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Logic and Computation II� �
• Part 4. Modal logic

• Part 5. Modal µ-calculus

• Part 6. Automata on infinite objects

• Part 7. Recursion-theoretic hierarchies� �
Part 6. Schedule (tentative)� �
• Apr.15, (1) Second-order arithmetic and analytical hierarchy

• Apr.17, (2) ω-regular languages

• Apr.22, (3) The decidability of S1S

• Apr.24, (4) Tree automata

• May 6, (5) The decidability of S2S

• May 8, (6) Finite model theory

• May 13, (7) Parity games� �
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§6.1. Recap: Monadic Second Order
• First Order Logic FO: quantifiers ∀ and ∃ range over the elements of a structure.
• Almost all mathematical theories can be developed as FO theories, e.g., PA, ZFC.

• Second Order logic SO = FO + ∀R(x⃗),∃R(x⃗) + ∀f(x⃗),∃f(x⃗)
• The standard structure of SO equips its second-order domain with all relations and
functions (in the näıve sense).

• Monadic Second Order logic MSO = FO + ∀X,∃X (or ∀P (x),∃P (x)),
where X ranges over “subsets” of the structure.
• L. Henkin introduced a general structure of MSO, whose second-order part varies
similarly to the first-order logic domain.

Definition 6.1 (Def.5.3, revisited)

A general structure B = (A,S) of MSO consists of FO structure A and set S ⊂ P(A).
The set quantifiers are interpreted in B as follows.

B |= ∀Xφ(X) ⇔ for any S ∈ S,B |= φ(S) holds,

B |= ∃Xφ(X) ⇔ there exists S ∈ S such that B |= φ(S). 3 / 18
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• A general structure can also be viewed as a first-order structure with two domains (A
and S). Henkin assumes that a general structure should satisfy certain amounts of
comprehension axioms and axiom of choice. The comprehension axiom is an assertion
that for a formula φ(x) with no free occurrence of X, the set {x : φ(x)} exists in the
second-order domain.

Theorem 6.2 (Completeness theorem of MSO, Thm 5.4, revisited)

An MSO formula is provable from appropriate comprehension and other axioms in
two-sorted first-order system if and only if it is true in any general structure that satisfies
those axioms.

This theorem can be proved in the same way as in first-order logic.
It can also be generalized to higher-order logics.
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§. 6.2. Second-order arithmetic
• The language L2

OR of second-order arithmetic is the language of first-order arithmetic
LOR plus the membership relation symbol ∈.

• The formulas in L2
OR are constructed from atomic formulas (t1 = t2, t1 < t2, t ∈ X)

by propositional operators, numerical quantifiers ∀x, ∃x and set quantifiers ∀X, ∃X.

• A formula can be rewritten in the prenex normal form by shifting quantifiers to the
head of formula like in first-order. Moreover, all second-order quantifiers can be placed
outside of the scopes of any first-order quantifier. For instance, in a very weak theory,
the following transformation is possible.

∀x∃Y φ(x, Y ) ⇔ ∀X∃Y (∃!x(x ∈ X) → ∀x(x ∈ X → φ(x, Y ))).

• With the axiom of choice, the following is also possible.

∀x∃Y φ(x, Y ) ⇔ ∃Y ′∀xφ(x, Y ′
x),

where Y ′ is a set-valued choice function such that Y ′
x = Y ′(x) = {y : (x, y) ∈ Y ′}.
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Analytical Hierarchy
We inductively define the analytical hierarchy of L2

OR-formulas, Σi
j and Πi

j

(i = 0, 1, j ∈ N).

Definition 6.3

• The Bounded formulas are constructed from atomic formulas (t1 = t2, t1 < t2,
t ∈ X) by propositional operators and bounded quantifiers ∀x < t, ∃x < t.
The class of such formulas is written as Π0

0 or Σ0
0.

• For each j ≥ 0, if φ ∈ Σ0
j , then ∀x1 · · · ∀xkφ ∈ Π0

j+1;

if φ ∈ Π0
j , then ∃x1 · · · ∃xkφ ∈ Σ0

j+1.

All formulas in Σ0
j and Π0

j are called arithmetical.

The class of arithmetical formulas is also denoted as Π1
0 or Σ1

0.

• For each j ≥ 0, if φ ∈ Σ1
j , then ∀X1 · · · ∀Xkφ ∈ Π1

j+1;

if φ ∈ Π1
j then ∃X1 · · · ∃Xkφ ∈ Σ1

j+1.

All formulas in Σ1
j and Π1

j are called analytical.
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• Σ0
i (Π

0
i ) formulas without set variables are nothing but Σi(Πi) formulas of first-order

arithmetic.

• A formula that is equivalent to a Σi
j (or Πi

j) formula on a given basic system is often

called Σi
j (or Πi

j).

• Furthermore, if a Σi
j formula is equivalent to a Πi

j formula, each of them is called a

∆i
j formula. Since the equivalence of formulas depends on a base theory T , ∆i

j is

strictly expressed as (∆i
j)

T .

• When dealing with arithmetical hierarchies Σ0
i Π0

i , a system of second-order arithmetic
RCA0 is often used as a base theory. When dealing with analytical hierarchies, a
stronger system ACA0 is often assumed.

• These two systems are also suitable for the foundation of a wide range of
mathematical discussions, and thus are important in the foundational program,
so-called Reverse Mathematics.

• The full Second-order arithmetic Z2 is a monadic second-order theory of natural
numbers and sets of natural numbers under the condition of full induction and full
comprehension.
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We define two major subsystems of Z2.

Definition 6.4 (System RCA0)

The system of recursive comprehension axioms RCA0 consists of the following axioms.
(1) Basic Axioms of Arithmetic: Same as Q<.
(2) ∆0

1 comprehension axiom (∆0
1-CA):

∀x(φ(x) ↔ ψ(x)) → ∃X∀x(x ∈ X ↔ φ(x)),

where φ(x) is Σ0
1, ψ(x) is Π

0
1, and X is not included as a free variable. This axiom roughly

guarantees the existence of the set X = {n : φ(n)}.
(3) Σ0

1 induction: For any Σ0
1 formula φ(x),

φ(0) ∧ ∀x(φ(x) → φ(x+ 1)) → ∀xφ(x).
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• Since the ∆0
1 comprehension axiom asserts the existence of recursive sets

(=computable sets) in the standard model N, it is called the recursive
comprehension axiom.

• More precisely, since ψ(x) and φ(x) in the axiom may include set variables (other than
X) as parameters, this axiom indeed asserts that there exists a set that can be
computed in a parameter set as an oracle. But notice that it does not assert the
non-existence of a non-recursive set.

• RCA0 is a conservative extension of first-order arithmetic IΣ1. That is, a sentence of
LOR that is provable in RCA0 is already provable in IΣ1.

Definition 6.4 (continued: System ACA0)

The system of arithmetical comprehension axioms ACA0 is obtained from RCA0 by
replacing the ∆0

1 comprehension with the Σ0
1 comprehension i.

• ACA0 is a conservative extension of first-order arithmetic PA.

iArithmetical comprehension can be achieved by repeatedly applying the Σ0
1 comprehension axiom to

the parameters.
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• In RCA0, we encode the ordered pair of natural numbers (m,n) by a number
(m+n)(m+n+1)

2 +m.

• The Cartesian product X × Y is the set of all (codes of) pairs of an element of X
and an element of Y :

n ∈ X × Y ↔ ∃x ≤ n∃y ≤ n(x ∈ X ∧ y ∈ Y ∧ (x, y) = n)︸ ︷︷ ︸
Σ0

0

.

So the existence of X × Y is guaranteed by RCA0.

• A function f : X → Y is a unique set F ⊆ X × Y such that

∀x∀y0∀y1((x, y0) ∈ F ∧ (x, y1) ∈ F → y0 = y1) and ∀x ∈ X∃y ∈ Y (x, y) ∈ F.

If (x, y) ∈ F , we write f(x) = y.

• A function is called a total function if its domain is N.
• In RCA0, we can prove that the total functions are closed under primitive recursion.

10 / 18
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In RCA0, we can not only handle functions, but also use the function quantifiers ∃f , ∀f for
a unary function f . These quantifiers can be regarded as special set quantifiers ∃Xf , ∀Xf ,
which presuppose that Xf denotes a function, namely, ∀x∃!y (x, y)∈Xf .
Now, we consider the hierarchy of formulas only with function quantifiers.

Definition 6.5 (Analytical hierarchy fnc-Σ1
n, fnc-Π

1
n, by function quantifiers)

Arithmetical formulas are fnc-Σ1
0 and fnc-Π1

0. For each i ≥ 0, if a formula φ is fnc-Π1
i ,

then ∃fφ is fnc-Σ1
i+1. If a formula φ is fnc-Σ1

i , then ∀fφ is fnc-Π1
i+1.

In the following lemma, we show fnc-Σ1
i (or fnc-Π1

i ) and Σ1
i (or Π1

i ) are equivalent. Thus
“fnc-” may be omitted.

Lemma 6.6

For each i ≥ 1, for any Σ1
i formula (or Π1

i formula), there exists an equivalent fnc-Σ1
i

formula (or fnc-Π1
i formula). The converse also holds.
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Proof

• First, we show that in a Σ1
i formula (or a Π1

i formula), a block of set quantifiers of the
same kind can be unified into one. That is, in RCA0, the following holds.

∃X0 · · · ∃Xn−1φ⇔ ∃Xφ′,

where φ′ is obtained from φ by replacing each atomic formula t ∈ Xk (k < n) in it
with (t, k) ∈ X. The equivalence should be clear. Similarly for universal quantifiers
∀Xk.

• Next, we replace each set quantifier ∃X (∀X) with a function quantifier ∃fX (∀fX),
and an atomic formula t ∈ X with fX(t) > 0. Thus, we obtain an equivalent formula
with only functional quantifiers.

• Therefore, a Σ1
i (or Π1

i ) formula can be expressed as fnc-Σ1
i (or fnc-Π1

i ).

12 / 18



Logic and
Computation

K. Tanaka

Introducing
second-order
arithmetic

Analytical hierarchy

Hierarchy by function
quantifiers

Normal form

Summary

• Conversely, suppose fnc-Σ1
i or fnc-Π1

i formula φ are given.

• First, we replace the functional quantifier ∃f (∀f) of φ with the set quantifier ∃Xf

(∀Xf ) and denote the resulting formula as φ′.

• Next, consider how to eliminate f using Xf in the arithmetical part θ of φ′. For
example, an atomic formula s = t where t is expressed as u(f(v)) can be rewritten as
∃y((v, y) ∈ Xf ∧ s = u(y)). If t contains multiple occurrences of f , eliminate them
from the inner. Similarly for s < t.

• Let θ′ be an arithmetical formula obtained by repeating this process and eliminating
all function quantifiers.

• For each f , let Ψ(f) be ∀x∃!y (x, y)∈Xf , to express the condition “Xf represents a
function”. Finally, we define an arithmetical formula θ′′ as follows.

θ′′ ≡
∧

f s.t. φ contains “∀f”

Ψ(f) → (θ′ ∧
∧

f s.t. φ contains “∃f”

Ψ(f))

• By replacing the arithmetical part θ of φ′ with θ′′, we obtain a Σ1
i or Π1

i formula
which is equivalent to φ. □

13 / 18
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The above lemma can also be proved in RCA0, but the following normal form theorem
requires ACA0.

Theorem 6.7 (Normal form theorem for analytical formulas)

For each i ≥ 1, for any Σ1
i formula (or Π1

i formula), there exists an equivalent fnc-Σ1
i

formula (or fnc-Π1
i formula) whose arithmetical part is Σ0

1 or Π0
1.

Proof.

• Any Σ1
i formula (or Π1

i formula) must have an equivalent fnc-Σ1
i formula (or fnc-Π1

i

formula) as shown in the above lemma.

• To begin with, we will observe that consecutive quantifiers of the same type can be
unified as one of such. First note that if x encodes a pair (x0, x1), xi is obtained from
x as a primitive recursive function πi(x) (i = 0, 1). Then ∃x0∃x1φ(x0, x1) can be
rewritten as ∃xφ(π0(x), π1(x)). Also ∃f0∃f1φ(f0, f1) can be rewritten as
∃fφ(π0 ◦ f, π1 ◦ f). Similar for universal quantifiers ∀x0∀x1 and ∀f0∀f1. We remark
that the graph of a primitive recursive function can be expressed as a ∆0

1 formula in
RCA0 essentially by the strong representation lemma.
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• Let φ be a fnc-Σ1
i (or fnc-Π1

i ) formula. Suppose that its last function quantifier is ∃f .
• First, consider the case that the first quantifier of the arithmetical part of φ is ∃x.
Then we change ∃x by a function quantifier ∃fx, and replace x inside with fx(0).
Finally, merge the two function quantifiers ∃f∃fx into one.

• Next, consider the case that the first arithmetical quantifier is ∀x. If the arithmetical
part is Π0

1, we are done.

• Otherwise, the arithmetical part is of the form ∀x∃yφ(x, y).
• If ∀x∃yφ(x, y) holds, there exists an arithmetical function g(x) = y that takes the
smallest y that satisfies φ(x, y) for x. So, it can be rewritten as ∃g∀xφ(x, g(x)) (in
ACA0). Finally, merge the two function quantifiers ∃f∃g into one.

• The same is true if the last function quantifier is ∀f .
• By repeating the above procedure, the arithmetical part becomes Σ0

1 or Π0
1. □
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Compactness via Set Quantifiers
What happens when we consider the normal form like Theorem 6.7 for the hierarchy Σ1

i ,
Π1

i based on set quantifiers? In that case, the inner arithmetic part can not be Σ0
1 or Π0

1.
This is clarified by the following lemma, which can be proved in ACA0.

Lemma 6.8 (Compactness)

For any Π0
1 formula φ(X), the sentence ∃X φ(X) is again Π0

1.

Sketch of proof. We identify sets X with infinite binary sequences.
A Π0

1 formula φ(X) can be written as ∀x θ(X ↾x), where θ is a Σ0
0 formula.

We define a tree
T = {t : ∀s ⊆ t θ(s)}.

Then, φ(X) is equivalent to “X is a path through T”, i.e., X ∈ [T ].
Thus, ∃X φ(X) is equivalent to “[T ] ̸= ∅”, which is in turn equivalent to a Π0

1 statement:

∀n ∃t ∈ {0, 1}n (t ∈ T ). □

The inner arithmetic part of a Σ1
i or Π1

i formula can be expressed using Σ0
2 or Π0

2 formulas.
This can be verified by re-examining the above proof.
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Summary
• Second-order arithmetic Z2 is a monadic second-order theory, or a two-sorted
first-order theory dealing with natural numbers and sets of natural numbers under the
condition of full comprehension.

• The language L2
OR of second-order arithmetic is the language of first-order arithmetic

LOR plus the membership relation symbol ∈.
• The analytical hierarchy of L2

OR-formulas, Σi
j and Πi

j : For each j ≥ 0, if φ ∈ Σ1
j ,

then ∀X1 · · · ∀Xkφ ∈ Π1
j+1; if φ ∈ Π1

j then ∃X1 · · · ∃Xkφ ∈ Σ1
j+1.

• Analytical hierarchy fnc-Σ1
n, fnc-Π

1
n, by function quantifiers: For each i ≥ 0, if φ

is fnc-Π1
i , then ∃fφ is fnc-Σ1

i+1. If φ is fnc-Σ1
i , then ∀fφ is fnc-Π1

i+1.

• For any Σ1
i (or Π1

i ) formula , there exists a fnc-Σ1
i (or fnc-Π1

i ) formula and vice versa.

• Normal form theorem for analytical formulas: For each i ≥ 1, for any Σ1
i (or Π1

i )
formula , there exists an equivalent fnc-Σ1

i (or fnc-Π1
i ) formula whose arithmetical

part is Σ0
1 or Π0

1.

• Compactness: For any Π0
1 formula φ(X), the formula ∃X φ(X) is Π0

1. For any Σ0
i

formula φ(X), the formula ∃X φ(X) is Σ0
i (i = 1, 2).
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Thank you for your attention!
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