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Logic and Computation II� �
• Part 4. Modal logic

• Part 5. Modal µ-calculus

• Part 6. Automata on infinite objects

• Part 7. Recursion-theoretic hierarchies� �
Part 6. Schedule (tentative)� �
• Apr.15, (1) Second-order arithmetic and analytical hierarchy

• Apr.17, (2) Büchi automata

• Apr.22, (3) The decidability of S1S

• Apr.24, (4) Tree automata

• May 6, (5) The decidability of S2S

• May 8, (6) Finite model theory

• May 13, (7) Parity games� �
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Recap
• Second-order arithmetic Z2 is a monadic second-order theory, or a two-sorted
first-order theory dealing with natural numbers and sets of natural numbers under the
condition of full induction and full comprehension.

• The language L2
OR of second-order arithmetic is the language of first-order arithmetic

LOR plus the membership relation symbol ∈.

• The analytical hierarchy of L2
OR-formulas: For each j ≥ 0, if φ ∈ Σ1

j , then

∀X1 · · · ∀Xkφ ∈ Π1
j+1; if φ ∈ Π1

j then ∃X1 · · · ∃Xkφ ∈ Σ1
j+1. Here, Σ

1
0 and Π1

0 are
arithmetical formulas.

• Analytical hierarchy fnc-Σ1
n, fnc-Π

1
n, by function quantifiers: For each i ≥ 0, if φ

is fnc-Π1
i , then ∃fφ is fnc-Σ1

i+1. If φ is fnc-Σ1
i , then ∀fφ is fnc-Π1

i+1.
For any Σ1

i (or Π1
i ) formula , there exists an equivalent fnc-Σ1

i (or fnc-Π1
i ) formula

and vice versa.

• Normal form theorem for analytical formulas: For each i ≥ 1, for any Σ1
i (or Π1

i )
formula , there exists an equivalent fnc-Σ1

i (or fnc-Π1
i ) formula whose arithmetical

part is Σ0
1 or Π0
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Examples� �
• ∀x f(x) ≤ f(x+ 1)︸ ︷︷ ︸

f :ω→ω is nondecreasing

∈ Π0
1 • ∃b ∀x f(x) ≤ b︸ ︷︷ ︸

f :ω→ω is bounded

∈ Σ0
2

• ∃X
(
(∀n∃m > n m ∈ X) ∧ f is bounded on X

)
∈ Σ1

1

• ¬ (∃f∀x(f(x+ 1) ≺ f(x)))︸ ︷︷ ︸
≺ is well-founded

∈ fnc-Π1
1

� �
Example� �
Rewrite a Π1

1 formula ∀f∃x∀y∃zR(x, y, z, f) in the normal form.

∀f∃x∀y∃zR(x, y, z, f) ⇔ ∀f∀g∃x∃zR(x, g(x), z, f)
⇔ ∀f∀g∃xR(π0(x), g(π0(x)), π1(x), f)
⇔ ∀f∃xR(π0(x), π0 ◦ f(π0(x)), π1(x), π1 ◦ f)� �
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Definition 6.4 (The system of Recursive Comprehension Axioms)

RCA0 consists of the following axioms.
(1) Basic Axioms of Arithmetic: Same as Q<.
(2) ∆0

1 comprehension axiom (∆0
1-CA): For any φ(x) ∈ Σ0

1 and ψ(x) ∈ Π0
1,

∀x(φ(x) ↔ ψ(x)) → ∃X∀x(x ∈ X ↔ φ(x)).

(3) For any φ(x) ∈ Σ0
1, φ(0) ∧ ∀x(φ(x) → φ(x+ 1)) → ∀xφ(x).

• RCA0 is a conservative extension of first-order arithmetic IΣ1.

Definition 6.4 (The system of Arithmetical Comprehension Axioms)

ACA0 is obtained from RCA0 by replacing ∆0
1 comprehension with Σ0

1 comprehension i.

• ACA0 is a conservative extension of first-order arithmetic PA.

iArithmetical comprehension can be achieved by repeatedly applying Σ0
1 comprehension to parameters.

5 / 20
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What is the normal form for the set quantifier hierarchies Σ1
i , Π

1
i ? The following lemma

shows that the inner arithmetical part is not Σ0
2 or Π0

2.

Lemma 6.8 (Compactness)

For any Π0
i formula φ(X), the formula ∃X φ(X) is Π0

i (i = 1).
For any Σ0

i formula φ(X), the formula ∃X φ(X) is Σ0
i (i = 1, 2).

Proof.
• We identify a set X with the infinite binary sequence ξ representing its characteristic
function. Then a Π0

1 formula φ(X) can be expressed as ∀x R(ξ ↾x) (R is primitive
recursive).
• Let T be a tree {t : ∀s ⊆ t R(s)}. T is also primitive recursive. We can see that
φ(X) is equivalent to ξ ∈ [T ], where [T ] is the set of all infinite paths of tree T .

• Thus, ∃X φ(X) is equivalent to [T ] ̸= ∅, which is equivalent to the Π0
1 formula

expressing that ”T is infinite (∀n∃t ∈ {0, 1}nt ∈ T )”.
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Büchi automata

ω-regular language

§6.3. S1S and Büchi automata
• S1S is a restricted subsystem of manadic second order arithmetic only with a successor
function.

• The decidability of S1S dates back to Büchi in the paper below.
He translated S1S formulas to non-deterministic automata on infinite strings, now
known as Büchi automata, which are also useful for formal verification.

• Today, we will introduce such automata, as well as other acceptance conditions for
infinite strings, such as Muller and Rabin conditions.

J.R. Büchi
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Büchi automata
Let Ω be a finite set (alphabet) and Ωω be the set of ω- words a0a1a2 · · · on Ω. If |Ω| > 1
then Ωω is uncountable and has the same cardinality as the real numbers.

Definition 6.9

A nondeterministic Büchi automaton (NBA) is a 5-tuple M = (Q,Ω, δ, Q0, F ),

(1) Q is a non-empty finite set, whose elements are called states.

(2) Ω is a non-empty finite set, whose elements are called symbols.

(3) δ : Q× Ω → P(Q) is a transition relation. P(Q): the power set of Q.

(4) Q0 ⊂ Q is a set of initial states.

(5) F ⊂ Q is a set of final states.

(p, a, q) ∈ δ represents that M can make a transition from state p to state q for input a.
M is deterministic (DBA) if δ is a single-valued function (i.e., δ : Q× Ω → Q) and Q0 is
a singleton set.
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An infinite run
• A run of M on an input ω- word

α = a0a1a2 · · · ∈ Ωω

is an infinite sequence of states

q0q1q2 · · · ∈ Qω

satisfying:
• q0 ∈ Q0,

• (qi, ai, qi+1) ∈ δ (i ≥ 0).

• If M is deterministic then there is a unique run
for any input word.

• If M is non-deterministic, there may be no runs
or many runs for an input ω-word, even
uncountable many runs.

1.2 NONDETERMINISM 49

FIGURE 1.28

Deterministic and nondeterministic computations with an accepting
branch

Let’s consider some sample runs of the NFA N1 shown in Figure 1.27. The
computation of N1 on input 010110 is depicted in the following figure.

FIGURE 1.29

The computation of N1 on input 010110

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.
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Accepted of run, word and language

• For an infinite run σ, the set of states that appear infinitely in σ is denoted by Inf(σ).
In other words, if σ = q0q1q2 · · · ,

Inf(σ) =
⋂
n≥0

{qi | i ≥ n}.

• An infinite run σ is said to be accepted by NBA M if Inf(σ) ∩ F ̸= ∅, that is, if a
state of F occurs infinitely many times in σ.

• An input word α is accepted by NBA M if there is an accepted run on α.

• Thus, the ω-language L(M) ⊂ Ωω accepted by by M is defined as

L(M) = {α ∈ Ωω | there is a run σ of M on α such that Inf(σ) ∩ F ̸= ∅}.

10 / 20
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Example� �
(1) There exists an DBA M = (Q,Ω, δ, q0, F ) accepting the following language.

{α ∈ {a, b, c}ω | ∀n(α(n) = a→ ∃m > n α(m) = b)}.

q0start q1

b,c

a

a,c

b

where Q = {q0, q1}, Ω = {a, b, c}, F = {q0}.� �
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Example� �
(2) The following NBA accepts the set (0 + 1)∗0ω, where “1”appears finitely times.

q0start q1

0,1

0

0

where Q = {q0, q1}, Ω = {0, 1}, F = {q1}.

• Note that non-determinism of the Büchi automaton is necessary to guess when
the last “1” appears so that the automaton can move to loop in q1 with input
always 0.

• In fact, this language cannot accepted by any DBA.� �
12 / 20
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Definition 6.10

A language accepted by an NBA is called an ω-regular language.

Theorem 6.11

The following are equivalent.

• L is an ω-regular language.

• L =
⋃

i<n UiV
ω
i for some regular languages Ui(⊂ Ω∗), Vi ⊂ (Ω+).

Proof (⇒) Let M = (Q,Ω, δ, Q0, F ) be an NBA that accepts L. By Wqq′ , we denote
the language accepted by the finite automaton M = (Q,Ω, δ, {q}, {q′}) with the empty
word removed, i.e.,

Wqq′ = {w ∈ Ω+ : q′ ∈ δ̄(q, w)}.
Each Wqq′ is clearly regular. And L can be expressed as follows.

L =
⋃

qf∈F

Wq0qf (Wqfqf )
ω.

(⇐) Uω is ω-regular if U is regular (Consider a finite automaton that accepts U∗ as NBA).
If U is regular and V is ω-regular, then UV is also ω-regular. If Li is ω-regular, then⋃

i∈n Li is also ω-regular. □13 / 20
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Theorem 6.12

The emptiness problem for ω-regular languages is decidable.

Proof.
The empty decision problem is to decide L(M) ̸= ∅. By the theorem in the last page, it is
equivalent to decide ∃i((Ui ̸= ∅) ∧ (Vi ̸= ∅)), which reduces to the emptiness problem of
regular languages. The emptiness of regular language is decidable, e.g., from the regular
expressions. Thus the emptiness problem for ω-regular languages is decidable.

□
Remark� �
• The non-emptiness of NBA M is equivalent to reach from some initial state q0 to
some final state qf and return to qf infinite many times.

• Therefore, this is a variant of the STconnect problem, which is decidable in
polynomial time.� �
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• To show the decidability of S1S, we consider automata over ω-words, that is, NBA. If
we show the equivalence of their expressiveness, we can derive the decidability of S1S
from the decidability of emptiness of NBA.

• Before proving their equivalence, we need to show the class of ω-regular languages is
closed under Boolean operations. It is easy to see the class of ω-regular languages is
closed under ∪ and ∩. The difficulty lies in the closure under complement.

• If an ω-regular language were accepted by a DBA, so is its complement. But, as in the
example above, not all ω-regular languages are accepted by some DBA.

• Therefore, we need to consider Muller and Rabin automata, which are stronger than
Büchi ones, but whose deterministic machines can imitate non-deterministic ones.

15 / 20
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Muller condition
• The acceptance condition of a Muller automaton is given by F ⊆ P(Q), and a run is
accepted iff Inf(σ) ∈ F .

• Büchi condition (Inf(σ) ∩ F ̸= ∅) can be expressed in terms of the Muller condition

F = {A ⊆ Q | A ∩ F ̸= ∅}.

• Non-deterministic / deterministic Muller automata are abbreviated as NMA / DMA.

An DMA accepting L = (0 + 1)∗0ω� �

q0start q1

1

0

0

1

where F = {{q1}}.� �

An equivalent NBA� �

q0start q1

0,1

0

0

where F = {q1}.� �
16 / 20
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Rabin condition
• The acceptance condition of a Rabin automaton is given by

F =
{
(Gi, Ri) | (1 ≤ i ≤ k)

}
,

where Gi, Ri ⊂ Q.

• A run σ is accepted, if there exists i such that Inf(σ)∩Gi ̸= ∅ and Inf(σ)∩Ri = ∅.

• Non-deterministic / deterministic Rabin automata are abbreviated as NRA / DRA.

• When a Gi/Ri state is visited, we say that the i-th green/red signal is on. A green
signal is expected to turn on infinitely many times but a red signal only finitely many.

• A Büchi automaton can be simulated by a Rabin automaton with

k = 1, G1 = F, R1 = ∅.
• A Rabin automaton turns into a Muller automaton if

F = {A ⊆ Q |
∨
i

(A ∩Gi ̸= ∅ ∧A ∩Ri = ∅)}

17 / 20
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• b○, e○ and g○ are obvious. c○ and d○ have been explained
above. Now, we are going to show f○.

• Let M be an NMA with an accepting set F . Goal:
construct an NBA N to simulate M .

• For input x, N mimics M by nondeterministically
guessing a run σ of M on x.

• At some point, N nondeterministically predicts that
all states of M not in Inf(σ) have appeared and also
guesses that Inf(σ) is a certain set A ∈ F .

• Then check if A is indeed Inf(σ) as follows:
• Any state of σ (from that point) is in A, and

• Let s be the state of N representing that every
state of A appeared at least once. Then N
accepts the input if s appears inf. many times.

• a○:NBA→ DRA is the most difficult to prove.

NMA

NRA DMA

DRA

NBA

a

b c

d e

f

DBA

g

In the figure, “XXA → YYA”
means “for any XXA M1, there
exists a YYA M2 such that

L(M1) = L(M2)”.
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NBA→ DRA
• It was first prove by McNaughton in 1966, but his construction was doubly
exponential. Safra propose a more efficient exponential construction in 1988.

NBA� �
Given B = (Q,Ω, δ, Q0, F ) with | Q |= n� �

DRA� �
We want to construct a deterministic Rabin automaton

R = (S,Ω, δ′, S0, {(G1, R1), (G2, R2) · · · (G2n, R2n)})

that accepts the same language.� �
Goal (Safra’s Theorem)

Any NBA with n states can be simulated with a DRA consisting of 2O(n logn) states and n
pairs of acceptance conditions. Therefore, it can also be simulated with a DMA with the
same number of states. 19 / 20



Logic and
Computation

K. Tanaka

Subsystems of
second-order
arithmetic

§6.3. S1S and Büchi
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Thank you for your attention!
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