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® Part 4. Modal logic
® Part 5. Modal p-calculus

® Part 6. Automata on infinite objects
sgular langua 9 ® Part 7. Recursion-theoretic hierarchies

-~ Part 6. Schedule (tentative)

® Apr.15, (1) Second-order arithmetic and analytical hierarchy
® Apr.17, (2) Biichi automata

® Apr.22, (3) The decidability of S1S

® Apr.24, (4) Tree automata

® May 6, (5) The decidability of 525

® May 8, (6) Finite model theory

® May 13, (7) Parity games
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Recap
Second-order arithmetic Z, is a monadic second-order theory, or a two-sorted
first-order theory dealing with natural numbers and sets of natural numbers under the
condition of full induction and full comprehension.

The language EQOR of second-order arithmetic is the language of first-order arithmetic
Lor plus the membership relation symbol €.

The analytical hierarchy of L2 ;-formulas: For each j > 0, if ¢ € Ejl-, then
VX1 VXpp € I,y if @ € TT] then 3X ---3Xpp € X7 ;. Here, ¥ and ITj are
arithmetical formulas.

Analytical hierarchy fnc-X!, fnc-IIL, by function quantifiers: For each i > 0, if ¢

is fnc-I1}, then 3 fy is fne-X1 ;. If ¢ is fe-3, then Vo is fnc-IT}, ;.
For any X} (or II}) formula , there exists an equivalent fnc-X}! (or fnc-II}) formula
and vice versa.

Normal form theorem for analytical formulas: For each i > 1, for any Ell (or H})
formula , there exists an equivalent fnc-X} (or fnc-I1}) formula whose arithmetical
part is X2¢ or IIY. 3/20
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~ Examples ~
o Vz f(x) < f(x+1) e IIY e IV f(z) <be X
fiw—sw is nondecreasing fiw—w is bounded
° EIX((VnHm >nm € X) A fis bounded on X) exl
o = (AfVa(f(x+1) < f(x))) € fnc-11}
< is well-founded
- J
-~ Example ~
Rewrite a I} formula Vf3xVy3zR(x,vy, z, f) in the normal form.
VfdaVy3zR(x,y, 2, f) < VfV¢IzIzR(z,g(x),z, f)
& VfVgIrR(mo(z), g(mo(x)), m1(2), f)
< Vf3zR(m(x),mo o f(mo(z)), m1(x), 7 0 f)
- J
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second-ort

Definition 6.4 (The system of Recursive Comprehension Axioms)

RCA( consists of the following axioms.
(1) Basic Axioms of Arithmetic: Same as Q<.
(2) A9 comprehension axiom (A9-CA): For any ¢(x) € X and ¥(x) € IIY,

Vz(p(z) <> ¥(z)) —» AXVz(z € X < o(x)).
(3) For any p(x) € 29, p(0) AVx(p(z) = ¢(z + 1)) = Vap(z).
® RCA, is a conservative extension of first-order arithmetic 13;.

Definition 6.4 (The system of Arithmetical Comprehension Axioms)

ACA, is obtained from RCAq by replacing AY comprehension with X comprehension '.

e ACA, is a conservative extension of first-order arithmetic PA.

iArithmetical comprehension can be achieved by repeatedly applying E? comprehension to parameters:
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What is the normal form for the set quantifier hierarchies X}, I1}? The following lemma
shows that the inner arithmetical part is not ¥ or II9.

Lemma 6.8 (Compactness)

For any IIY formula (X)), the formula 3X ¢(X) is 1Y (i = 1).
For any X9 formula ¢(X), the formula 3X p(X) is X9 (i = 1,2).

Proof.

® We identify a set X with the infinite binary sequence £ representing its characteristic
function. Then a 1Y formula ¢(X) can be expressed as Vo R(¢[z) (R is primitive
recursive).
® let T be atree {t:Vs Ct R(s)}. T is also primitive recursive. We can see that
©(X) is equivalent to £ € [T], where [T] is the set of all infinite paths of tree T'.

® Thus, 3X ¢(X) is equivalent to [T'] # &, which is equivalent to the IIY formula
expressing that " T is infinite (Vn3t € {0,1}"t € T)".

6/20
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ot ® S1S is a restricted subsystem of manadic second order arithmetic only with a successor
arithmetic .

§6.3. S1S and Biichi function.

automata

o ® The decidability of S1S dates back to Biichi in the paper below.
He translated S1S formulas to non-deterministic automata on infinite strings, now
known as Biichi automata, which are also useful for formal verification.

® Today, we will introduce such automata, as well as other acceptance conditions for
infinite strings, such as Muller and Rabin conditions.

ON A DECISION METHOD IN RESTRICTED
SECOND ORDER ARITHMETIC

J. RICHARD BUCHI
University of Michigan, Ann Arbor, Michigan, U.S.A.

Let SC be the interpreted formalism which makes use of individual
variables t, x, y, z, ... ranging over natural numbers, monadic predicate
variables q( ), (), s( ), i( ), ... ranging over arbitrary sets of natural
numbers, the individual symbol 0 standing for zero, the function symbol
denoting the successor function, propositional connectives, and quantifiers
for both types of variables. Thus SC is a fraction of the restricted second
order theory of natural numbers, or of the first order theory of real numbers.
In fact, if predicates on natural numbers are interpreted as binary ex-
pansions of real numbers, it is easy to see that SC is equivalent to the first
order theory of [Re, 4-, Pw, Nn], whereby Re, Pw, Nn are, respectively,
the sets of non-negative reals, integral powers of 2, and natural numbers. 7 / 20
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Let Q be a finite set (alphabet) and Q% be the set of w- words apaias--- on Q. If || > 1
then Q% is uncountable and has the same cardinality as the real numbers.

Definition 6.9
A nondeterministic Biichi automaton (NBA) is a 5-tuple M = (Q,, 6, Qo, F),

(1) @ is a non-empty finite set, whose elements are called states.

2) € is a non-empty finite set, whose elements are called symbols.

4

)
3) §:Q x Q — P(Q) is a transition relation. P(Q): the power set of Q.
) Qo C Q is a set of initial states.

)

(
(
(
(5) F C Q is a set of final states.

(p,a,q) € 0 represents that M can make a transition from state p to state ¢ for input a.
M is deterministic (DBA) if ¢ is a single-valued function (i.e., 6 : Q@ x Q — Q) and Q) is

8/20
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Smme ® A run of M on an input w- word

a = apaias--- € Q¥

. e e s e Start .
is an infinite sequence of states [ x

Qg2 € Q¥

satisfying:
® g0 € Qo,

® (gi,ai,qi41) €6 (i >0).

If M is deterministic then there is a unique run

for any input word.

If M is non-deterministic, there may be no runs
or many runs for an input w-word, even

uncountable many runs.

(

Lo
¢ty
L‘ reject!/ x,
L . reject!/ x

g M

o o o

9/20
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® For an infinite run o, the set of states that appear infinitely in o is denoted by Inf(c).
In other words, if o = qoq192 -+,

(o) = (){: | > n}.

n>0

An infinite run o is said to be accepted by NBA M if Inf(o) N F # &, that is, if a
state of F' occurs infinitely many times in o.

® An input word « is accepted by NBA M if there is an accepted run on a.

Thus, the w-language L(M) C Q“ accepted by by M is defined as

L(M) ={a € Q¥ | thereis a run o of M on « such that Inf(c) N F # &}.

10 /20
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~ Example ™
(1) There exists an DBA M = (Q,, 0, qo, F') accepting the following language.

{a € {a,b,c}* | Vn(a(n) =a — Im >n a(m) =b)}.

where Q = {Qanl}v Q= {a7b7 C}v F= {QO}

11/20
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(2) The following NBA accepts the set (0 + 1)*0“, where “1”appears finitely times.

0,1 0

start —> ‘

where Q = {qo, 1}, @ ={0,1}, F = {q:1}.

® Note that non-determinism of the Biichi automaton is necessary to guess when
the last “1" appears so that the automaton can move to loop in ¢; with input

always 0.

® |n fact, this language cannot accepted by any DBA.

\_ ’ Y,

12 /20
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K. Tenaka A language accepted by an NBA is called an w-regular language.

Theorem 6.11

The following are equivalent.

® [ is an w-regular language.
* L=U,., UV for some regular languages U;(C Q*),V; C (7).

Proof (=) Let M = (Q,Q,9,Qo, F) be an NBA that accepts L. By W, we denote
the language accepted by the finite automaton M = (Q,Q, 5, {q},{¢’}) with the empty
word removed, i.e., -
Wyy ={w e Q¢ €d(q,w)}.
Each W, is clearly regular. And L can be expressed as follows.
L= U WQO‘]f(W(If(If)w'
qreF

(<) UY is w-regular if U is regular (Consider a finite automaton that accepts U* as NBA).
If U is regular and V is w-regular, then UV is also w-regular. If L; is w-regular, then

Uien Li is also w-regular. 13 /20
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Biichi automata

w-regular language

Theorem 6.12

The emptiness problem for w-regular languages is decidable.

Proof.

The empty decision problem is to decide L(M) # &. By the theorem in the last page, it is
equivalent to decide 3i((U; # @) A (V; # ©@)), which reduces to the emptiness problem of
regular languages. The emptiness of regular language is decidable, e.g., from the regular
expressions. Thus the emptiness problem for w-regular languages is decidable.

O
Remark

® The non-emptiness of NBA M is equivalent to reach from some initial state ¢g to
some final state gy and return to ¢y infinite many times.

® Therefore, this is a variant of the STconnect problem, which is decidable in
polynomial time.

14 /20
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To show the decidability of S1S, we consider automata over w-words, that is, NBA. If
we show the equivalence of their expressiveness, we can derive the decidability of S1S
from the decidability of emptiness of NBA.

Before proving their equivalence, we need to show the class of w-regular languages is
closed under Boolean operations. It is easy to see the class of w-regular languages is
closed under U and N. The difficulty lies in the closure under complement.

If an w-regular language were accepted by a DBA, so is its complement. But, as in the
example above, not all w-regular languages are accepted by some DBA.

Therefore, we need to consider Muller and Rabin automata, which are stronger than
Biichi ones, but whose deterministic machines can imitate non-deterministic ones.

15 /20



Logic and
Computation

% et Muller condition

® The acceptance condition of a Muller automaton is given by 7 C P(Q), and a run is
accepted iff Inf(o) € F.

® Biichi condition (Inf(o) N F # &) can be expressed in terms of the Muller condition

F={ACQ|ANF #a}.

® Non-deterministic / deterministic Muller automata are abbreviated as NMA / DMA.

~ An DMA accepting L = (0 4 1)*0% V" An equivalent NBA ~
1 0 0,1 0
0
(21w O
start — start —
where F = {{q1}}. where F = {q1 }.
AN /

16 /20



Logic and
Computation

K Tansha Rabin condition
The acceptance condition of a Rabin automaton is given by
F={(G,R) | (1<i<k)},

where G, R; C Q.
® A run o is accepted, if there exists ¢ such that Inf(c) N (7, # @ and Inf(c) N R; = @.

® Non-deterministic / deterministic Rabin automata are abbreviated as NRA / DRA.

When a G;/R; state is visited, we say that the i-th green/red signal is on. A green
signal is expected to turn on infinitely many times but a red signal only finitely many.

A Biichi automaton can be simulated by a Rabin automaton with
k=1, Gi=F, R =0.
® A Rabin automaton turns into a Muller automaton if
F={ACQ|\/(ANGi #BANANR; = 2)}
17/20



et (), (e) and (g) are obvious. (c) and (d) have been explained
K. Tanaka above. Now, we are going to show (). { NMA J
® Let M be an NMA with an accepting set F. Goal: . €
construct an NBA N to simulate M. NhA J { DMA J
® For input , N mimics M by nondeterministically b
guessing a run o of M on x. { DRA J ¢
® At some point, N nondeterministically predicts that a
all states of M not in Inf(c) have appeared and also .
guesses that Inf(o) is a certain set A € F. { NBA J ;
® Then check if A is indeed Inf(o) as follows: |9
® Any state of o (from that point) is in A, and { DBA J
® Let s be the state of IV representing that every  |p the figure, “XXA — YYA”
state of A appeared at least once. Then N means “for any XXA M, there
accepts the input if s appears inf. many times. exists a YYA M, such that
(3):NBA— DRA is the most difficult to prove. L(M,) = L(My)".

18 /20
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® |t was first prove by McNaughton in 1966, but his construction was doubly
exponential. Safra propose a more efficient exponential construction in 1988.

NBA
Given B = (Q,€,6,Qo, F) with | Q |=n

w-regular language

-~ DRA

J

We want to construct a deterministic Rabin automaton
R = (57 Q7 6/7 SO7 {(Gh R1)7 (GQa RQ) e (G2n; R2n)})

that accepts the same language.

- J
Goal (Safra's Theorem)

Any NBA with n states can be simulated with a DRA consisting of 20("106™) states and n
pairs of acceptance conditions. Therefore, it can also be simulated with a DMA with the
same number of states. 19/20
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Thank you

for your attention!
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