K. Tanaka

Introducing second-order arithmetic

Analytical hierarchy Hierarchy by functio

Normal form

Summary

Logic and Computation II Part 6. Automata on infinite objects

Kazuyuki Tanaka

BIMSA

April 15, 2025

<ロト (日)、モン、モン、モン、モックへで 1/18

K. Tanaka

Introducing second-order arithmetic

Analytical hierarchy Hierarchy by function quantifiers

Normal form

Summary

Logic and Computation II

- Part 4. Modal logic
- Part 5. Modal μ -calculus
- Part 6. Automata on infinite objects
- Part 7. Recursion-theoretic hierarchies

– Part 6. Schedule (tentative)

- Apr.15, (1) Second-order arithmetic and analytical hierarchy
- Apr.17, (2) ω -regular languages
- Apr.22, (3) The decidability of S1S
- Apr.24, (4) Tree automata
- May 6, (5) The decidability of S2S
- May 8, (6) Finite model theory
- May 13, (7) Parity games

4日と 4周と 4 国と 4 国)

K. Tanaka

Introducing second-order arithmetic

Analytical hierarchy Hierarchy by function quantifiers

Normal form

Summary

§6.1. Recap: Monadic Second Order

- First Order Logic FO: quantifiers \forall and \exists range over the <u>elements</u> of a structure.
 - Almost all mathematical theories can be developed as FO theories, e.g., PA, ZFC.
- Second Order logic SO = FO + $\forall R(\vec{x}), \exists R(\vec{x}) + \forall f(\vec{x}), \exists f(\vec{x})$
 - The standard structure of SO equips its second-order domain with all relations and functions (in the naïve sense).
- Monadic Second Order logic MSO = FO + $\forall X, \exists X \text{ (or } \forall P(x), \exists P(x)),$ where X ranges over "subsets" of the structure.
 - L. Henkin introduced a **general structure** of MSO, whose second-order part varies similarly to the first-order logic domain.

Definition 6.1 (Def.5.3, revisited)

A general structure $\mathcal{B} = (\mathcal{A}, \mathcal{S})$ of MSO consists of FO structure \mathcal{A} and set $\mathcal{S} \subset \mathcal{P}(A)$. The set quantifiers are interpreted in \mathcal{B} as follows.

$$\begin{split} \mathcal{B} &\models \forall X \varphi(X) \Leftrightarrow \text{for any } S \in \mathcal{S}, \mathcal{B} \models \varphi(S) \text{ holds}, \\ \mathcal{B} &\models \exists X \varphi(X) \Leftrightarrow \text{there exists } S \in \mathcal{S} \text{ such that } \mathcal{B} \models \varphi(S). \end{split}$$

K. Tanaka

Introducing second-order arithmetic

Analytical hierarchy Hierarchy by functior quantifiers

Normal form

Summary

• A general structure can also be viewed as a first-order structure with two domains (A and S). Henkin assumes that a general structure should satisfy certain amounts of comprehension axioms and axiom of choice. The comprehension axiom is an assertion that for a formula $\varphi(x)$ with no free occurrence of X, the set $\{x : \varphi(x)\}$ exists in the second-order domain.

Theorem 6.2 (Completeness theorem of MSO, Thm 5.4, revisited)

An MSO formula is provable from appropriate comprehension and other axioms in two-sorted first-order system if and only if it is true in any general structure that satisfies those axioms.

This theorem can be proved in the same way as in first-order logic. It can also be generalized to higher-order logics.

K. Tanaka

Introducing second-order arithmetic

Analytical hierarchy Hierarchy by function quantifiers

Normal form

Summary

§. 6.2. Second-order arithmetic

- The language \mathcal{L}_{OR}^2 of second-order arithmetic is the language of first-order arithmetic \mathcal{L}_{OR} plus the membership relation symbol \in .
- The formulas in L²_{OR} are constructed from atomic formulas (t₁ = t₂, t₁ < t₂, t ∈ X) by propositional operators, numerical quantifiers ∀x, ∃x and set quantifiers ∀X, ∃X.
- A formula can be rewritten in the prenex normal form by shifting quantifiers to the head of formula like in first-order. Moreover, all second-order quantifiers can be placed outside of the scopes of any first-order quantifier. For instance, in a very weak theory, the following transformation is possible.

 $\forall x \exists Y \varphi(x,Y) \Leftrightarrow \forall X \exists Y (\exists ! x (x \in X) \rightarrow \forall x (x \in X \rightarrow \varphi(x,Y))).$

• With the axiom of choice, the following is also possible.

 $\forall x \exists Y \varphi(x, Y) \Leftrightarrow \exists Y' \forall x \varphi(x, Y'_x),$

where Y' is a set-valued choice function such that $Y'_x = Y'(x) = \{y : (x, y) \in Y'\}$.

K. Tanaka

Introducing second-order arithmetic

Analytical hierarchy

Hierarchy by function quantifiers

Normal form

Summary

We inductively define the analytical hierarchy of \mathcal{L}_{OR}^2 -formulas, Σ_j^i and Π_j^i ($i = 0, 1, i \in \mathbb{N}$).

Definition 6.3

- The **Bounded** formulas are constructed from atomic formulas $(t_1 = t_2, t_1 < t_2, t \in X)$ by propositional operators and bounded quantifiers $\forall x < t, \exists x < t$. The class of such formulas is written as Π_0^0 or Σ_0^0 .
- For each $j \ge 0$, if $\varphi \in \Sigma_j^0$, then $\forall x_1 \cdots \forall x_k \varphi \in \Pi_{j+1}^0$; if $\varphi \in \Pi_j^0$, then $\exists x_1 \cdots \exists x_k \varphi \in \Sigma_{j+1}^0$. All formulas in Σ_j^0 and Π_j^0 are called arithmetical. The class of arithmetical formulas is also denoted as Π_0^1 or Σ_0^1 .
- For each $j \ge 0$, if $\varphi \in \Sigma_j^1$, then $\forall X_1 \cdots \forall X_k \varphi \in \Pi_{j+1}^1$; if $\varphi \in \Pi_j^1$ then $\exists X_1 \cdots \exists X_k \varphi \in \Sigma_{j+1}^1$. All formulas in Σ_j^1 and Π_j^1 are called analytical.

Analytical Hierarchy

K. Tanaka

Introducing second-order arithmetic

Analytical hierarchy

lierarchy by function Juantifiers

Normal form

Summary

- $\Sigma_i^0(\Pi_i^0)$ formulas without set variables are nothing but $\Sigma_i(\Pi_i)$ formulas of first-order arithmetic.
- A formula that is equivalent to a Σ_j^i (or Π_j^i) formula on a given basic system is often called Σ_j^i (or Π_j^i).
- Furthermore, if a Σ_j^i formula is equivalent to a Π_j^i formula, each of them is called a Δ_j^i formula. Since the equivalence of formulas depends on a base theory T, Δ_j^i is strictly expressed as $(\Delta_j^i)^T$.
- When dealing with arithmetical hierarchies $\Sigma_i^0 \Pi_i^0$, a system of second-order arithmetic RCA₀ is often used as a base theory. When dealing with analytical hierarchies, a stronger system ACA₀ is often assumed.
- These two systems are also suitable for the foundation of a wide range of mathematical discussions, and thus are important in the foundational program, so-called **Reverse Mathematics**.
- The full Second-order arithmetic Z_2 is a monadic second-order theory of natural numbers and sets of natural numbers under the condition of full induction and full comprehension.

K. Tanaka

Introducing second-order arithmetic

Analytical hierarchy

lierarchy by functio quantifiers

Normal form

Summary

We define two major subsystems of Z_2 .

Definition 6.4 (System RCA₀)

The system of recursive comprehension axioms RCA_0 consists of the following axioms. (1) Basic Axioms of Arithmetic: Same as $Q_{<.}$ (2) Δ_1^0 comprehension axiom (Δ_1^0 -CA):

$$\forall x(\varphi(x) \leftrightarrow \psi(x)) \rightarrow \exists X \forall x(x \in X \leftrightarrow \varphi(x)),$$

where $\varphi(x)$ is Σ_1^0 , $\psi(x)$ is Π_1^0 , and X is not included as a free variable. This axiom roughly guarantees the existence of the set $X = \{n : \varphi(n)\}$. (3) Σ_1^0 induction: For any Σ_1^0 formula $\varphi(x)$,

$$\varphi(0) \land \forall x (\varphi(x) \to \varphi(x+1)) \to \forall x \varphi(x).$$

K. Tanaka

Introducing second-order arithmetic

Analytical hierarchy

lierarchy by function quantifiers

Normal form

Summary

- Since the Δ_1^0 comprehension axiom asserts the existence of recursive sets (=computable sets) in the standard model \mathbb{N} , it is called the **recursive comprehension axiom**.
- More precisely, since $\psi(x)$ and $\varphi(x)$ in the axiom may include set variables (other than X) as parameters, this axiom indeed asserts that there exists a set that can be computed in a parameter set as an oracle. But notice that it does not assert the non-existence of a non-recursive set.
- RCA₀ is a conservative extension of first-order arithmetic I Σ_1 . That is, a sentence of \mathcal{L}_{OR} that is provable in RCA₀ is already provable in I Σ_1 .

Definition 6.4 (continued: System ACA₀)

The system of arithmetical comprehension axioms ACA₀ is obtained from RCA₀ by replacing the Δ_1^0 comprehension with the Σ_1^0 comprehension ⁱ.

• ACA₀ is a conservative extension of first-order arithmetic PA.

ⁱArithmetical comprehension can be achieved by repeatedly applying the Σ_1^0 comprehension axiom to the parameters.

K. Tanaka

Introducing second-order arithmetic

Analytical hierarchy

lierarchy by function quantifiers

Normal form

Summary

- In RCA₀, we encode the ordered pair of natural numbers (m, n) by a number $\frac{(m+n)(m+n+1)}{2} + m$.
- The Cartesian product $X \times Y$ is the set of all (codes of) pairs of an element of X and an element of Y:

$$n \in X \times Y \leftrightarrow \underbrace{\exists x \leq n \exists y \leq n (x \in X \land y \in Y \land (x, y) = n)}_{\Sigma_0^0}.$$

So the existence of $X \times Y$ is guaranteed by RCA_0 .

• A function $f:X \to Y$ is a unique set $F \subseteq X \times Y$ such that

 $\forall x \forall y_0 \forall y_1((x,y_0) \in F \land (x,y_1) \in F \rightarrow y_0 = y_1) \text{ and } \forall x \in X \exists y \in Y(x,y) \in F.$

If $(x,y) \in F$, we write f(x) = y.

- A function is called a **total function** if its domain is $\mathbb{N}.$
- In RCA₀, we can prove that the total functions are closed under primitive recursion.

K. Tanaka

Introducing second-order arithmetic

Analytical hierarchy

Hierarchy by function quantifiers

Normal form

Summary

In RCA₀, we can not only handle functions, but also use the function quantifiers $\exists f, \forall f$ for a unary function f. These quantifiers can be regarded as special set quantifiers $\exists X_f, \forall X_f$, which presuppose that X_f denotes a function, namely, $\forall x \exists ! y \ (x, y) \in X_f$. Now, we consider the hierarchy of formulas only with function quantifiers.

Definition 6.5 (Analytical hierarchy fnc- Σ_n^1 , fnc- Π_n^1 , by function quantifiers)

Arithmetical formulas are $\operatorname{fnc}-\Sigma_0^1$ and $\operatorname{fnc}-\Pi_0^1$. For each $i \ge 0$, if a formula φ is $\operatorname{fnc}-\Pi_i^1$, then $\exists f \varphi$ is $\operatorname{fnc}-\Sigma_{i+1}^1$. If a formula φ is $\operatorname{fnc}-\Sigma_i^1$, then $\forall f \varphi$ is $\operatorname{fnc}-\Pi_{i+1}^1$.

In the following lemma, we show $\operatorname{fnc}-\Sigma_i^1$ (or $\operatorname{fnc}-\Pi_i^1$) and Σ_i^1 (or Π_i^1) are equivalent. Thus "fnc-" may be omitted.

Lemma 6.6

For each $i \ge 1$, for any Σ_i^1 formula (or Π_i^1 formula), there exists an equivalent $\operatorname{fnc} \Sigma_i^1$ formula (or $\operatorname{fnc} - \Pi_i^1$ formula). The converse also holds.

K. Tanaka

Proof

Introducing second-order arithmetic

Analytical hierarchy

Hierarchy by function quantifiers

Normal form

Summary

First, we show that in a Σ_i¹ formula (or a Π_i¹ formula), a block of set quantifiers of the same kind can be unified into one. That is, in RCA₀, the following holds.

 $\exists X_0 \cdots \exists X_{n-1} \varphi \Leftrightarrow \exists X \varphi',$

where φ' is obtained from φ by replacing each atomic formula $t \in X_k$ (k < n) in it with $(t, k) \in X$. The equivalence should be clear. Similarly for universal quantifiers $\forall X_k$.

- Next, we replace each set quantifier $\exists X \ (\forall X)$ with a function quantifier $\exists f_X \ (\forall f_X)$, and an atomic formula $t \in X$ with $f_X(t) > 0$. Thus, we obtain an equivalent formula with only functional quantifiers.
- Therefore, a Σ_i^1 (or Π_i^1) formula can be expressed as fnc- Σ_i^1 (or fnc- Π_i^1).

K. Tanaka

Introducing second-order arithmetic

analytical hierarchy

Hierarchy by function quantifiers

Normal form

Summary

- Conversely, suppose ${\rm fnc}\text{-}\Sigma^1_i$ or ${\rm fnc}\text{-}\Pi^1_i$ formula φ are given.
- First, we replace the functional quantifier $\exists f \ (\forall f)$ of φ with the set quantifier $\exists X_f \ (\forall X_f)$ and denote the resulting formula as φ' .
- Next, consider how to eliminate f using X_f in the arithmetical part θ of φ' . For example, an atomic formula s = t where t is expressed as u(f(v)) can be rewritten as $\exists y((v, y) \in X_f \land s = u(y))$. If t contains multiple occurrences of f, eliminate them from the inner. Similarly for s < t.
- Let θ' be an arithmetical formula obtained by repeating this process and eliminating all function quantifiers.
- For each f, let $\Psi(f)$ be $\forall x \exists ! y \ (x, y) \in X_f$, to express the condition " X_f represents a function". Finally, we define an arithmetical formula θ " as follows.

$$\theta'' \equiv \bigwedge_{f \text{ s.t. } \varphi \text{ contains } ``\forall f"} \Psi(f) \rightarrow (\theta' \land \bigwedge_{f \text{ s.t. } \varphi \text{ contains } ``\exists f"} \Psi(f))$$

化口水 化塑料 化连环 化连环 二连一

• By replacing the arithmetical part θ of φ' with θ'' , we obtain a Σ_i^1 or Π_i^1 formula which is equivalent to φ .

K. Tanaka

Introducing second-order arithmetic

Analytical hierarchy Hierarchy by function quantifiers

Normal form

Summary

The above lemma can also be proved in RCA_0 , but the following normal form theorem requires ACA_0 .

Theorem 6.7 (Normal form theorem for analytical formulas)

For each $i \ge 1$, for any Σ_i^1 formula (or Π_i^1 formula), there exists an equivalent $\operatorname{fnc} \Sigma_i^1$ formula (or $\operatorname{fnc} - \Pi_i^1$ formula) whose arithmetical part is Σ_1^0 or Π_1^0 .

Proof.

- Any Σ_i^1 formula (or Π_i^1 formula) must have an equivalent fnc- Σ_i^1 formula (or fnc- Π_i^1 formula) as shown in the above lemma.
- To begin with, we will observe that consecutive quantifiers of the same type can be unified as one of such. First note that if x encodes a pair (x_0, x_1) , x_i is obtained from x as a primitive recursive function $\pi_i(x)$ (i = 0, 1). Then $\exists x_0 \exists x_1 \varphi(x_0, x_1)$ can be rewritten as $\exists x \varphi(\pi_0(x), \pi_1(x))$. Also $\exists f_0 \exists f_1 \varphi(f_0, f_1)$ can be rewritten as $\exists f \varphi(\pi_0 \circ f, \pi_1 \circ f)$. Similar for universal quantifiers $\forall x_0 \forall x_1$ and $\forall f_0 \forall f_1$. We remark that the graph of a primitive recursive function can be expressed as a Δ_1^0 formula in RCA₀ essentially by the strong representation lemma.

14 / 18

K. Tanaka

Introducing second-order arithmetic

Analytical hierarchy Hierarchy by functior quantifiers

Normal form

Summary

- Let φ be a fnc- Σ_i^1 (or fnc- Π_i^1) formula. Suppose that its last function quantifier is $\exists f$.
- First, consider the case that the first quantifier of the arithmetical part of φ is ∃x. Then we change ∃x by a function quantifier ∃f_x, and replace x inside with f_x(0). Finally, merge the two function quantifiers ∃f∃f_x into one.
- Next, consider the case that the first arithmetical quantifier is ∀x. If the arithmetical part is Π⁰₁, we are done.
- Otherwise, the arithmetical part is of the form $\forall x \exists y \varphi(x, y)$.
- If $\forall x \exists y \varphi(x, y)$ holds, there exists an arithmetical function g(x) = y that takes the smallest y that satisfies $\varphi(x, y)$ for x. So, it can be rewritten as $\exists g \forall x \varphi(x, g(x))$ (in ACA₀). Finally, merge the two function quantifiers $\exists f \exists g$ into one.
- The same is true if the last function quantifier is $\forall f$.
- By repeating the above procedure, the arithmetical part becomes Σ^0_1 or $\Pi^0_1.$

K. Tanaka

Introducing second-order arithmetic

Analytical hierarchy Hierarchy by function quantifiers

Normal form

Summary

Compactness via Set Quantifiers

What happens when we consider the normal form like Theorem 6.7 for the hierarchy Σ_i^1 , Π_i^1 based on set quantifiers? In that case, the inner arithmetic part can not be Σ_1^0 or Π_1^0 . This is clarified by the following lemma, which can be proved in ACA₀.

Lemma 6.8 (Compactness)

For any Π^0_1 formula $\varphi(X)$, the sentence $\exists X \, \varphi(X)$ is again Π^0_1 .

Sketch of proof. We identify sets X with infinite binary sequences. A Π^0_1 formula $\varphi(X)$ can be written as $\forall x \; \theta(X \upharpoonright x)$, where θ is a Σ^0_0 formula. We define a tree

 $T = \{t : \forall s \subseteq t \ \theta(s)\}.$

Then, $\varphi(X)$ is equivalent to "X is a path through T", i.e., $X \in [T]$. Thus, $\exists X \varphi(X)$ is equivalent to " $[T] \neq \emptyset$ ", which is in turn equivalent to a Π_1^0 statement:

$$\forall n \; \exists t \in \{0,1\}^n \; (t \in T). \qquad \Box$$

The inner arithmetic part of a Σ_i^1 or Π_i^1 formula can be expressed using Σ_2^0 or Π_2^0 formulas. This can be verified by re-examining the above proof.

K. Tanaka

Introducing second-order arithmetic

Analytical hierarchy Hierarchy by functior quantifiers

lormal form

Summary

• Second-order arithmetic Z_2 is a monadic second-order theory, or a two-sorted first-order theory dealing with natural numbers and sets of natural numbers under the condition of full comprehension.

- The language \mathcal{L}_{OR}^2 of second-order arithmetic is the language of first-order arithmetic \mathcal{L}_{OR} plus the membership relation symbol \in .
- The analytical hierarchy of \mathcal{L}_{OR}^2 -formulas, Σ_j^i and Π_j^i : For each $j \ge 0$, if $\varphi \in \Sigma_j^1$, then $\forall X_1 \cdots \forall X_k \varphi \in \Pi_{j+1}^1$; if $\varphi \in \Pi_j^1$ then $\exists X_1 \cdots \exists X_k \varphi \in \Sigma_{j+1}^1$.
- Analytical hierarchy fnc-Σ¹_n, fnc-Π¹_n, by function quantifiers: For each i ≥ 0, if φ is fnc-Π¹_i, then ∃fφ is fnc-Σ¹_{i+1}. If φ is fnc-Σ¹_i, then ∀fφ is fnc-Π¹_{i+1}.
- For any Σ_i^1 (or Π_i^1) formula , there exists a $\operatorname{fnc}-\Sigma_i^1$ (or $\operatorname{fnc}-\Pi_i^1$) formula and vice versa.
- Normal form theorem for analytical formulas: For each $i \ge 1$, for any Σ_i^1 (or Π_i^1) formula , there exists an equivalent $\operatorname{fnc} \Sigma_i^1$ (or $\operatorname{fnc} \Pi_i^1$) formula whose arithmetical part is Σ_1^0 or Π_1^0 .
- Compactness: For any Π₁⁰ formula φ(X), the formula ∃X φ(X) is Π₁⁰. For any Σ_i⁰ formula φ(X), the formula ∃X φ(X) is Σ_i⁰ (i = 1, 2).

Summary

K. Tanaka

Introducing second-order arithmetic

Analytical hierarchy

Hierarchy by functior quantifiers

Normal forn

Summary

Thank you for your attention!

