input symbol a. For each q ∈ Q, (a copy of) the stack at

spot q is moved to each p ∈ δ(q, a).

• If there are multiple stacks to put in p, put the smallest stack with respect to ≪t.

• If a certain color disappears in this process, sound the buzzer of that color.� �
Cover� �
• For each accepting state q ∈ F , put a token of a new color on the top of a stack

at spot q so that stacks with the same visible color are covered with tokens of the
same new color, and two with different colors are covered with different new
colors.

• New colors enter only in this process. Thus, if color c is placed directly above
color d in a stack, then all tokens of color c in play are placed directly above
tokens of color d.� �
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Remove� �
• For any invisible color c in play, remove all tokens above tokens of color c, sound

the buzzer of the removed color, and ring the bell of the visible color c.

• Note that when a token is removed in this process, all tokens of that color are
removed. The order of removal is not important.� �

After performing these three steps, there are at most n (= the number of the states) colors
left in play. Otherwise, there must be at least one invisible color, then repeat the remove
step.

Lemma 6.13

The following are equivalent

(1) An NBA B accepts an input x.

(2) In the DRA R thus constructed, there is a color that rings the bell infinitely many
times but sounds the buzzer only finitely many times.
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𝑞𝑞0 𝑞𝑞1

1 Move

𝑞𝑞0 𝑞𝑞1

Move

𝑞𝑞0 𝑞𝑞1

0
Cover

Only move / buzzer for yellow
1

𝑞𝑞0 𝑞𝑞1 𝑞𝑞0 𝑞𝑞1 𝑞𝑞0 𝑞𝑞1

Remove Cover Move

0

1
1

Only finite times

0
0

Infinite times 

Safra ‘s Construction

NBA DRA

infinite times
finite times

the same
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Proof.
To show (2) ⇒ (1)

• Suppose that there exists a color, say yellow, that rings the bell infinitely many times
but the buzzer a finitely many times.

• Let t0, t1, . . . be the time when the yellow bell rings after the last buzzer.

• From time t0, yellow continues to be in play. Otherwise the buzzer will sound.

• To get a yellow bell at each time ti, all yellow tokens must be invisible just before and
some yellow tokens become visible. In other words, no matter how to move a stack
with a yellow token on top from ti to ti+1, it visits some spot of F .

• Therefore, there exists a run where the state of F appears infinitely.
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Proof.
To show (1) ⇒ (2)

• Conversely, suppose that there is an accepted run ρ of B for x.

• Let σt be the stack following ρ at time t.

• Then, set m = lim inf |σt|. In other words, after a certain time t0, the minimum stack
height is m, and it reaches the height m infinitely many times. White (the oldest
color) is always in play, so m ≥ 1, and there are at most n colors in play, so m ≤ n.

• After time t0, the color tokens at height ≤ m may be replaced by ≪t-smaller ones,
which however happens only finite times by the definition of ≪t.

• So, from a certain time t1, the colors in the stack below m can be assumed to remain
unchanged. We assume that the color at the height m is black.

• Since this sequence of actions is an accepted run, a state of F is visited infinitely
many times. Although the stack gets a new token each time, eventually the stack
height reduces to m again, which rings a black bell.

• Therefore, the black bell rings infinite times and the buzzer sounds only finite times. □
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Example 2

Consider L = {{b, c}∗a ∪ b}ω.

An NBA accepting L� �

q0start q1

a,b

b,c

b,c

a� �

A DRA accepting L� �

1start 2

3

a
b

c

a

b

ca

b,c� �
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A state of the Rabin automaton R consists of the states of B and the stacks (which may
be empty). The number of combinations of stacks is roughly nn. The treatment of bells
and buzzers and auxiliary machineries needs nn at most. So, the states of R roughly
nkn = 2O(n logn). The acceptance condition consists of n pairs, one for each color.

Therefore, we have

Theorem 6.14 (Safra)

Any NBA with n states can be simulated with a DRA consisting of 2O(n logn) states and n
pairs of acceptance conditions. Therefore, it can also be simulated with a DMA with the
same number of states.
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Corollary 6.15

The class of ω-regular languages is closed with Boolean operations.

Proof.

• We already known that the class of languages accepted by NBA is closed with ∪ and
∩.

• The closure of complement follows from the above theorem, classes of languages
accepted by NBA and DMA are the same.

• In fact, a DMA that accepts the complement of the language of a DMA
M = (Q,Ω, δ, q0,F) by replacing the acceptance condition F of M with P(Q)−F .
□

Homework� �
Prove that L = {uω : u ∈ {0, 1}+} is not an ω-regular language.� �
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Thank you for your attention!
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